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Extremal Disturbance Analysis for
Dynamical Systems with Uncertain
Input

The philosophy of the extremal disturbance analysis for dynamical systems with uncertain
inputs is described. This analysis involves solving optimal control problems in which the
time histories of the inputs (external disturbances) are regarded as the control functions
and a response measure of the system serves as the performance index. The performance
index should be maximized or minimized over the disturbances within a prescribed class.
Often this class is specified by lower and upper bounds (a corridor) between which the
values of the disturbance must lie. The maximization and minimization problems are
referred to as the worst disturbance and best disturbance problems, respectively. The
solutions of these problems provide the extreme values between which the response
measure lies for any disturbance from the specified class. The extremal disturbance
analysis is important, in particular, when designing standards for testing devices for the
protection of fragile objects from impact loads. This approach is illustrated for a single-
degree-of-freedom system that can be regarded as a simplified model of the equipment for
ded tests of automobile restraint systems.
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Introduction

There are numerous structural dynamics problemsrevtiee
loading is not fully defined. Typically, such ptems are treated as
stochastic problems using the theory of probabilifanss, 2005;
lyenger, 1972). This paper discusses an altemataterministic
approach in which the available information on tlading is
utilized to calculate bounds on possible respowgdbe structure.
The lower bound would be the least maximum respdhat can
occur. The corresponding loading is referred to tlas best
disturbance. The upper bound is the greatest possible pegdonse
and the corresponding loading is theorst disturbance
(Koivuniemi, 1966; O'Hara, 1973). The responséhef structure to
any other loading falling within the prescribeddosy bounds will
lie between the extreme values of the response.

One example occurs if an explosive environment
characterized in terms of a total impulse. This sisfficient
information to determine what must happen to someipenent,
e.g., military equipment, and the maximum respomse this
equipment.

Other example occurs in the testing of safety dmvidor
crashing vehicles. For instance, tie-down systeonswheelchairs
are tested on high-speed sleds for which the gralse must adhere
to standards that are defined in terms of an epeelo which the
crash pulse must lie (Kang and Pilkey, 1998). Arenevmore
common example occurs in the sled testing of ctelats, where the
sled pulse must lie within prescribed time-varybaunds (Crandall
et al.,, 1996). The proposed scheme provides uppdr lawer
bounds for critical responses. These responsedearsed to help
gauge whether the prescribed pulse corridor igight or too broad
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to provide effective standards. Thus, the procethere develops a
technology to study the sensitivity of dynamic wmasges to
incompletely prescribed test conditions.

We choose to use the sled testing of child seaas &xample of
using extremal disturbance analysis to illustrategrinciples of this
sensitivity technology.

Nomenclature

A B,C,D = coordinates of the vertices of the trapezoid,
defined by Eq. (28), (time, acceleration), (s, /s

a = height of the trapezoid, defined by Eq. (27), acceleration,
m's?

¢ = damping coefficient of the restraint system, damping
coefficient, kg/s

F = force applied to the sled, force, N

f = force applied to the dummy by the restraint system, force,
N

g(t) = impulseresponse of the system, s

h = time between samples, time, s

i = sample number, dimensionless

j = design variable humber, dimensionless

J = peak magnitude of the absolute accel eration of the dummy,
acceleration, m/'s?

K (t) = function, defined by Eq. (21), U/s

k = stiffness coefficient of the restraint system, stiffness
coefficient, kg/s’

L = number of samples, dimensionless

M = mass of the ded, mass, kg

m = mass of the dummy, mass, kg

N = number of design variables, dimensionless

p = parameter defined by Eq. (22), dimensionless
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R = senditivity of the peak force transmitted to the dummy
relative to the variation in the crash pulse, dimensionless

Ry = prescribed value of the sensitivity of the peak force
transmitted to the dummy relative to the variation in the
crash pulse, dimensionless

T = duration of the crash pulse, time, s

t =time, s

u = absolute acceleration of the dummy with minussign,
acceleration, m/s’

W = class of thedesign variables w, acceleration, m/s®

w = absolute acceleration of the sled with minus sign treated
asa design variable, acceleration, m/s?

