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The Weak Patch Test for 
Nonhomogeneous Materials Modeled 
with Graded Finite Elements 
Functionally graded materials have an additional length scale associated to the spatial 
variation of the material property field which competes with the usual geometrical length 
scale of the boundary value problem. By considering the length scale of nonhomogeneity, 
this paper presents the weak patch test (rather than the standard one) of the graded 
element for nonhomogeneous materials to assess convergence of the finite element method 
(FEM). Both consistency (as the size of elements approach zero, the FEM approximation 
represents the exact solution) and stability (spurious mechanisms are avoided) conditions 
are addressed. The specific graded elements considered here are isoparametric 
quadrilaterals (e.g. 4, 8 and 9-node) considering two dimensional plane and axisymmetric 
problems. The finite element approximate solutions are compared with exact solutions for 
nonhomogeneous materials. 
Keywords: finite element method (FEM), patch test, weak patch test, functionally graded 
material (FGM), graded element 

Introduction 
The patch test was originated by the memorable Bruce Irons and 

coworkers (Irons, 1966; Bazeley et al., 1966; Irons and Razzaque, 
1972). The concept is so important that it can be easily found in 
many textbooks in finite elements, either classical (Hughes, 1987; 
Cook et al., 2002; Bathe, 1995) or more recent (Belytschko et al.,
2000; Zienkiewicz and Taylor, 2000) ones, and it is needed to 
ensure reliability of the finite element method (FEM) (Babuška and 
Strouboulis, 2001). The original patch test provided a necessary 
consistency condition and thus turned out to be very useful for 
assessing convergence of finite elements analysis, including 
nonconforming elements (Wilson et al., 1973; Taylor et al., 1976; 
Taylor et al., 1986). An early mathematical treatment was given by 
Strang (1972), and Strang and Fix (1973). For an element which 
appears to be convergent but fails the Iron's patch test, the weak 
patch test is an alternative test, as suggested by Taylor et al. (1986). 
In addition, Belytschko and Lasry (1988) have studied the behavior 
of a distorted element with a fractal patch test, which is also valid in 
the weak patch test sense. The patch test has been applied to many 
problem-types including, for example, mixed displacement-pressure 
finite element formulations (Taylor et al., 1986; Zienkiewicz et al.,
1986; Razzaque, 1986; Wu and Chen, 1997; Zienkiewicz and 
Taylor, 1997), three-dimensional (3-D) solid elements (Loikkanen 
and Irons, 1984), plate bending elements (Samuelsson et al., 1987; 
Zienkiewicz and Lefebvre, 1988; Zhifei, 1993; Zienkiewicz et al.,
1993; Auricchio and Taylor, 1993; Aricchio and Taylor, 1994; 
Martins and Sabino, 1997; Park and Choi, 1997), and shell elements 
(Herrmann, 1989). The patch test has also been used as a 
fundamental tool to create new elements or to improve existing ones 
(Ju and Sin, 1996; Cheung et al., 2002; Piltner and Taylor, 2000).1

The patch test has become a widely used procedure, which can 
be numerically performed, in order to check the validity of a finite 
element formulation and coding. It is the necessary and sufficient 
condition for finite element analysis convergence (Zienkiewicz and 
Taylor, 2000). For sufficiency, at least one internal element 
boundary is required to verify that consistency of a patch solution is 
maintained between elements. To ensure convergence, both 
consistency and stability conditions must be verified. The 
consistency requirement ensures that as the size of the elements h
tends to zero, the finite element approximation represents the exact 
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solution. The stability condition is a requirement that an element 
admits no zero-energy mode deformation states when adequately 
supported against rigid-body motion, which means that the element 
stiffness matrix ( e ) must be non-singular. Stability is usually 
checked by ensuring that the stiffness matrix is of appropriate rank, 
and thus doesn't allow for appearance of spurious mechanisms. 

Modeling of functionally graded materials (FGMs) by the FEM 
can be accomplished by using either graded or homogeneous 
elements (Santare and Lambros, 2000; Kim and Paulino 2002a), as 
illustrated by Fig. 1. Part (a) of this figure shows an example of an 
exponentially graded material and part (b) illustrates an L-shaped 
domain made of this material. The graded element (see Fig. 1(c)) 
incorporates the material property gradient at the size scale of the 
element, while the homogeneous element (see Fig. 1(d)) produces a 
step-wise constant approximation to a continuous material property 
field. The patch test has been used to verify convergence of 
conventional homogeneous elements (Fig. 1(d)). In order to assess 
convergence of the graded elements, they must be patch-tested in 
the context of the “weak patch test”. 
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Figure 1. FEM modeling of FGMs: (a) nonhomogeneous medium; (b) 
generic region, e.g. L-shaped domain; (c) graded element; (d) 
homogeneous element. The property of the homogeneous elements may 
be taken as the actual property at the centroid of the element (cf. (c) and 
(d)). Here the symbol  means a nodal point, and the symbol × means a 
Gauss sampling point. The symbol  indicates the location for material 
property sampling (see parts (a) and (c)). 

Various finite element investigations of graded materials have 
been conducted using either commercially available (e.g. ABAQUS, 
ANSYS) or research-oriented codes. A sampling (which is, by no 
means, exhaustive) of published papers include a broad range of 
applications such as elasticity (Santare and Lambros, 2000; Kim and 
Paulino 2002a); linear elastic fracture mechanics (Eischen, 1987; Gu 
et al., 1999; Anlas et al., 2000; Kim and Paulino, 2002b, 2003, 
2004, 2005; Paulino and Kim, 2004); nonlinear fracture mechanics 
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(Carpenter et al., 1999; Kim et al., 1997); cohesive zone elements 
for fracture of FGMs (Jin et al., 2002; Zhang and Paulino, 2005); 
notch effect on FGM specimens (Lin and Miyamoto, 2000); 
tribology (Stephens et al., 2000; Jitcharoen et al., 1998); thermal 
stresses (Giannakopoulos et al., 1995; Cho and Oden, 2000; Cho 
and Ha, 2001; Noda, 1999); residual stresses (Lee and Erdogan, 
1995; Williamson et al., 1993; Becker et al., 2000; Khor and Gu, 
2000); various aspects of micromechanical modeling (Grujicic and 
Zhang, 1998; Dao et al., 1997; Shen, 1998); numerical 
homogenization (Schmauder and Weber, 2001; Le le et al., 1999); 
sensitivity analysis and optimization (Tanaka et al., 1996); 
evaluation of the so called “higher order theory” (Pindera and Dunn, 
1997); and functionally graded piezoelectric actuators (Almajid et
al., 2001; Carbonari et al, 2006a, 2006b).

