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Extremal Disturbance Analysis for 
Dynamical Systems with Uncertain 
Input 
The philosophy of the extremal disturbance analysis for dynamical systems with uncertain 
inputs is described. This analysis involves solving optimal control problems in which the 
time histories of the inputs (external disturbances) are regarded as the control functions 
and a response measure of the system serves as the performance index. The performance 
index should be maximized or minimized over the disturbances within a prescribed class. 
Often this class is specified by lower and upper bounds (a corridor) between which the 
values of the disturbance must lie. The maximization and minimization problems are 
referred to as the worst disturbance and best disturbance problems, respectively. The 
solutions of these problems provide the extreme values between which the response 
measure lies for any disturbance from the specified class. The extremal disturbance 
analysis is important, in particular, when designing standards for testing devices for the 
protection of fragile objects from impact loads. This approach is illustrated for a single-
degree-of-freedom system that can be regarded as a simplified model of the equipment for 
sled tests of automobile restraint systems. 
Keywords: Uncertain input, worst disturbance, best disturbance, impact isolation, sled 
tests 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 

There are numerous structural dynamics problems where the 
loading is not fully defined.  Typically, such problems are treated as 
stochastic problems using the theory of probability (Hanss, 2005; 
Iyenger, 1972).  This paper discusses an alternative deterministic 
approach in which the available information on the loading is 
utilized to calculate bounds on possible responses of the structure. 
The lower bound would be the least maximum response that can 
occur.  The corresponding loading is referred to as the best 
disturbance.  The upper bound is the greatest possible peak response 
and the corresponding loading is the worst disturbance 
(Koivuniemi, 1966; O’Hara, 1973).  The response of the structure to 
any other loading falling within the prescribed loading bounds will 
lie between the extreme values of the response.1 

One example occurs if an explosive environment is 
characterized in terms of a total impulse. This is sufficient 
information to determine what must happen to some equipment, 
e.g., military equipment, and the maximum response of this 
equipment.  

Other example occurs in the testing of safety devices for 
crashing vehicles. For instance, tie-down systems for wheelchairs 
are tested on high-speed sleds for which the crash pulse must adhere 
to standards that are defined in terms of an envelope in which the 
crash pulse must lie (Kang and Pilkey, 1998). An even more 
common example occurs in the sled testing of child seats, where the 
sled pulse must lie within prescribed time-varying bounds (Crandall 
et al., 1996). The proposed scheme provides upper and lower 
bounds for critical responses. These responses can be used to help 
gauge whether the prescribed pulse corridor is too tight or too broad 
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to provide effective standards. Thus, the procedure here develops a 
technology to study the sensitivity of dynamic responses to 
incompletely prescribed test conditions.  

We choose to use the sled testing of child seats as an example of 
using extremal disturbance analysis to illustrate the principles of this 
sensitivity technology. 

Nomenclature 

, , ,A B C D  = coordinates of the vertices of the trapezoid, 

defined by Eq. (28), (time, acceleration), (s, m/s2) 
a  = height of the  trapezoid, defined by Eq. (27), acceleration, 

m/s2 
c  = damping coefficient of the restraint system, damping 

coefficient, kg/s 
F  = force applied to the sled, force, N 
f  = force applied to the dummy by the restraint system, force, 

N 
( )g t  = impulse response of the system, s 

h  = time between samples, time, s 
i  = sample number, dimensionless 
j  = design variable number, dimensionless 

J  = peak magnitude of the absolute acceleration of the dummy, 
acceleration, m/s2 

( )K t  = function, defined by Eq. (21), 1/s 

k  = stiffness coefficient of the restraint system, stiffness 
coefficient, kg/s2 

L  = number of samples, dimensionless  
M  = mass of the sled, mass, kg 
m  = mass of the dummy, mass, kg 
N  = number of design variables, dimensionless 
p  = parameter defined by Eq. (22), dimensionless 
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R  = sensitivity of the peak force transmitted to the dummy 
relative to the variation in the crash pulse, dimensionless 

Rd = prescribed value of the sensitivity of the peak force 
transmitted to the dummy relative to the variation in the 
crash pulse, dimensionless 