w_(t) = lower bound of the design variable w, acceleration,
ms’

w, (t) = upper bound of the design variable w, acceleration,
ms’

x = displacement of the dummy relative to the sled,
displacement, m

z = displacement of the led relative to the fixed frame,
displacement, m

Greek Symbols

Av = velocity change during the crash, velocity, m/s

A_v = lower bound of the velocity change during thesbr,
velocity, m/s

A,v = upper bound of the velocity change during ttasler
velocity, m/s

o(t) = Dirac delta function, dimensionless

¢ = fraction of critical damping, dimensionless

A = similarity factor, dimensionless

A = similarity factor equal to 1.14, dimensionless

H =reduced mass of the system, defined by Eqn{@}s, kg

7 =variable of integration, time, s

7,_, = parameters of the trapezoid, defined by Eq., @7k, s

(t) = function, representing a trapezoid and defined b
Eq. (27), acceleration, ni/s

w, = angular undamped natural frequency of the system
angular frequency, rad/s

a, = angular damped natural frequency of the sysaergular
frequency, rad/s

Subscripts

i relative to sample number

j relative to design variable number

0 relative to the optimal solution of the best diilsaance

problem

relative to the lower bound of the design vagail

+ relative to the upper bound of the design vaeabl

Superscripts

0 relative to the optimal solution of the worsttdibance
problem
+ relative to the upper bound of the design vaeakbl

occupant to prevent a violent contact with comptsmerside the car

during a crash. Typically, the test sled equipnuemisists of a high-

speed sled with a mock-up of the car interior, aoupant seat, a
restraint system, e.g., seat belt, and a dummp@®sdcupant. The
car mock-up with interior and seatbelts are rigidtyached to the
sled. The sled, dummy, and the seat belts are pegipith sensors
that measure accelerations, displacements, stfaitges, and other
characteristics of the response of the system.sldteis accelerated
to a prescribed velocity and then is subject teeeeteration pulse
simulating the crash impact. The various measuwesdanses can be
used to form injury criteria that can be comparéth wstablished

tolerance levels.

To fix ideas, we consider a simplified model of ttesting
equipment in which the sled and the dummy are dsghas rigid
bodies (Fig. 1). The sled moves along a horizostedight line
relative to a fixed (inertial) reference frame ¢hd dummy moves
relative to the sled along the same line. Let denote the
displacement (coordinate) of the sled relativen® fixed frame,x
the displacement (coordinate) of the dummy relativthe sled,M
the mass of the sledn the mass of the dummyk the force
applied to the sled during the crash simulatiord &n the force
applied to the dummy by the restraint system. Thsawf the seat
belts is neglected as compared with the massesealed and the
dummy. The forcef is assumed to be a function of the parameters
of the relative motion of the dummy, the relatieoinate x and
the relative velocityx, i.e., f = f(x,X). This function takes into

account the elastic and dissipative propertieshefdeatbelts. The
motion of this mechanical system is governed bysihaultaneous
equations

Mz=F -f, m(x+2)=f, 1)

which represent Newton’s second law for the sledl tae dummy,
respectively. The dummy is acted upon only by tstraint system
force f , whereas the sled is acted upon by the impaceférand

the force—-f as the seat belt interacts with the sled.
Solve the system of Eq. (1) for and 2 to obtain

Mm
M+m’

m
X=f(X,X)—F—,MZ=F - f (x,X), = 2
px= (%0~ F (xX), # ()

The quantity i/ is called the reduced mass of the system. In the
system of Eq. (2), the equation governing the nmotibthe dummy
relative to the sled is independent of the equatiomotion of the
sled relative to the fixed frame. If one is intéegsonly in the
relative motion of the dummy, and the impact forsea known
function of time, i.e.,F = F(t) , only the first relation of (2) is used.

In the theory of impact isolation, the impact disance specified as
the force pulse acting on the base (the sled) fesreel to as the
dynamic disturbance.

N

Basic Concepts of the Best and Worst Disturbance M
Analyses; Statement of the Optimal Control Problems

X

c

[T

L
A sled test is often employed to investigate prbtec k
characteristics of safety devices. For exampleyraabile restraint

systems can be studied with sled tests. In paaticabnsider a sled
test for an automobile restraint that restricts thetion of an

Figure 1. Single-degree-of-freedom model.
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In a number of cases, it is reasonable to assuaighh impact
disturbance is characterized by the acceleratioth®fbase, rather
than by the force applied to it. For instance, tfeg sled tests, the
impact deceleration of the sled is measured byleneeters. Then
the relative motion of the body to be protectede (tummy) is
governed by the second relation of Eq. (1) whi(t¢ is treated as a
known function of time. The impact disturbance sfet as the
base acceleration pulse is referred to asitteenatic disturbance.