In particular, the use of graded finite elements is of direct 
relevance to this work. Such elements were used by Santare and 
Lambros (2000) to model the behavior of nonhomogeneous elastic 
materials, and by Lee and Erdogan (1995) to investigate 
residual/thermal stresses in FGMs and thermal barrier coatings. 
Both authors (Santare and Lambros, 2000; Lee and Erdogan, 1995) 
used the Gauss point sampling of material properties. Graded 
elements were also used by Kim and Paulino (2003, 2004, 2005) 
and Paulino and Kim (2004) to investigate fracture mechanics of 
FGMs and to model nonhomogeneous isotropic and orthotropic 
materials, however, they have employed a generalized isoparametric 
formulation (Kim and Paulino, 2002a). 

The goal of the remainder of this paper is to develop a 
comprehensive presentation of the weak patch test for 
nonhomogeneous materials modeled with graded finite elements, 
and assess convergence rate of graded elements. This paper is 
organized as follows. First, we provide some exact solutions for 
nonhomogeneous elasticity that will be used as reference solutions 
for numerical examples. Then we present the graded element 
formulations, and various examples on the weak patch test, and also 
assess convergence rate. Finally we address stability considerations 
for graded finite elements followed by conclusions of the present 
investigation.

Exact Solutions for Nonhomogeneous Elasticity: 
Reference Solutions 

This section revisits a few closed-form solutions for 
nonhomogeneous elasticity problems. Two classes of problems are 
considered: plane and axisymmetric. In the first class, we consider 
an infinitely long plate, graded along its finite width, under 
symmetric loading conditions (fixed grip, tension, and bending) and 
also a simple shear problem. In the second class, we consider an 
axisymmetric problem, graded along the radial direction, under 
axisymmetric loading conditions. These closed-form solutions will 
be used as reference solutions for the weak patch test. 

Plane Problems 

Erdogan and Wu (1997) derived exact solutions for stresses to 
plane elasticity problems involving functionally graded plates of 
infinite length and finite width under symmetric loading conditions 
such as fixed grip, tension, and bending away from the center region 
of the specimen (see Fig. 2). Kim and Paulino (2002a) extended the 
work to orthotropic FGMs, and provided exact solutions for 
displacements. Let's consider the graded plate illustrated by Fig. 2, 
and let's assume the Poisson's ratio as constant. The shear modulus 
is given by  

x

L
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W

σ ( )x σ σy
t b
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Figure 2. A graded strip: (a) geometry – the shaded region indicates the 
symmetric region of the plate used in the present FEM analyses (ux(a,0) = 
uy(a,0) = 0 with a = 0 where “a” denotes the x coordinate.); (b) fixed-grip 
loading; (c) tension; (d) bending. 
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where 1/  is the length scale of the nonhomogeneity, which is 
characterized by 

2

1
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with E=E(x) where E1 = E(x=0) and E2 = E(x=W).

Fixed Grip Loading 

For fixed grip loading (Fig. 2(b)) with
0

,
yy

x , the 
stress is given by 

0

8
,
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x
x  (3) 

where
3 4  :  plane strain
3 1  :  plane stress.

Using the strain-displacement relations and applying the 
following boundary conditions 

,0 0,    ,0 0,x yu a u x  (4) 

where the parameter a  denotes a reference point for the 
displacement boundary condition, one obtains the following 
displacement fields 

0

0

3,
1

, .

x

y

u x y x a

u x y y

 (5) 

Notice that the displacement fields are linear and thus strains are 
constant; however, stresses vary exponentially. 
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Tension and Bending 

For tension (Fig. 2(c)) and bending (Fig. 2(d)) loads applied 
perpendicular to material gradation, the applied stresses are defined 
by 

2

  ,   ,
6

b
t

WN W M  (5) 

where N  is a membrane resultant applied along the 2x W  line, 
and M  is the bending moment. An infinitely long strip under these 
two loading cases can be considered as one-dimensional problem 
where xx = xy = 0, and yy  0. Thus the compatibility condition 

2 2 0
yy

x  gives

8
,

1yy

x
x Ax B  (7) 

where the constants A  and B  are determined from 

0 0
 ,

W W

yy yyx dx N x xdx M  (8) 

by assuming 

2  for tension and 0 for bending.M NW N  (9) 

Thus, for tension load, the constants A  and B  are: 
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respectively. For bending load, the constants A  and B  are: 
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respectively. 

Using the strain-displacement relations and applying the 
boundary conditions given by Eq.(4), one obtains the following 
displacement field 

2 2 23, ,
1 2 2 2

, .

x

y

A A Au x y x Bx a Ba y
k

u x y Ax B y

 (12) 

Simple Shear 

Figure 3 shows a graded plate under uniform simple shear load, 
i.e. xy =  = 1.0. Assume that the Poisson's ratio is constant, and the 
shear modulus varies in the y direction as follows: 

E(y)=E eβy

L

τ

τ
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τ

W

Figure 3. A functionally graded plate under constant shear ( xy =  = 1.0). 
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 everywhere, the shear strain distribution 
becomes 

1
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Using the strain-displacement relations and applying the 
boundary conditions: 

,0 ,0 0,x yu x u x

one obtains the following displacement field 

1

1, 1 ,   , 0.y
x yu x y e u x y  (15) 

Axisymmetric Problem 

Horgan and Chan (1999) provided exact solutions for stresses 
for a hollow circular cylinder subjected to uniform pressure pi and 

0
p  on the inner (ri = a) or outer (r0 = b) surfaces, respectively (see 

Fig. 4). They assumed power-law variation of Young's modulus 
given by 

z
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Figure 4. An axially symmetric hollow cylinder or disk. 
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1

nrE r E
a

 (16) 

with
1

E E a  and the power n being a dimensionless constant. 
The displacements are given by: 

1/ 22 2 2
1 2 ,   4 4n k n ku r C r C r k n n , (17) 

where C1 and C2 are constants which can be determined by applying 
the axisymmetric boundary conditions – see the paper by Horgan 
and Chan (1999). 

Graded Finite Element Formulation 
Displacements for an isoparametric finite element can be written 

as 

1

m
e e

i i
i

Nu u  (18) 

where Ni are shape functions, ui
e is the nodal displacements 

corresponding to node i of element e, and m is the number of nodes 
in an element. For example, for a Q4 element, the standard shape 
functions are 

1 1 4,     i=1,...,4i i iN  (19) 

where ( , ) denote intrinsic coordinates in the interval [-1,1] and 
( i, i) denote the local coordinates of node i. Strains are obtained by 
differentiating displacements as 

,e e eB u  (20) 

where Be is the strain-displacement matrix of shape function 
derivatives. The strain-stress relations are given by  

,e e eD x  (21) 

where De(x) is the constitutive matrix, which is a function of spatial 
position, i.e. 