T  = duration of the crash pulse, time, s 
t  = time, s 
u  = absolute acceleration of the dummy with minus sign, 

acceleration, m/s2 
W  = class of the design variables ,w  acceleration, m/s2 
w  = absolute acceleration of the sled with minus sign treated 

as a design variable, acceleration, m/s2 
( )w t−  = lower bound of the design variable ,w  acceleration, 

m/s2 
( )w t+  = upper bound of the design variable ,w  acceleration, 

m/s2 
x  = displacement of the dummy relative to the sled, 

displacement, m 
z  = displacement of the sled relative to the fixed frame, 

displacement, m 

Greek Symbols 

v∆  = velocity change during the crash, velocity, m/s 
v−∆  = lower bound of the velocity change during the crash, 

velocity, m/s 
v+∆  = upper bound of the velocity change during the crash, 

velocity, m/s 
( )tδ  = Dirac delta function, dimensionless 

ς  = fraction of critical damping, dimensionless 

λ  = similarity factor, dimensionless 

*λ  = similarity factor equal to 1.14, dimensionless 

µ  = reduced mass of the system, defined by Eq. (2), mass, kg 
τ  = variable of integration, time, s 

1 4τ −  = parameters of the trapezoid, defined by Eq. (27), time, s 

( )tψ  = function, representing a trapezoid and defined by 
Eq. (27), acceleration, m/s2 

nω  = angular undamped natural frequency of the system, 

angular frequency, rad/s 

Dω  = angular damped natural frequency of the system, angular 

frequency, rad/s 

Subscripts 

i   relative to sample number 
j  relative to design variable number 

0   relative to the optimal solution of the best disturbance 
problem 

−   relative to the lower bound of the design variable w  
+   relative to the upper bound of the design variable w  

Superscripts 

0   relative to the optimal solution of the worst disturbance 
problem 

+   relative to the upper bound of the design variable w  

Basic Concepts of the Best and Worst Disturbance 
Analyses; Statement of the Optimal Control Problems 

A sled test is often employed to investigate protective 
characteristics of safety devices. For example, automobile restraint 
systems can be studied with sled tests. In particular, consider a sled 
test for an automobile restraint that restricts the motion of an 

occupant to prevent a violent contact with components inside the car 
during a crash. Typically, the test sled equipment consists of a high-
speed sled with a mock-up of the car interior, an occupant seat, a 
restraint system, e.g., seat belt, and a dummy as the occupant. The 
car mock-up with interior and seatbelts are rigidly attached to the 
sled. The sled, dummy, and the seat belts are equipped with sensors 
that measure accelerations, displacements, strains, forces, and other 
characteristics of the response of the system. The sled is accelerated 
to a prescribed velocity and then is subject to a deceleration pulse 
simulating the crash impact. The various measured responses can be 
used to form injury criteria that can be compared with established 
tolerance levels.  

To fix ideas, we consider a simplified model of the testing 
equipment in which the sled and the dummy are regarded as rigid 
bodies (Fig. 1). The sled moves along a horizontal straight line 
relative to a fixed (inertial) reference frame and the dummy moves 
relative to the sled along the same line. Let z  denote the 
displacement (coordinate) of the sled relative to the fixed frame, x  
the displacement (coordinate) of the dummy relative to the sled, M  
the mass of the sled, m  the mass of the dummy, F  the force 
applied to the sled during the crash simulation, and f  the force 
applied to the dummy by the restraint system. The mass of the seat 
belts is neglected as compared with the masses of the sled and the 
dummy. The force f  is assumed to be a function of the parameters 
of the relative motion of the dummy, the relative coordinate x  and 
the relative velocity xɺ , i.e., ( , )f f x x= ɺ . This function takes into 
account the elastic and dissipative properties of the seatbelts. The 
motion of this mechanical system is governed by the simultaneous 
equations 

 
 , ( ) ,Mz F f m x z f= − + =ɺɺɺɺ ɺɺ  (1) 

 
which represent Newton’s second law for the sled and the dummy, 
respectively. The dummy is acted upon only by the restraint system 
force f , whereas the sled is acted upon by the impact force F and 

the force f−  as the seat belt interacts with the sled.  