For both types of disturbances, the equation of ridative
motion of the body to be protected can be represeint a unified
form as

X+ u(x, X) = w(t), 3)
where u(x,x)=-f(x,x)/y, w(t)=-F({)/M for the dynamic
disturbance and u(x,x)=-f(x,x)/m, w(t)=-2(t) for the
kinematic disturbance. In the theory of impactasiohn, the function
u(x,x) is frequently called the characteristic of the &uipisolator.
As a rule, Eq. (3) is subjected to zero initial dibions

x(0) = 0,%(0)= 0. 4)

These conditions imply that the object to be pretgadoes not
move relative to the base until the impact pulse theen applied to
the base.

To compare the disturbances in terms of the respafsghe
object to be protected, one should have a numariealsure of this
response. We select

J(w) =max u&€)x€))| (5)
where x(t) stands for the solution of the differential eqoati(3)
subject to the initial conditions of Eq. (4) fogaven w=w(t) . The
quantityJ characterizes the peak magnitude of the forcestnéted
to the dummy by the restraint system. (Actuallye treak force is

equal to 4J or mJ for the case of the dynamic or kinematic

disturbance, respectively.) The measuigv) is a functional of the
disturbance, depending on the entire time histérwo

Consider now the statement of the worst and bestidiance
problems for the system of Egs. (3) and (4) wite tiesponse
measure of Eq. (5). Let the disturbances beloraypiescribed class

W, i.e., wOW . Note thatW is a set of functions rather than a set

of values of these functions. In terms of the sk=t, the clas
can characterize a set of disturbances that areseptative of the
test, taking into account the inevitable inaccuragy the
reproduction of the desired deceleration pulse.

Usually, the class of representative disturbancelves a
“corridor” or “envelope” (Fig. 2) in which thesedflurbances must
lie, i.e.,

W ={w(t): w(d) <w(D) < w, (9, tO[0, T]}, (6)

where w_(t) and w,(t) are prescribed functions that define the

lower and upper bounds of the corridor afnds a fixed time. In
addition, the velocity of the sled should changeabgertain value
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AVv<sAvsA,y, (8)
where the interval[A_v,A,v] characterizes the uncertainty in the
measurement of the velocity decrease. Sifgeis defined as the
integral of w, the inequalities of Eq. (8) impose additional
constraints on the deceleration pulse time hist@tyerefore, the
total class to which the allowed deceleration milsrist belong is
defined by

W ={w(t): WD) <w(t) < w, (D), A_vs]w(r)drsAy}. )

wi(1)

Deceleration

/
w_(1)

Time

Figure 2. Corridor in which an input pulse w(t) must lie.

The worst disturbance problem is that of the deimtion of
the upper bound of the functiondi(w) for the disturbances of the

classW .
Problem 1 (Worst Disturbance Problem). For the system
governed by Egs. (3) and (4), find the disturbafuretion w°(t)

belonging to the clasg/ such that

I(W°) = max,, I @W). (10)
The best disturbance problem is that of the detatian of the
lower bound of the functional (w) for the disturbances of the class

Problem 2 (Best Disturbance Problem). For the system
governed by Egs. (3) and (4), find the disturbafucetion w(t)

belonging to the clasg/ such that

J(Wp) = min,q, J (W). (12)
From the mathematical point of view Problems 1 @ndre
optimal control problems with a maximum type fuoaotl, since the
performance index in these problems is the maximofmthe
absolute value of the force transmitted to the dynower the
impact response time.
The worst and best disturbance analyses enable tone
investigate the sensitivity of the results of tHedstest to the
variation of the impact pulse within the corridaegcribed by the

during the crash pulse tim@ . In the case of the kinematic standards for such tests. If the difference betwtdenupper and

disturbance, this condition has the form
T
Av= j w(r)dr, )
0

where Av is a specified positive quantity. Usually, the ofity Av
is prescribed with an allowance for an error in theasurement of
the velocity of the sled,
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lower bounds is large, the test may have an uratdgitow value of
the peak force transmitted to the dummy due toottmirrence of
the disturbance close to the best one. Such adesbe deceptive
when assessing the quality of the restraint systedy hence, is ill-
designed. In this case, the standards for the idgfiallowable
impact pulses should be revised.