, .e e x yD x D  (22) 

The principle of virtual work yields the following finite element 
stiffness equations (Hughes, 1987): 

  ,
T

e

e e e e e e e
edk u f k B D x B  (23) 

where f e is the load vector, ke is the element stiffness matrix, and e
is the domain of element (e). For the graded element, the De(x)
matrix varies spatially within the element. The polynomial order of 
the matrix will influence the number of Gauss integration points 
required for the reduced and full integrations. This behavior is 
investigated in the numerical examples section using two sets of 
Gauss integration points. A system of algebraic equations is 
assembled such that 

1 1

  ,   , ,e e
ij ij i i

e e

n n

K u F K k F f  (24) 

where n is the number of elements. The linear system and the 
derivatives (e.g. strains and stresses) are recovered using standard 
procedures (Cook et al., 2002). 

Two kinds of FEM formulations are used for graded elements: 
direct Gaussian integration formulation and generalized 
isoparametric formulation (GIF). These approaches differ on the 
location that the material properties are sampled in the element: 
Gauss sampling points for the direct Gaussian formulation (Fig. 
5(a)) and nodal sampling points for the GIF (Fig. 5(b)). In this work, 
we selectively use both formulations. 

P

P(x,y) P(x,y)

y

x

Figure 5. Graded finite elements: (a) Direct Gaussian integration 
formulation; (b) Generalized isoparametric formulation (Kim and Paulino, 
2002a). P denotes a generic property. 

Direct Gaussian Integration Formulation 

The integral of Eq.(23) is evaluated by Gaussian quadrature, and 
the matrix De(x) can be directly specified by employing the Young's 
modulus and the Poisson's ratio at each Gaussian integration point 
(see Fig. 5(a)). Thus, for 2D problems, the resulting integral 
becomes 

,

,
Te e e e

i j
i j i j

tJWWk B D B
 (25) 

where i and j indicates the corresponding Gauss sampling points in 
the element,  = ( , ), t denotes thickness, J is the determinant of 
the Jacobian matrix, i.e. J = det(J), and Wi is the weight of each 
Gauss point. 

Generalized Isoparametric Formulation (GIF) 

The displacements (u,v) = (ux, uy) are interpolated for 2-D 
problems as 

 ,     i i i i
i i

u N u v N v  (26) 

where the summation is done over the element nodal points. 
Similarly, the spatial coordinates (x,y) are interpolated as 

 ,     i i i i
i i

x N x y N y% %  (27) 

Material properties can also be interpolated from the element 
nodal values by means of shape functions, as illustrated by Fig. 5(b). 
For instance, the Young's modulus E = E(x) and Poisson's ratio       

 = (x) are given by 

ˆ ,     i i i i
i i

E N E v N v  (28) 

respectively, where 
iN  and ˆ

iN  are appropriate shape functions, 
which may be distinct from each other. The generalized 
isoparametric formulation (GIF) concept leads to  
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ˆ .N N N N%  (29) 

In this approach, material properties at Gaussian integration points 
are interpolated from the nodal material properties of the element 
using isoparametric shape functions, which are the same shape 
functions as spatial coordinates and displacements. 

Numerical Examples 
In order to assess convergence and convergence rates of graded 

finite elements by means of the weak patch test, a set of problems in 
plane and axisymmetric states are investigated under mesh 
refinement using both an in-house MATLAB code and the 
commercial software ABAQUS. 

Plane Problems 

A few problems in plane stress state are considered where 
Young's modulus is a function of x, i.e. E = E(x), while the 
Poisson's ratio is constant. The modulus is assumed to vary 
exponentially, i.e. 

1
xE x E e  (30) 

where E1 = E(0) and 1/  is the length scale of the nonhomogeneity 
characterized by Eq.(2). The applied loading involves fixed-grip, 
tension, and bending cases. The GIF is used for this study. 

Patch Test for Graded Element: Standard or Weak? 

Figure 6 shows a 5-element patch of isoparametric, 4-node (Q4), 
8-node (Q8) Serendipity (not shown) and 9-node (Q9) Lagrangian 
(shown) quadrilateral elements under fixed-grip loading. The 
applied loading corresponds to constant normal strains, i.e. yy(x,1) 
= 0E1e x where 0 = 1.0, E1=1.0, and  = log(2)/1. This stress 
distribution was obtained by applying nodal forces along the right 
edge of the finite element mesh. The displacement boundary 
conditions are prescribed such that uy = 0 in the region 0 1x
along y = 0 line and, in addition, ux = 0 at either top (for Q4) or 
middle (for Q8 and Q9) node on the left edge (see Fig. 6). 
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Figure 6. The patch test with 5 graded elements for 4-node, 8-node (not 
shown) and 9-node (shown) isoparametric quadrilaterals. The applied load 
corresponds to yy(x,1) = 0E1e x ( 0 = 1, E1 = 1.0,  = log(2)) for the fixed 
grip case. The equivalent nodal loads are shown in the figure. 

The following data were used for the finite element analysis: 

1 1.0,  0.3,
plane   stress, 2 x 2 and 3 x 3 Gauss quadratures
E v  (31) 

Table 1 compares the FEM results for stresses and 
displacements with the analytical solutions given by Erdogan and 
Wu (1997) and in the Section for Exact Solutions (Kim and Paulino, 
2002a), respectively. The nodal displacements are calculated at 
nodes A, B, and C and stresses are computed at the 2 x  2 and 3 x 3 
Gaussian integration points as specified in Fig. 6. Table 1 shows that 
the graded Q4, Q8 and Q9 elements provide slightly inaccurate 
displacements and stresses with the given level of mesh refinement. 
One can conclude from the above patch test that the performance of 
graded elements depends on the degree of mesh refinement 
corresponding to material gradation and loading conditions. Thus, 
the patch test needs to be performed for the graded elements by 
subdividing the mesh. This example justifies the need for the 
“weak” rather than the “standard” patch test for the graded elements. 

Table 1. The patch test with a constant-strain condition using five graded elements (Q4, Q8 and Q9) subjected to fixed-grip loading (see Figure 6). The 
displacements are u = ux and  = uy. Generalized isoparametric formulation (GIF) is used for sampling material properties.  Exact solutions for the 
displacements for the Q4 element are different from those for the Q8 and Q9 elements due to different displacement boundary conditions. The numeric 
precision is O(10–4).