Solve the system of Eq. (1) for xɺɺ  and zɺɺ  to obtain 
 

( , ) , ( , ), .
m Mm

x f x x F Mz F f x x
M m M m

µ µ= − = − =
+ +

ɺɺ ɺ ɺɺɺ  (2) 

 
The quantity µ  is called the reduced mass of the system. In the 

system of Eq. (2), the equation governing the motion of the dummy 
relative to the sled is independent of the equation of motion of the 
sled relative to the fixed frame. If one is interested only in the 
relative motion of the dummy, and the impact force is a known 
function of time, i.e., ( )F F t= , only the first relation of (2) is used. 
In the theory of impact isolation, the impact disturbance specified as 
the force pulse acting on the base (the sled) is referred to as the 
dynamic disturbance. 

 

k

c

z

x

mM

 
Figure 1. Single-degree-of-freedom model. 
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In a number of cases, it is reasonable to assume that the impact 
disturbance is characterized by the acceleration of the base, rather 
than by the force applied to it. For instance, for the sled tests, the 
impact deceleration of the sled is measured by accelerometers. Then 
the relative motion of the body to be protected (the dummy) is 
governed by the second relation of Eq. (1) where ( )z tɺɺ  is treated as a 
known function of time. The impact disturbance specified as the 
base acceleration pulse is referred to as the kinematic disturbance.  

For both types of disturbances, the equation of the relative 
motion of the body to be protected can be represented in a unified 
form as 

 
( , ) ( ),x u x x w t+ =ɺɺ ɺ  (3) 

 
where ( , ) ( , ) / ,u x x f x x µ= −ɺ ɺ  ( ) ( ) /w t F t M= −  for the dynamic 
disturbance and ( , ) ( , ) / ,u x x f x x m= −ɺ ɺ  ( ) ( )w t z t= −ɺɺ  for the 
kinematic disturbance. In the theory of impact isolation, the function 

( , )u x xɺ  is frequently called the characteristic of the impact isolator. 
As a rule, Eq. (3) is subjected to zero initial conditions 

 
(0) 0, (0) 0.x x= =ɺ  (4) 

 
These conditions imply that the object to be protected does not 

move relative to the base until the impact pulse has been applied to 
the base. 

To compare the disturbances in terms of the response of the 
object to be protected, one should have a numerical measure of this 
response. We select 

 
( ) max | ( ( ), ( )) |tJ w u x t x t= ɺ  (5) 

 
where ( )x t  stands for the solution of the differential equation (3) 
subject to the initial conditions of Eq. (4) for a given ( )w w t= . The 
quantity J characterizes the peak magnitude of the force transmitted 
to the dummy by the restraint system. (Actually, the peak force is 
equal to Jµ  or mJ  for the case of the dynamic or kinematic 
disturbance, respectively.) The measure ( )J w  is a functional of the 
disturbance, depending on the entire time history of w . 

Consider now the statement of the worst and best disturbance 
problems for the system of Eqs. (3) and (4) with the response 
measure of Eq. (5). Let the disturbances belong to a prescribed class 
W , i.e., w W∈ . Note that W  is a set of functions rather than a set 
of values of these functions. In terms of the sled test, the class W  
can characterize a set of disturbances that are representative of the 
test, taking into account the inevitable inaccuracy in the 
reproduction of the desired deceleration pulse. 

Usually, the class of representative disturbances involves a 
“corridor” or “envelope” (Fig. 2) in which these disturbances must 
lie, i.e., 

 
 { ( ) : ( ) ( ) ( ), [0, ]},− += ≤ ≤ ∈W w t w t w t w t t T  (6) 

 
where ( )w t−  and ( )w t+  are prescribed functions that define the 
lower and upper bounds of the corridor and T is a fixed time. In 
addition, the velocity of the sled should change by a certain value 
during the crash pulse time T . In the case of the kinematic 
disturbance, this condition has the form 

 

0

( ) ,
T

v w dτ τ∆ = ∫  (7) 

 
where v∆  is a specified positive quantity. Usually, the quantity v∆  
is prescribed with an allowance for an error in the measurement of 
the velocity of the sled, 

,v v v− +∆ ≤ ∆ ≤ ∆  (8) 
 

where the interval [ , ]v v− +∆ ∆  characterizes the uncertainty in the 
measurement of the velocity decrease. Since v∆  is defined as the 
integral of w , the inequalities of Eq. (8) impose additional 
constraints on the deceleration pulse time history. Therefore, the 
total class to which the allowed deceleration pulses must belong is 
defined by 

 

0

{ ( ) : ( ) ( ) ( ), ( ) }.
T

W w t w t w t w t v w d vτ τ− + − += ≤ ≤ ∆ ≤ ≤ ∆∫  (9) 

 

Time

w+(t)

w-(t)

 
Figure 2. Corridor in which an input pulse w(t)  must lie. 