Sometimes, the sensitivity of the peak force tratisthto the
dummy relative to the variation in the impact puseharacterized
by the ratio
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R=J(WP)/J(wp). (12)

Restraint System with Linear Characteristics;, Numerical
Solution of the Optimal Control Problems

Let the restraint system have linear elastic andnpitag
properties, i.e.,

f (% %) = —cX—kx , (13)

where ¢ and k are the damping and stiffness coefficients,

respectively. For an impact disturbance of the kiatic type, EQ.
(3) becomes

%+ 2¢, X+ afx = w(t) (14)
where @, is the natural frequency of the system ands the
damping ratio,
@, = (k/Im)*2, ¢ =c/(2(km)"?). (15)
The criterion J of Eq. (5) (the peak magnitude of the
occupant’s absolute acceleration) becomes

I(w) =max, | Zek € afx ()| (16)

Even for the linear system of Eq. (14), the solutid the best
and worst disturbance problems (Problems 1 and eguires
numerical methods. To this end, the continuous-fioneulation of
these problems is replaced by a discrete-time appation. The
time axis is discretized with step size. On the time intervals
(i-Dh<t<ih, i=1,2,.., the function w(t) is assumed to be

constant:
w(t) = {

The constant parameterg, i=1,...N, play the role of design

variables when solving the optimization problembe Thumber of
these design variables is defined as follows:

{

where the square brackets and the braces denotmttger and
fractional parts, respectively, of the expressioc@sed.

The solution of Eq. (14) subject to the initial ddions of
Eq. (4) has the convolution form

w, if (i-)h<T

o , (i—-Dhst<ih.
0,if (-Dh=T

7)

T/h, if{T/§ =0
[T/h+1, if{T/Hh 20

(18)

X(t) = jg(t -)w(r)dr, x(t)= j' gt-n)w(r)dr, (19)

where

awstexplat)sinat , if¢ < 1,
g(t) =<texpt-¢awt), if ¢=1,
aw5texpdat ) sinht | if¢ >1,

= (‘2‘1/2 (20)

o =,

J. of the Braz. Soc. of Mech. Sci. & Eng.

The function g(t) is referred to as the impulse response
function (fundamental solution) for Eq. (14). Ittises the
differential equation of (14) withw(t) =J(t) , where J(t) is the
Dirac delta function, subject to the initial conalits x(0) =0 and
X(t)=0. This function can also be defined as the solutixdn
Eq. (14) with zero right-hand siden(t) =0), subject to the initial
conditions x(0) = 0 and x(0) =1.

Substitute the relations of Eq. (20) into Eq. (t6pbtain

J =max

C K= 2m9 O+afg ). (21)

jK t-7)w@r

The discrete-time approximation of the response somea of
Eqg. (21) has the form

min{i, N}

2

i=1

J(W) = maX Py W;

1

i (22)
Py = I

(j-)h

K(ih-7)dr, j<i, w=[w,..w],

where Lis the number of discrete intervals on the times zom
which the response to the impact pulse is to bautated. To obtain
reliable results, it is necessary to consider #sponse on the time
interval substantially exceeding that of the crasitse. Since the
crash pulse has a rather short duration, the regporeasure can
attain its maximum after the disturbance has cessedtt. For this
reason, the number of time instants at which thepoese is
measured should exceed the number of the disdietizpoints in
the crash pulse intervd,T] and, hencel >N .
The criterion of Eq. (22) is a
N variablesv=[w,...,w,]. The constraints of Eq.

discretized as follows:

function  of
(9) are

N
w_(ih)<w <w,(ih),i0O1:N]; A.v< hZstA+v. (23)
j=1

In the discrete-time formulation, the worst-distmbe problem
is reduced to the maximization of the function of. E22) and the
best-disturbance problem to the minimization ofs tHunction,
subject to the constraints of Eq. (23). These camgs arelinear
relative to the design variables...,w, , and the function to be

maximized or minimized is a maximum of the absolsues of
linear functions of these variables. In this case, thestained
minimization (maximization) problem can be redutedhat of the
linear programming, which substantially facilitatdse solution,
since there are rapidly converging reliable lingaogramming
algorithms available in most optimization softwafeor a more
detailed description of the solution of optimizatiproblems similar
to Problems 1 and 2 on the basis of the linear raraging, see
Balandin, Bolotnik, and Pilkey (2001).

Numerical Example

Assume the damping and stiffness coefficients ef tbstraint
systems are:

c=200" k=16, m= 23k (24)
m m
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which are reasonably realistic for restraint systefhe mass of the
occupant of 23kg corresponds to the 6-year-olddcldiimmy.

Figures 3 to 5 demonstrate the results of the isoluf Problems 1
and 2 for the sled deceleration pulse corridor shawFig. 3. The
corridor corresponds to the standard of NHTSA ()98t specifies
test conditions for child restraints. The uncettaimterval of Eq.