4-node 8-node 9-node Exact Loading 
Case 

Displacements 
& Stresses 2 ×  2 2 ×  2 3 ×  3 3 ×  3 2 ×  2(Q4)  2 × 2 3× 3 

uA -0.0911 0.0602 0.0598 0.0597 -0.0900 0.0600
vA 0.3571 0.3516 0.3503 0.3496 0.3500 0.3500
uB - 0.0000 0.0001 0.0001 - 0.0000
vB - 0.2988 0.3007 0.2999 - 0.3000
uC -0.2146 -0.0603 -0.0602 -0.0601 -0.2100 -0.0600
vC 0.2540 0.2515 0.2506 0.2501 0.2500 0.2500

yy
G1

1.7646 1.6860 1.8216 1.8201 1.6842 1.8164

yy
G2

1.6171 1.5731 1.6063 1.6050 1.5714 1.6034

yy
G3

1.3183 1.2715 1.2458 1.2451 1.2727 1.2474

Fixed-grip 

yy
G4

1.2568 1.1836 1.0988 1.0976 1.1874 1.1011
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Weak Patch Test: Q4 

Figure 7 shows a non-homogeneous “beam” with exponentially 
graded modulus subjected to applied load at the right end. The mesh 
discretization consists of 4 x 2, 8 x 4, and 16 x 8 patches of 4-noded 
isoparametric quadrilateral elements undistorted or distorted 
according to the geometrical distortion parameter “d ”. The applied 
loading corresponds to yy(x,10) = 0E1e x for fixed grip, yy(x,10)= 

1.0 for tension, and yy(x,10)= –x+1 for the bending case, where 0
=1.0, E1=1.0, and  = log(4)/2. This stress distribution was 
obtained by applying nodal forces along the right edge of the finite 
element mesh. The displacement boundary condition is prescribed 
such that uy = 0 in the region 0 2x  along y = 0 line and, in 
addition, ux = 0 for the node in the middle of the left hand side (see 
Figure 7). 
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Figure 7. Weak patch test with M x N elements (4 x 2,8 x 4,16 x 8) for 4-node  isoparametric quadrilaterals (Q4). The meshes are distorted according to the 
geometric distortion parameter “d”. The equivalent nodal loads are shown at the right-hand-side of the corresponding meshes. 
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The following data are used for the finite element analysis: 

quadratureGauss2 x 2stress,plane
0.3,,0.11 vE

 (32) 

Table 2 compares the FEM results for 4 x 2, 8 x 4, and 16 x 8 
undistorted (d = 0) meshes of the graded Q4 element with the exact 
solutions. The nodal displacements are calculated at nodes A, B, and 
C, and stresses are computed at the 2 x 2 Gaussian integration points 
as specified in Figure 7. Notice that, for all loading cases, mesh 

refinement is needed for acquiring a desired accuracy and it 
increases the accuracy of FEM results. The accuracy of each 
individual mesh is better for fixed-grip loading than tension and 
bending loading cases due to the difference in the nature of 
boundary conditions. The distorted mesh ( 0d ) gives worse 
results than undistorted meshes (d = 0), and only the case d = 0 is 
investigated in this example. Distorted meshes ( 0d ) are 
considered in later in this paper.  

Table 2. A weak patch test using 4 x 2, 8 x 4, and 16 x 8  meshes of undistorted (d = 0) Q4 graded elements (see Figure 7).  The displacements are u = ux
and  = uy. Generalized isoparametric formulation (GIF) is used for sampling material properties.  The numeric precision is O(10–4).

Displacement 4-node Exact Loading
Case & Stress 4 ×  2 8 ×  4 1 6 ×  8 4 ×  2 8 ×  4 1 6 ×  8 

uA - 0.1499 0.1502 0.1500
vA - 2.4999 2.5001 2.5000
uB -0.0003 -0.0001 0.0000 0.0000
vB 2.5001 2.4999 2.5000 2.5000
uC - -0.1501 -0.1500 -0.1500
vC - 2.5000 2.5000 2.5000

yy
G1

2.4227 3.0760 3.4981 2.3154 3.0434 3.4889

Fixed-grip 

yy
G2

3.5774 3.7524 3.8655 3.4550 3.7174 3.8562
uA - 0.9984 1.1110 1.1585
vA - 1.6649 1.7424 1.7720
uB 0.6042 0.8999 1.0189 1.0650
vB 1.2184 1.3049 1.3349 1.3460
uC - 0.8331 0.9512 0.9970
vC - 0.9449 0.9273 0.9200

yy
G1

1.0977 1.0830 0.9607 1.0799 1.0103 0.9866

Tension 

yy
G2

1.1820 0.9783 0.8617 0.9315 0.8684 0.9008
uA - 1.3696 1.5501 1.6215
vA - 0.7760 0.8779 0.9183
uB 0.9062 1.3401 1.5158 1.5854
vB 0.1609 0.2399 0.2716 0.2841
uC - 1.3427 1.5180 1.5874
vC - -0.2960 -0.3347 -0.3500

yy
G1

0.0313 -0.4829 -0.9659 0.0149 -0.5893 -1.0245

Bending 

yy
G2

-0.6119 -1.0996 -1.3688 -0.9898 -1.2642 -1.4149

Weak Patch Test: Q8 and Q9 

Figure 8 shows a nonhomogeneous “beam” with exponentially 
graded modulus subjected to applied load at the right end. The mesh 
discretization consists of 2 x 1, 4 x 2, and 8 x 4 patches of 8-node 
(Q8) Serendipity (not shown) or 9-node (Q9) Lagrangian (shown) 
quadrilateral elements. The mesh is distorted according to the 
geometrical distortion parameter “d”.

The applied loading corresponds to yy(x,10)= 0E1e x for fixed 
grip, yy(x,10)= 1.0 for tension, and yy(x,10)= –x+1 for bending 
where 0=1.0, E1=1.0, and = log(4)/2. This stress distribution was 
obtained by applying nodal forces along the right edge of the finite 
element mesh. The displacement boundary condition is prescribed 
such that uy = 0 in the region 0 2x  along y = 0 line and, in 
addition, ux = 0 for the node in the middle of the left hand side (see 
Figure 8). 
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Figure 8. Weak patch test with M x N elements (2 x 1, 4 x 2, 8 x 4) for 8-node (not shown) and 9-node (shown) isoparametric quadrilaterals. The meshes 
are distorted according to the geometric distortion parameter “d”. The equivalent nodal loads are shown at the right-hand-side of the corresponding 
meshes.