 
The worst disturbance problem is that of the determination of 

the upper bound of the functional ( )J w  for the disturbances of the 

class W . 
Problem 1 (Worst Disturbance Problem). For the system 

governed by Eqs. (3) and (4), find the disturbance function 0( )w t  

belonging to the class W  such that 
 

 0( ) max ( ).w WJ w J w∈=  (10) 
 
The best disturbance problem is that of the determination of the 

lower bound of the functional ( )J w  for the disturbances of the class 

W . 
Problem 2 (Best Disturbance Problem). For the system 

governed by Eqs. (3) and (4), find the disturbance function 0( )w t  

belonging to the class W  such that 
 

0( ) min ( ).w WJ w J w∈=  (11) 
 
From the mathematical point of view Problems 1 and 2 are 

optimal control problems with a maximum type functional, since the 
performance index in these problems is the maximum of the 
absolute value of the force transmitted to the dummy over the 
impact response time.  

The worst and best disturbance analyses enable one to 
investigate the sensitivity of the results of the sled test to the 
variation of the impact pulse within the corridor prescribed by the 
standards for such tests. If the difference between the upper and 
lower bounds is large, the test may have an undesirably low value of 
the peak force transmitted to the dummy due to the occurrence of 
the disturbance close to the best one. Such a test can be deceptive 
when assessing the quality of the restraint system and, hence, is ill-
designed. In this case, the standards for the defining allowable 
impact pulses should be revised.  

Sometimes, the sensitivity of the peak force transmitted to the 
dummy relative to the variation in the impact pulse is characterized 
by the ratio 



Extremal Disturbance Analysis for Dynamical Systems with Uncertain Input 
 

J. of the Braz. Soc. of Mech. Sci. & Eng.      Copyright  2006 by ABCM     October-December 2006, Vol. XXVIII, No. 4 / 515

 0
0( ) / ( ).R J w J w=  (12) 

Restraint System with Linear Characteristics; Numerical 
Solution of the Optimal Control Problems 

Let the restraint system have linear elastic and damping 
properties, i.e., 

 
( , )f x x cx kx= − −ɺ ɺ , (13) 

 
where c  and k  are the damping and stiffness coefficients, 
respectively. For an impact disturbance of the kinematic type, Eq. 
(3) becomes 

 
22 ( )n nx x x w tςω ω+ + =ɺɺ ɺ , (14) 

 
where nω  is the natural frequency of the system  and ς is the 

damping ratio, 
 

1/ 2 1/ 2( / ) , /(2( ) )n k m c kmω ς= = . (15) 
 
The criterion J  of Eq. (5) (the peak magnitude of the 

occupant’s absolute acceleration) becomes 
 

2( ) max | 2 ( ) ( ) |t n nJ w x t x tςω ω= +ɺ . (16) 
 
Even for the linear system of Eq. (14), the solution of the best 

and worst disturbance problems (Problems 1 and 2) requires 
numerical methods. To this end, the continuous-time formulation of 
these problems is replaced by a discrete-time approximation. The 
time axis is discretized with step size h . On the time intervals 
( 1) , 1,2,...i h t ih i− ≤ < = , the function ( )w t  is assumed to be 

constant: 
 

  
,  if  ( 1)

( ) , ( 1)
0,  if  ( 1)

iw i h T
w t i h t ih

i h T

− <
= − ≤ < − ≥

. (17) 

  
The constant parameters , 1,...,iw i N= , play the role of design 

variables when solving the optimization problems. The number of 
these design variables is defined as follows: 

 

/ ,  if { / } 0

[ / ] 1,  if { / } 0

T h T h
N

T h T h

=
=  + ≠

, (18) 

 
where the square brackets and the braces denote the integer and 
fractional parts, respectively, of the expression enclosed. 