(8) for the sled velocity change is defined as

45.1km/h< Av< 48.3 km/t

(25)
(28 mph< Av < 30 mph),

Figure 3 shows the time histories for the best awafst
deceleration pulses. The shaded area in Fig. &septs the corridor
in which deceleration pulses must lie. If there avap constraints
such as of Eqg. (25) on the velocity change, bothhibst and worst
disturbance pulses would have switched betweenldver and
upper bounds of the corridor. This follows since #olution of a
linear programming problem always lies on the baumdof the
domain constraining the design variables. Fromtiime histories
shown in Fig. 3 it is apparent that both the bastucbance and
worst disturbance pulses lie within the walls & ttorridor on some
time intervals. Therefore, the velocity change a®sione of the
boundary values prescribed by Eq. (25), specificall
Av = 45.1km/h for the best disturbance and = 48.3km/h for the

worst disturbance.

Figure 4 depicts the time history of the force &aplto the
dummy by the seat belt in the case of the wordtd(smrve) and
best (dashed curve) disturbances. It is apparaniritboth cases the
peak magnitude of the force is attained before e¢hd of the
disturbance. This is because the duration of theeps close to the
undamped vibration period of the system. In acamdawith figs. 3,
the duration of the deceleration pulse lies betw@6i@5 and 0.09s,
while the vibration period for the parameters of &4) is 0.096s.

The time histories of the displacement of the dunforythe
worst and best disturbances are shown in Fig. fadp the curves
of Fig. 5 repeat those of Fig. 4 scaled by thdrsés coefficient

(10° N/m). This is due to the fact that the damping doeshawe
much effect during the time interval under considien. The

damping ratio¢ of Eq. (15) calculated for the system with the

parameters of Eq. (24) equaB.OGGél and, accordingly, the
characteristic time of the damping equa2s, which substantially

exceeds the undamped vibration period.
The sensitivity ratio of Eq. (12) for the forceartsmitted to the
dummy is
R=10.2/7.6= 1.34 (26)

This reasonably low value would probably be acdaptan
practice.
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Figure 3. Best and worst disturbances.
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Figure 4. Force applied to the dummy by the seat belt.
. 01 _ _ Best
3 Responsg
= Worst
g 0.05¢ Response |
]
3
i 0
K]
a
—-0.05¢
0 0.05 0.1 0.15
Time (s)

Figure 5. Displacement of the dummy relative to the sled.

Rational Design of Sled Test Standards

In the previous section, we have illustrated thgliaption of the
extremal disturbance analysis to check the seitgitiof the
response measure (the force transmitted to thepaotu to the
variation of the sled deceleration pulse withinrespribed corridor.
This concept suggests a technique for the ratidasign of such a
corridor so that the sensitivity ratio does notemd an allowed
value. Consider an example.

Let the walls of the corridor have a shape of peraid ABCD
shown in Fig. 6. A generic trapezoid can be represkanalytically
by the piecewise linear function
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0, tO(-,r;)n [0,0),
at-r)lr, tO[r,7,+7,) N[0,0),

Yt)=qa, tO[r,+7,7,+7;)n[0,),
at-r,-7,)/(ry;-7,), tO[r,+7,7,+7,)Nn[0,),
0, t=r,+7,.

(27)

The coordinates of the vertices of this trapezaidtioe time-
acceleration plane are given by

A=(7,,0),
C=(1,+1;a),

B=(@,+7,a),

D=(r,+r1,0). (28)

In terms of the geometry of the trapezoig,and 7, - 7, are the
lengths of the lower and upper bases, respectivelys the height,
(r2+a*"? and ((r,—1,)* +a*)"? are the lengths of the lateral
sides AB and CD, respectively. The parametetr characterizes

the shift of the trapezoid along the time axis.
The walls (the upper and lower bounds) of the dorrifor sled
tests shown in Fig. 3 have the shape of trapezuitts

,=4ms, 1,=9ms, 7,= 42m:

(29)
7,=71ms, a=19¢g
for the lower bound and
7,=-1ms, 7,=11ms, 7,= 53m;
(30)

7,=91ms, a=25¢g

for the upper bound. With a high degree of accur#uoy trapezoid
of the upper bound is similar to the trapezoid feé tower bound
with the similarity factor close to 1.3.