The following data were used for the finite element analysis: 

squadratureGauss3 x 3and2 x 2stress,plane
0.3,,0.11 vE

 (33) 

Tables 3, 4, and 5 compare the FEM results for the 2 x 1, 4 x 2,  
and 8 x 4 meshes, respectively. The exact solutions include stresses 
obtained by Erdogan and Wu (1997), and displacements derived by 
the authors. The nodal displacements are calculated at node A and 
stresses are computed at the 2 x 2 and 3 x 3 Gaussian integration 
points as specified in Figure 8. 
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For fixed grip loading case, in general 3 x 3 Gauss quadrature 
for Q8 and Q9 elements gives better results than 2 x 2 quadrature for 
Q8 element, and the accuracy increases with mesh refinement. For 
tension and bending loading cases, 2 x 2 and 3 x 3 Gauss 
quadratures for Q8 and 3 x 3 Gauss quadrature for Q9 elements give 
worse results than for those fixed grip loading; however, the 
accuracy is improved with mesh refinement. Tables 3 to 5 show that 
both Q8 and Q9 graded elements behave relatively well with 

distorted meshes. In general, the effect of the distortion as measured 
by the parameter d, is reduced with mesh refinement. For the tension 
case, we observe that a mesh with 16 x 8 elements, although not 
presented here, leads to the exact results for Q8 elements with both 
2 x 2 and 3 x 3 integration rules within O(10–4) accuracy. For Q9 
elements, the results for the tension case converge for the 8 x 4 
mesh (cf. Table 5). 

Table 3. A weak patch test with 2 x 1 graded Q8 and Q9 elements (see Figure 8). The displacements are u = ux and  = uy. Generalized isoparametric 
formulation (GIF) is used for sampling material properties. The numeric precision is O(10–4).

Loading Displacements 8-node 9-node Exact Distortion Case & Stresses 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 
uA 0.0155 -0.0003 -0.0003 0 
vA 5.0051 4.9998 4.9998 5

yy
G1

1.3006 1.1380 1.1618 1.3403 1.1691

yy
G2

3.0326 1.9999 1.9999 2.9843 2.0 
Fixed-grip 

yy
G3 - 3.4618 3.4618 - 3.4215

uA 4.7532 4.4318 4.4281 4.2600 
vA 2.7463 2.7179 2.7158 2.6920 

yy
G1

0.9999 0.9301 0.9300 0.9853 0.9388

yy
G2

0.9999 1.0871 1.0863 1.0195 1.0767
Tension 

yy
G3 - 0.9302 0.9300 - 0.9380

uA 6.8655 6.4051 6.3947 6.019 
vA 0.6337 0.5946 0.5888 0.5682 

yy
G1

0.5773 0.5842 0.5840 0.5449 0.5923

yy
G2

-0.5773 0.2376 0.2357-0.5350 0.2272

d=0 

Bending 

yy
G3 - -0.9645 -0.9650 - -0.9557

uA -0.0105 -0.0002 -0.0003 0 
vA 4.9935 4.9998 4.9998 5

yy
G1

1.2997 1.1380 1.1380 1.3403 1.1691

yy
G2

3.0333 1.9999 1.9999 2.9843 2.0 
Fixed-grip 

yy
G3 - 3.4618 3.4618 - 3.4215

uA 4.7532 4.4074 4.4466 4.2600 
vA 2.7463 2.7144 2.7170 2.6920 

yy
G1

0.9999 0.9376 0.9471 0.9853 0.9388

yy
G2

0.9999 1.0898 1.0890 1.0195 1.0767
Tension 

yy
G3 - 0.9195 0.9227 - 0.9380

uA 6.8655 6.3496 6.4261 6.019 
vA 0.6337 0.5870 0.5898 0.5682 

yy
G1

0.5773 0.5940 0.6099 0.5449 0.5923

yy
G2

-0.5773 0.2413 0.2404-0.5350 0.2272

d=1 

Bending 

yy
G3 - -0.9779 -0.9758 - -0.9557
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Table 4. A weak patch test with 4 x 2 graded Q8 and Q9 elements (see Figure 8). The displacements are u = ux and  = uy. Generalized isoparametric 
formulation (GIF) is used for sampling material properties. The numeric precision is O(10–4).

Displacements 8-node 9-node Exact Distortion Loading 
Case & Stresses 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 

uA 0.0053 0.0051 0.0051 0.0
vA 2.5065 2.5066 2.5066 2.5

yy
G1

2.3135 2.1620 2.1620 2.3154 2.1625

yy
G2

3.4676 2.8335 2.8335 3.4549 2.8284

Fixed-grip 

yy
G3

- 3.7103 3.7103 - 3.6993
uA 1.0723 1.0676 1.0676 1.0653 
vA 1.3478 1.3468 1.3468 1.3461 

yy
G1

1.0769 1.0789 1.0789 1.0799 1.0812

yy
G2

0.9297 1.0407 1.0406 0.9315 1.0408

Tension

yy
G3 - 0.8731 0.8731 - 0.8730

uA 1.5927 1.5857 1.5857 1.5854 
vA 0.2863 0.2846 0.2846 0.2841 

yy
G1

0.0151 0.1221 0.1222 0.0149 0.1221

yy
G2

-0.9957 -0.3954 -0.3955 -0.9898 -0.3960

d=0

Bending 

yy
G3 - -1.2465 -1.2465 - -1.2449

uA -0.0051 -0.0051 -0.0051 0.0 
vA 2.5065 2.5066 2.5066 2.5

yy
G1

2.3136 2.1621 2.1621 2.3154 2.1625

yy
G2

3.4676 2.8335 2.8335 3.4549 2.8284

Fixed-grip 

yy
G3

- 3.7103 3.7103 - 3.6993
uA 1.0722 1.0676 1.0676 1.0653 
vA 1.3476 1.3468 1.3468 1.3461 

yy
G1

1.0768 1.0806 1.0789 1.0799 1.0812

yy
G2

0.9297 1.0408 1.0406 0.9315 1.0408

Tension

yy
G3 - 0.8710 0.8731 - 0.8730

uA 1.5923 1.5856 1.5857 1.5854 
vA 0.2855 0.2846 0.2846 0.2841 

yy
G1 0.0151 0.1248 0.1222 0.0149 0.1221

yy
G2

-0.9957 -0.3952 -0.3955 -0.9898 -0.3960

d=1

Bending 

yy
G3

- -1.2497 -1.2465 - -1.2449
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Table 5. A weak patch test with 8 x 4 graded Q8 and Q9 elements (see Figure 8). The displacements are u = ux and  = uy. Generalized isoparametric 
formulation (GIF) is used for sampling material properties. The numeric precision is O(10–4).