The solution of Eq. (14) subject to the initial conditions of 
Eq. (4) has the convolution form 

 

0 0

( ) ( ) ( ) , ( ) ( ) ( )
t t

x t g t w d x t g t w dτ τ τ τ τ τ= − = −∫ ∫ɺ ɺ , (19) 

 
where 

 
1

1/ 22

1

exp( )sin ,  if 1,

( ) exp( ),  if  =1, 1 .

exp( )sinh ,  if >1,

D n D

n D n

D n D

t t

g t t t

t t

ω ζω ω ς
ςω ς ω ω ς

ω ζω ω ς

−

−

 − <
= − = −
 −

 (20) 

 

The function ( )g t  is referred to as the impulse response 
function (fundamental solution) for Eq. (14). It satisfies the 
differential equation of (14) with ( ) ( )w t tδ= , where ( )tδ  is the 

Dirac delta function, subject to the initial conditions (0) 0x =  and 

( ) 0x t =ɺ . This function can also be defined as the solution of 

Eq. (14) with zero right-hand side (( ) 0w t ≡ ), subject to the initial 

conditions (0) 0x =  and (0) 1x =ɺ . 
Substitute the relations of Eq. (20) into Eq. (16) to obtain 
 

2

0

max ( ) ( ) , ( ) 2 ( ) ( ).
t

t n nJ K t w d K t g t g tτ τ τ ςω ω= − = +∫ ɺ  (21) 

 
The discrete-time approximation of the response measure of 

Eq. (21) has the form 
 

min{ , }

[1: ]
1

1

( 1)

( ) max ,

( ) , , [ ,..., ],

i N

i L ij j
j

jh

ij N

j h

J w p w

p K ih d j i w w wτ τ

∈
=

−

=

= − ≤ =

∑

∫
 (22) 

 
where L is the number of discrete intervals on the time axis on 
which the response to the impact pulse is to be calculated. To obtain 
reliable results, it is necessary to consider the response on the time 
interval substantially exceeding that of the crash pulse. Since the 
crash pulse has a rather short duration, the response measure can 
attain its maximum after the disturbance has ceased to act. For this 
reason, the number of time instants at which the response is 
measured should exceed the number of the discretization points in 
the crash pulse interval [0, ]T  and, hence, L N> .  

The criterion of Eq. (22) is a function of 
N variables 1[ ,..., ]Nw w w= . The constraints of Eq. (9) are 

discretized as follows: 
 

1

( ) ( ), [1: ]; .
N

i j
j

w ih w w ih i N v h w v− + − +
=

≤ ≤ ∈ ∆ ≤ ≤ ∆∑  (23) 

 
In the discrete-time formulation, the worst-disturbance problem 

is reduced to the maximization of the function of Eq. (22) and the 
best-disturbance problem to the minimization of this function, 
subject to the constraints of Eq. (23). These constraints are linear 
relative to the design variables1,..., Nw w , and the function to be 

maximized or minimized is a maximum of the absolute values of 
linear functions of these variables. In this case, the constrained 
minimization (maximization) problem can be reduced to that of the 
linear programming, which substantially facilitates the solution, 
since there are rapidly converging reliable linear programming 
algorithms available in most optimization software. For a more 
detailed description of the solution of optimization problems similar 
to Problems 1 and 2 on the basis of the linear programming, see 
Balandin, Bolotnik, and Pilkey (2001). 

Numerical Example 

Assume the damping and stiffness coefficients of the restraint 
systems are: 

 

5Ns N
200 , 10 , 23kg

m m
c k m= = = , (24) 
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which are reasonably realistic for restraint systems. The mass of the 
occupant of 23kg corresponds to the 6-year-old child dummy. 
Figures 3 to 5 demonstrate the results of the solution of Problems 1 
and 2 for the sled deceleration pulse corridor shown in Fig. 3. The 
corridor corresponds to the standard of NHTSA (1979) that specifies 
test conditions for child restraints. The uncertainty interval of Eq. 
(8) for the sled velocity change is defined as 

 

45.1km/h 48.3 km/h

(28mph 30 mph),

v

v

≤ ∆ ≤
≤ ∆ ≤

 (25) 

 
Figure 3 shows the time histories for the best and worst 

deceleration pulses. The shaded area in Fig. 3 represents the corridor 
in which deceleration pulses must lie. If there were no constraints 
such as of Eq. (25) on the velocity change, both the best and worst 
disturbance pulses would have switched between the lower and 
upper bounds of the corridor. This follows since the solution of a 
linear programming problem always lies on the boundary of the 
domain constraining the design variables. From the time histories 
shown in Fig. 3 it is apparent that both the best disturbance and 
worst disturbance pulses lie within the walls of the corridor on some 
time intervals. Therefore, the velocity change assumes one of the 
boundary values prescribed by Eq. (25), specifically, 