A

Cc

o]

Deceleration

D

|
|
|
|
| N

R ~
Time

+ +
T+, T 4T,

Figure 6. A trapezoidal bound for the force applied to the dummy by the
seat belt.

We will confine ourselves to the case where thetions w._(t)
and w, (t) of Eq. (6) are represented by similar trapezdids.the
lower bound be fixed and let_(t) =¢(t), whereg(t) is defined
by Eqg. (27). Let the upper bound be described byuhction
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0, tO(-o,7; )N [0,0),
at-r;)

, tO0[zr], 7] +Ar,) n[0,0),

TZ
Aa, tO[r) +A1,,1; +A1,) n[0,0),
alt-7, -Ar,)
(1,-1,)
0, t=7] +Ar,,

w, (t) = (31)

, tO[r +Ar, 1) +A1,) n[0,),

where A and 7; are the parameters of the upper bound, the
similarity factor and the time coordinate of thdt-lland bottom
vertex (point A) of the respective trapezoid. For the cuwg(t) of

Eqg. (31) to lie above the curvev (t) =¢/(t) of Eq. (27) it is
necessary that

A21, +@-Ay,<r/ <71, (32)
It is apparent that ford =1, the lower and upper bounds of the
corridor match one another.

By varying the parameterd and 7; within the domain of
Eq. (32) one can assure that the ra&oof Eq. (12) does not exceed
a prescribed value. The variation can be organizegrious ways.
For example, one can constrain the parameferto lie in the
middle of the interval allowed for this parametgrHy. (32), i.e.,

= +@Q-A)r,/2. (33)

In this case, the variation is performed with resge only one
parameter,A. As A increases, the corridor becomes wider and,
therefore, the best-disturbance response measareades while the
worst-disturbance response measure increases. diaghy, the
sensitivity ratioR is a monotonically increasing function af The
search for the maximuml that assures that the quantiB does
not exceed the prescribed val& is reduced to the solution of the
equation R(A)=R,. This equation can be solved by various
methods, for example, by the interval bisectionhoét For each
trial A, one should solve the best disturbance and waststrdance
problems to calculat®(1) .

Figure 7 presents the curvig(A), calculated for the corridor
defined by Egs. (27), (29), (31), and (33), congaldby the velocity
change interval of Eq. (25). The curve becomes nflateas/
increases. Note that this curve begins with= A, = 1.14, rather

than with 4 =1, in which case the upper and lower bounds of the
crash pulse corridor coincide. This is becausehefdonstraint of
Eq. (25) on the velocity change. The lower bourdtif@ velocity
change is45.1km/h, whereas the integral of the lower bound of the
pulse corridor (the area of the trapezoid représgrhe respective
wall of the corridor) is34.9km/h. Therefore, the pulse of the lower
bound is unable to decelerate to a complete step &w the least
crash velocity allowed by the interval of Eq. (28)Joreover, no
pulse of the corridor is able to provide a velocithange of
45.1km/h while the area of the upper bound trapezoid is than

this value. This is the case far< A . For A = A, the area of the

upper bound trapezoid is equal 4&.1km/h. In this case, the only

pulse of the corridor able to decelerate the sledhing at this
velocity to a complete stop is that of the uppewrb and,
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accordingly, the worst and best disturbances

R(A) =1.

coacii.e.,

1.8¢

1.6f

1.4t

1.2}

1 1.2 1.4 1.6 1.8 2
A

Figure 7. Sensitivity of the peak force transmitted to the dummy relative to
the variation in the impact pulse R versus the similarity factor A.

Conclusions

The extremal disturbance analysis enables one ahiae the
sensitivity of the response of a dynamical systerthé variation in
the external disturbances within a prescribed uacgy class. To
that end one should solve two optimal control peots, the best
disturbance problem to calculate the lower bound e worst
disturbance problem to calculate the upper boundé oEsponse
measure. The ratio of these bounds can serve asethstivity
index. The closer this ratio is to unity, the lowlee sensitivity. The
extremal disturbance analysis is, in particularpantant for the
validation of standards for impact tests of fragilgiects and the
equipment for the protection of such objects. Swtandards
commonly prescribe a corridor for impact pulsedéoreproduced
on the test facility. The test data are considéoebe reliable if the
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spread in the responses to the input pulses witiéncorridor is
reasonably small. This spread is characterized higy sensitivity
ratio resulting from the extremal disturbance asialyln addition,
the extremal disturbance analysis suggests a tpedirfor rational
design of a corridor for loading pulses so that gbasitivity ratio
does not exceed a prescribed value.
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