Displacements 8-node 9-node Exact Distortion Loading 
Case & Stresses 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 

uA -0.0002 0.0 0.0 0.0 
vA 2.4999 2.5 2.5 2.5 

yy
G1

3.0434 2.9411 2.9411 3.0434 2.9411

yy
G2

3.7176 3.3635 3.3635 3.7174 3.3635
Fixed-grip 

yy
G3 - 3.8467 3.8467 - 3.8467

uA 1.0655 1.0653 1.0653 1.0653 
vA 1.3462 1.3461 1.3461 1.3461 

yy
G1

1.0102 1.0258 1.0258 1.0103 1.0258

yy
G2

0.8681 0.9511 0.9511 0.8684 0.9511
Tension 

yy
G3 - 0.8338 0.8338 - 0.8338

uA 1.5859 1.5855 1.5855 1.5854 
vA 0.2841 0.2841 0.2841 0.2841 

yy
G1

-0.5895 -0.4960 -0.4960 -0.5893 -0.4960

yy
G2

-1.2647 -0.8977 -0.8977 -1.2643 -0.8976

d=0 

Bending 

yy
G3 - -1.4046 -1.4046 - -1.4043

uA -0.0002 0.0 0.0 0.0 
vA 2.4999 2.5 2.5 2.5 

yy
G1

3.0434 2.9411 2.9411 3.0434 2.9411

yy
G2

3.7176 3.3635 3.3635 3.7174 3.3635
Fixed-grip 

yy
G3 - 3.8467 3.8467 - 3.8467

uA 1.0655 1.0653 1.0653 1.0653 
vA 1.3461 1.3461 1.3461 1.3461 

yy
G1

1.0102 1.0261 1.0258 1.0103 1.0258

yy
G2

0.8681 0.9511 0.9511 0.8684 0.9511
Tension 

yy
G3 - 0.8335 0.8338 - 0.8338

uA 1.5859 1.5855 1.5855 1.5854 
vA 0.2841 0.2841 0.2841 0.2841 

yy
G1

-0.5896 -0.4956 -0.4960 -0.5893 -0.4960

yy
G2

-1.2648 -0.8977 -0.8977 -1.2643 -0.8976

d=1 

Bending 

yy
G3 - -1.4051 -1.4046 - -1.4043

“Higher-Order” Weak Patch Test 

Figure 9 compares the ratio of numerical ( yu ) and 

analytical ( (exact)) displacements versus Poisson's ratio ( v ) for the 
bending loading case (see Fig. 2(d)). Both regular (d = 0) and 
distorted (d = 1) meshes discretized with Q4, Q8 and Q9 elements 
are considered using a patch of 4 x 2 elements. The nodal 

displacements are evaluated at location B in Fig. 7, or location A in 
Fig. 8. Figure 9 shows that both Q8 and Q9 elements converge to 
the exact solutions independent of the Poisson's ratio, rule of Gauss 
quadrature, and distortion, while the regular and distorted Q4 
elements give significantly inaccurate results. The behavior of Q4 
elements can be improved with an incompatible element such as the 
Q6 and the reader is referred to references (Wilson et al., 1973; 
Taylor et al., 1976; Cook et al., 2002). 
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Figure 9. Mesh with 4 x 2 elements for Q4, Q8, and Q9 elements. The bullet in the insert denotes the point where the displacements are calculated; 
regular mesh (d = 0) and distorted mesh (d = 1).

Axisymmetric Problems 

Consider the axisymmetric problem of a hollow circular 
cylinder or disk with the inner radius (a = 1) and the outer radius   
(b = 2) subjected to uniform pressure on the inner surface. Patches 
of 4 x 4 and 8 x 8 isoparametric elements are considered here. 
Figure 10 shows 4-node (Q4) quadrilateral elements and Figure 11 
illustrates 8-node (Q8) Serendipity or 9-node (Q9) Lagrangian 
elements for different distortion factors d (d = 0 or d = 0.1). The 
applied loading corresponds to rr(1,z)= 1.0 along 0 1z where 
“z” denotes the vertical axis from which the inner (a) and outer (b) 
radii are defined in Figures 10 and 11 (see also Figure 4). This stress 
distribution was obtained by applying nodal forces along the left 
edge of the finite element mesh. The displacement boundary 
condition is prescribed such that uz = 0 for the nodes on the top and 
bottom edges (see Figs. 10 and 11). 

Element
2 x 2 Gauss

Sampling points
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P = 1 A B C

0.5d 0.5dd

H
=

1

a = 1

b = 2

r

(a) (b)
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W = 1

P = 1 A B C

0.5d 0.5dd

Figure 10. A weak patch test with 4 x 4 and 8 x 8 elements for 4-node 
isoparametric quadrilaterals for axisymmetric problem. 
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Figure 11. A weak patch test with 4 x 4 and 8 x 8 elements for 8-node (not 
shown) and 9-node (shown) isoparametric quadrilaterals for axisymmetric 
problem. 

Young's modulus is an exponential function of r as given by Eq. 
(16), in which n is the nonhomogeneity parameter. The Poisson's 
ratio is assumed constant. The direct Gaussian formulation is used 
for these axisymmetric problems. The following data are used for 
the FEM analyses: 

squadratureGauss3 x 3and2 x 2stress,plane
0.3,,0.02,,0.11 vnE

 (34) 

Tables 6, 7 ( 0v ) and 8 ( 0v ) compare the FEM results 
with the exact solutions provided by Horgan and Chan (1999). The 
nodal displacements are calculated at nodes A, B, and C, and 
stresses are computed at the 2 x 2 or 3 x 3 Gaussian integration 
points as specified in Figs. 10 and 11. 
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Table 6. A weak patch test with 4 x 4 quadrilateral elements for axisymmetric case (u = ur , = 0)- see Figures 10 and 11. Direct Gaussian integration 
method is used for sampling material properties. The numeric precision is O(10–4). 

Displacements 4-node 8-node 9-node Exact Distortion & Stresses 2 ×  2 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 
uA 0.7091 0.7152 0.7152 0.7152 0.7152
uB 0.6457 0.6491 0.6491 0.6491 0.6491
uC 0.6213 0.6237 0.6237 0.6237 0.6237
rr

G1 -0.4307 -0.5624 -0.5778 -0.5778 -0.5625 -0.5907
G1 0.9064 0.9066 0.9009 0.9009 0.9073 0.9004

rr
G2 -0.5314 -0.4137 -0.4999 -0.4999 -0.4137 -0.4848
G2 0.9538 0.9530 0.9280 0.9280 0.9526 0.9279

rr
G3 - - -0.3795 -0.3795 - -0.3908

d=0 

G3 - - 0.9621 0.9621 - 0.9624
uA 0.7091 0.7083 0.7080 0.7160 0.7152 
uB 0.6457 0.6471 0.6470 0.6497 0.6491 
uC 0.6213 0.6239 0.6239 0.6244 0.6237 
rr

G1 -0.5010 -0.6327 -0.6528 -0.6450 -0.6258 -0.6542
G1 0.8913 0.8046 0.7966 0.8889 0.8936 0.8890

rr
G2 -0.6006 -0.4942 -0.5787 -0.5744 -0.4928 -0.5608
G2 0.9239 0.8266 0.8080 0.9065 0.9254 0.9070

rr
G3 - - -0.4701 -0.4706 - -0.4767

d=0.1 

G3 - - 0.8248 0.9294 - 0.9304

Table 7. A weak patch test with 8 x 8 quadrilateral elements for axisymmetric case (u = ur,  = 0)- see Figures 10 and 11. Direct Gaussian integration 
method is used for sampling material properties. The numeric precision is O(10–4). 