45.1 km/hv∆ =  for the best disturbance and 48.3 km/hv∆ =  for the 

worst disturbance. 
Figure 4 depicts the time history of the force applied to the 

dummy by the seat belt in the case of the worst (solid curve) and 
best (dashed curve) disturbances. It is apparent that in both cases the 
peak magnitude of the force is attained before the end of the 
disturbance. This is because the duration of the pulse is close to the 
undamped vibration period of the system. In accordance with figs. 3, 
the duration of the deceleration pulse lies between 0.075 and 0.09s, 
while the vibration period for the parameters of Eq. (24) is 0.096s. 

The time histories of the displacement of the dummy for the 
worst and best disturbances are shown in Fig. 5. In fact, the curves 
of Fig. 5 repeat those of Fig. 4 scaled by the stiffness coefficient 

(
5

10 N/m). This is due to the fact that the damping does not have 

much effect during the time interval under consideration. The 
damping ratio ς  of Eq. (15) calculated for the system with the 

parameters of Eq. (24) equals 
-1

0.066 s  and, accordingly, the 

characteristic time of the damping equals 15.2s, which substantially 

exceeds the undamped vibration period.  
The sensitivity ratio of Eq. (12) for the forces transmitted to the 

dummy is  
 

10.2 /7.6 1.34.R = =  (26) 
 
This reasonably low value would probably be acceptable in 

practice. 
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Figure 3. Best and worst disturbances. 
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Figure 4. Force applied to the dummy by the seat belt. 
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Figure 5. Displacement of the dummy relative to the sled. 

Rational Design of Sled Test Standards 

In the previous section, we have illustrated the application of the 
extremal disturbance analysis to check the sensitivity of the 
response measure (the force transmitted to the occupant) to the 
variation of the sled deceleration pulse within a prescribed corridor. 
This concept suggests a technique for the rational design of such a 
corridor so that the sensitivity ratio does not exceed an allowed 
value. Consider an example. 

Let the walls of the corridor have a shape of a trapezoid ABCD  
shown in Fig. 6. A generic trapezoid can be represented analytically 
by the piecewise linear function 
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1

1 2 1 1 2

1 2 1 3

1 4 3 4 1 3 1 4

1 4

0, ( , ) [0, ),

( ) / , [ , ) [0, ),

( ) , [ , ) [0, ),

( ) /( ), [ , ) [0, ),

0, .

t

a t t

t a t

a t t

t

τ
τ τ τ τ τ

ψ τ τ τ τ
τ τ τ τ τ τ τ τ

τ τ

∈ −∞ ∩ ∞
 − ∈ + ∩ ∞
= ∈ + + ∩ ∞
 − − − ∈ + + ∩ ∞

 ≥ +

 (27) 

 
The coordinates of the vertices of this trapezoid on the time-

acceleration plane are given by 
 

1 1 2

1 3 1 4

( ,0), ( , ),

( , ), ( ,0).

A B a

C a D

τ τ τ
τ τ τ τ

= = +
= + = +

 (28) 

 
In terms of the geometry of the trapezoid, 4τ  and 3 2τ τ−  are the 

lengths of the lower and upper bases, respectively, a  is the height, 
2 2 1/ 2
2( )aτ +  and 2 2 1/ 2

4 3(( ) )aτ τ− +  are the lengths of the lateral 

sides AB  and ,CD  respectively. The parameter 1τ  characterizes 

the shift of the trapezoid along the time axis. 
The walls (the upper and lower bounds) of the corridor for sled 

tests shown in Fig. 3 have the shape of trapezoids with 
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=
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for the lower bound and 

 

1 2 3

4
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91ms, =25ga

τ τ τ
τ

= − = =
=

 (30) 

 
for the upper bound. With a high degree of accuracy, the trapezoid 
of the upper bound is similar to the trapezoid of the lower bound 
with the similarity factor close to 1.3. 
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Figure 6. A trapezoidal bound for the force applied to the dummy by the 
seat belt. 