Displacements 4-node 8-node 9-node Exact Distortion & Stresses 2 ×  2 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 
uA 0.7136 0.7152 0.7152 0.7152 0.7152
uB 0.6482 0.6491 0.6491 0.6491 0.6491
uC 0.6230 0.6237 0.6237 0.6236 0.6237
rr

G1 -0.4009 -0.4581 -0.4677 -0.4677 -0.4581 -0.4704
G1 0.9366 0.9366 0.9325 0.9325 0.9366 0.9325

rr
G2 -0.4432 -0.3891 -0.4261 -0.4261 -0.3891 -0.4229
G2 0.9631 0.9630 0.9494 0.9494 0.9630 0.9494

rr
G3 - - -0.3754 -0.3754 - -0.3779

d=0 

G3 - - 0.9679 0.9679 - 0.9679
uA 0.7136 0.7152 0.7152 0.7152 0.7152 
uB 0.6482 0.6490 0.6490 0.6490 0.6491 
uC 0.6230 0.6236 0.6236 0.6236 0.6237 
rr

G1 -0.4829 -0.5374 -0.5483 -0.5482 -0.5374 -0.5504
G1 0.9121 0.9129 0.9096 0.9096 0.9129 0.9096

rr
G2 -0.5265 -0.4757 -0.5108 -0.5108 -0.4757 -0.5082
G2 0.9301 0.9307 0.9208 0.9208 0.9307 0.9208

rr
G3 - - -0.4661 -0.4662 - -0.4679

d=0.1 

G3 - - 0.9333 0.9333 - 0.9333
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Table 8. A weak patch test with 8 x 8 quadrilateral elements for axisymmetric case (u = ur,  = 0.3)- see Figures 10 and 11. Direct Gaussian integration 
method is used for sampling material properties. The numeric precision is O(10–4). 

Displacements 4-node 8-node 9-node Exact Distortion & Stresses 2 ×  2 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 
uA 0.8378 0.8403 0.8403 0.8404 0.8403
uB 0.7338 0.7354 0.7354 0.7355 0.7354
uC 0.6775 0.6788 0.6787 0.6788 0.6788
rr

G1 -0.3991 -0.4734 -0.4827 -0.4812 -0.4734 -0.4859
G1 0.9569 0.9356 0.9300 0.9316 0.9356 0.9289

rr
G2 -0.4727 -0.4034 -0.4417 -0.4398 -0.4034 -0.4378
G2 0.9531 0.9746 0.9537 0.9556 0.9746 0.9549

rr
G3 - - -0.3890 -0.3867 - -0.3920

d=0.0 

G3 - - 0.9823 0.9844 - 0.9814
uA 0.8380 0.8403 0.8403 0.8402 0.8403 
uB 0.7350 0.7354 0.7354 0.7353 0.7354 
uC 0.6789 0.6788 0.6787 0.6786 0.6788 
rr

G1 -0.4797 -0.5521 -0.5619 -0.5637 -0.5531 -0.5662
G1 0.9176 0.8967 0.8914 0.8906 0.8959 0.8898

rr
G2 -0.5524 -0.4890 -0.5244 -0.5271 -0.4912 -0.5239
G2 0.9066 0.9286 0.9111 0.9088 0.9262 0.9098

rr
G3 - - -0.4777 -0.4813 - -0.4835

d=0.1 

G3 - - 0.9345 0.9308 - 0.9302

A comparison of the results of Tables 6 and 7 indicate that the  4 
x 4 discretization of Figs. 10(a) and 11(a) are too coarse to achieve 
an accurate solution for this problem. For 0.0v  and  8 x 8  mesh 
(Table 7 and Fig. 10(b)), the 2 x 2 Gauss quadrature for the Q8 
gives exact results for all stresses regardless of distortion. Also, the 
3 x 3 Gauss quadrature of the Q8 and Q9 elements produces exact 
results for hoop stresses regardless of distortion, but leads to slightly 
incorrect results for the radial stress rr (see Table 7 and Figs. 10(b) 
and 11(b)). For 0.3v  and 8 x 8  mesh (Table 8 and Figs. 10(b) 
and 11(b)), the 2 x 2 Gauss quadrature of the Q8 gives exact results 
for all stresses only for the d = 0 case. The 3 x 3 Gauss quadrature 
of the Q8 and Q9 elements produces slightly incorrect results for all 
stresses. The behavior of the 2 x 2 and 3 x 3 Gauss quadratures on 
the radial stresses is consistent with the previous observation about 
the stress for the tension loading applied parallel to the material 
gradation (Kim and Paulino, 2002a). 

Convergence Rates 

This example investigates convergence rates of Q4 and Q8 
elements considering an FGM strip under far-field tension loads. 
Figure 12(a) shows geometry and boundary conditions for a strip 
with infinite length under far-field tension, and Figure 12(b) shows a 
plate with finite length under tractions equivalent to the far-field 
tension (see Eqs.(7) and (10)). 

yy

y

x

L=
W

σ (x)

x

L

W W

N=Wσt

Figure 12. Problem definition: (a) plate with infinite length under far-field 
constant tension; (b) plate with finite length under exact distribution of 
tractions that are equivalent to the far-field tension applied to the graded 
strip (L/W = 1). 

The applied load is prescribed on the upper edge with normal 
stress: yy(x) given by Eq.(7) with appropriate constants A and B.
The displacement boundary condition is specified such that uy = 0
along the lower edge, and ux = 0 for the node at the left-bottom 
corner. Young's modulus is an exponential function of x as given by 
Eq.(30). The Poisson's ratio is assumed constant. The following data 
are used for the FEM analyses: 
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The discretization error can be quantified by the error in the 
energy norm ||e|| defined as 

1 2

,T
FE FEe dD x  (36) 

where  and FE are the exact and finite element strain fields, D(x)
is the constitutive matrix of FGMs, and   is the domain of the 
problem.

We use mesh subdivision for assessing convergence rates of Q4 
and Q8 elements with the following element discretization along the 
width (W) and length (L), i.e. 10 x 10, 20 x 20, and 40 x 40 
elements. The GIF is used for this study. Figure 13 shows the error 
in the energy norm ||e|| calculated by considering the whole plate 
for E2/E1 = 3,5,7 and 10, and also gives useful information on the 
convergence rate. The notation h denotes the size of the square 
element used. The 8-node (Q8) quadrilateral elements with 3 x 3 
and 2 x 2 Gauss quadrature provide higher accuracy and 
convergence rates than those for 4-node (Q4) quadrilateral elements. 
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Figure 13. Error in the energy norm ||e|| of the problem for E2/E1 = 3, 5, 7, 
and 10. The energy norm is calculated considering all the elements (L/W = 
1.0). 