 
We will confine ourselves to the case where the functions ( )w t−  

and ( )w t+  of Eq. (6) are represented by similar trapezoids. Let the 

lower bound be fixed and let ( ) ( ),w t tψ− =  where ( )tψ  is defined 

by Eq. (27). Let the upper bound be described by the function 
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 (31) 

 

where λ  and 1τ +  are the parameters of the upper bound, the 

similarity factor and the time coordinate of the left-hand bottom 
vertex (point A ) of the respective trapezoid. For the curve ( )w t+ of 

Eq. (31) to lie above the curve ( ) ( )w t tψ− =  of Eq. (27) it is 

necessary that 
 

 1 4 1 11, (1 ) .λ τ λ τ τ τ+≥ + − ≤ ≤  (32) 
 

It is apparent that for 1λ = , the lower and upper bounds of the 
corridor match one another. 

By varying the parameters λ  and 1τ +  within the domain of 

Eq. (32) one can assure that the ratio R  of Eq. (12) does not exceed 
a prescribed value. The variation can be organized in various ways. 
For example, one can constrain the parameter 1τ +  to lie in the 

middle of the interval allowed for this parameter by Eq. (32), i.e.,  
 

1 1 4(1 ) / 2.τ τ λ τ+ = + −  (33) 
 
In this case, the variation is performed with respect to only one 

parameter, .λ  As λ  increases, the corridor becomes wider and, 
therefore, the best-disturbance response measure decreases while the 
worst-disturbance response measure increases. Accordingly, the 
sensitivity ratio R  is a monotonically increasing function of .λ  The 
search for the maximum λ  that assures that the quantity R  does 
not exceed the prescribed value dR  is reduced to the solution of the 

equation ( ) .dR Rλ =  This equation can be solved by various 

methods, for example, by the interval bisection method. For each 
trial λ , one should solve the best disturbance and worst disturbance 
problems to calculate ( )R λ . 

Figure 7 presents the curve ( ),R λ  calculated for the corridor 
defined by Eqs. (27), (29), (31), and (33), completed by the velocity 
change interval of Eq. (25). The curve becomes more flat asλ  

increases. Note that this curve begins with 
*

1.14λ λ= ≈ , rather 

than with  1λ = , in which case the upper and lower bounds of the 
crash pulse corridor coincide. This is because of the constraint of 
Eq. (25) on the velocity change. The lower bound for the velocity 
change is 45.1km/h, whereas the integral of the lower bound of the 

pulse corridor (the area of the trapezoid representing the respective 
wall of the corridor) is 34.9km/h. Therefore, the pulse of the lower 

bound is unable to decelerate to a complete stop even for the least 
crash velocity allowed by the interval of Eq. (25). Moreover, no 
pulse of the corridor is able to provide a velocity change of 
45.1km/h while the area of the upper bound trapezoid is less than 

this value. This is the case for 
*

λ λ< . For 
*

=λ λ , the area of the 

upper bound trapezoid is equal to 45.1km/h. In this case, the only 

pulse of the corridor able to decelerate the sled crashing at this 
velocity to a complete stop is that of the upper bound and, 
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accordingly, the worst and best disturbances coincide, i.e., 

*
( ) 1=R λ . 
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Figure 7. Sensitivity of the peak force transmitted to the dummy relative to 
the variation in the impact pulse R versus the similarity factor 

λ
.  

Conclusions 

The extremal disturbance analysis enables one to evaluate the 
sensitivity of the response of a dynamical system to the variation in 
the external disturbances within a prescribed uncertainty class. To 
that end one should solve two optimal control problems, the best 
disturbance problem to calculate the lower bound and the worst 
disturbance problem to calculate the upper bound of a response 
measure. The ratio of these bounds can serve as the sensitivity 
index. The closer this ratio is to unity, the lower the sensitivity. The 
extremal disturbance analysis is, in particular, important for the 
validation of standards for impact tests of fragile objects and the 
equipment for the protection of such objects. Such standards 
commonly prescribe a corridor for impact pulses to be reproduced 
on the test facility. The test data are considered to be reliable if the 

spread in the responses to the input pulses within the corridor is 
reasonably small. This spread is characterized by the sensitivity 
ratio resulting from the extremal disturbance analysis. In addition, 
the extremal disturbance analysis suggests a technique for rational 
design of a corridor for loading pulses so that the sensitivity ratio 
does not exceed a prescribed value. 
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