Stability Considerations 
Two kinds of investigations are made regarding the stability 

analysis. First, basic deformation modes (tension, bending, and 
shear) are studied, and then, an eigenanalysis is performed at the 
element level (eigenvalue test). The latter test can detect zero-
energy deformation modes, lack of invariance (with respect to 
geometrical orientation), and absence of rigid body motion 
capability; and can also provide an estimation of the relative quality 
of competing elements. In these investigations, the graded element 
is compared with the homogeneous element. The direct Gaussian 
formulation is used for this study. 

Single Element Test - Basic Deformation Modes 

The strain energy stored in the Q4 and Q8 elements is compared 
for homogeneous and graded elements considering tension, pure 
shear, and pure bending deformation modes. For the sake of 

reference, Figure 14 shows imposed displacements for different 
deformation modes for homogeneous materials (  = 0), while Figs. 
15 and 16 illustrate the deformations for  = 1.0, 0.5, 1.0. In order 
to represent tension, shear, and pure bending deformation in FGMs 
(  0), the exact solutions to displacements are proportionally 
factored to give  = 0.1 as the single displacement at the node 
indicated in Figures 14 to 16. Note that deformation-equivalent 
loads are different for homogeneous and FGM cases. 

Figure 14 represents well-known and expected results for 
homogeneous materials (  = 0). In Figs. 14 and 16, notice that the 
material gradation  has a significant influence on the deformation 
mode. Figure 15 shows that for the tension case, if  = 0.1 is 
imposed at the left-top corner node, then the deformed shape scales 
with  (cf. the first two cells of the first row) and is significantly 
changed if  changes sign, i.e. reversal of gradation (cf. compare the 
first two cells with the third cell). If  = 0.1 is imposed at the right-
top corner, the deformed shapes are consistent with those just 
described above, i.e. the first and second rows of cells of Figure 15. 
Notice that if  > 0 the reference displacement ( ) is in the weak 
material side, while if  < 0 it is on the strong material side. A 
comparison between the first cell of the first row of Figure 14(a)  (
= 0) and those cells of Figure 15 (  0) indicate that the deformed 
shapes in FGMs can be counter-intuitive as bending-type 
deformation develops for purely applied tension load. 

(a) (b)

(d)(c)

0.1 0.1

0.10.1
0.1 0.1

E ≡ constant 

Figure 14. Imposed displacement vectors for homogeneous materials (  = 
0): (a) tension, (b) pure shear, (c) pure bending for Q4, and (d) bending for 
Q8.

0.1

0.1 0.1 0.1

0.1 0.1

β=1.0 β=0.5 β=−1.0

x

y

E ≡ E(x) 

Figure 15. Imposed displacement vectors to give  = 0.1 at the node 
indicated for tension applied perpendicular to the material gradation ( =
1.0, 0.5, -1.0 and  = 0). 
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Figure 16 illustrates various deformation modes for FGMs  (
0) considering  = 0. The cells in the first row illustrates 
deformation modes under tension loading for E=E(y). Differently 
from the configuration observed in Figure 15, there is no bending 
deformation in the cells of Figure 16(a), independent of the  value. 
This difference is due to the orientation of material gradation in each 
case. Figure 16(b) shows deformed shapes for the pure bending 
loading considering E=E(x) and  =1.0, 0.5, and -1.0. The reference 
deformation is  = 0.1 at the bottom-right corner. It is interesting to 
observe the shift in the middle point of the bottom-edge (cf. solid 
and hollow bullets) as a function of the material gradation parameter 
. The hollow dot represents a point in the homogeneous material, 

which does not move upon bending deformation (cf. Fig. 14(d)) and 
thus indicates the neutral axis location for this configuration. The 
solid dot represents the FGM case and, differently from the 
homogeneous case, the point shifts as a function of the material 
gradation. For example, according to Fig. 16(b)  

0,     0,    0.

0,     0,    0.
x y

x y

u u
u u

Notice that the reference point shifts down for  > 0 and it shifts 
up for < 0. Figure 16(c) shows deformed shapes for pure shear 
loading considering E=E(y) and =1.0, 0.5, and  -1.0. Notice that 
the curvature of the edges that were vertical in the original 
configuration changes when  changes sign. 

β=1.0

0.1

E ≡ E(y) 

0.1 0.1

β=0.5 β=−1.0

x

y

(a)

0.1 0.1

0.14

0.1

β=1.0

0.0520.19

β=0.5 β=−1.0

E ≡ E(x) 

y

x

(b) 

0.1 0.1 0.1

β=1.0 β=0.5 β=−1.0

E ≡ E(y) 

x

y

(c)

Figure 16. Imposed displacement vectors to give  = 0.1 at the point 
indicated for  = 1.0, 0.5, -1.0 and material gradation as shown above (  = 
0). (a) tension; (b) bending; (c) shear. 

Table 9 summarizes the strain-energy values induced by the 
above exactly imposed displacements. Imposed displacements for 
Q4 and Q8 elements are different from the exact imposed 
displacements because of approximating function characteristics of 
elements. In other words, nodal displacements for both elements are 
imposed exactly, but displacements among nodes inside an element 
are interpolated using shape functions. All the results are normalized 
with respect to the strain energy for the homogeneous material       
( = 0). This table shows that the order of integration can have a 
significant impact in the FEM results (cf. 1 x 1 versus 2 x 2 for Q4 
and 2 x 2 versus 3 x 3 for Q8). Thus reduced integration for graded 
elements should be used with great care. Neglecting the reduced 
integration for the Q4, we observe that, for the bending case, the 
strain energy for the FGM (  0) is always lower than or equal to 
that for the homogeneous material ( = 0). The results are functions 
of the material gradation parameter .

Table 9. Strain energy ratio of the FEM results for the FGM with respect to 
the exact solution for the homogeneous material induced by the imposed 
displacements (Case(a): displacement  = 0.1 imposed at the top-left 
corner;  Case(b): displacement  = 0.1 imposed at the top-right corner). 

4-node 8-node Case
1 × 1 2× 2 2× 2 3 ×  3 

0 1.000 1.000 1.000 1.000
0.5 1.042 1.085 0.999 1.001
1.0 1.175 1.377 1.003 1.022

Tension
E(y)

-1.0 1.175 1.376 1.003 1.022
0 1.000 1.000 1.000 1.000

0.5 1.041 1.040 0.998 1.000
1.0 1.153 1.444 0.986 1.000

Tension
E(x)

Case (a)
-1.0 1.152 1.144 0.986 1.000

0 1.000 1.000 1.000 1.000
0.5 1.040 1.040 0.999 1.000

1.000 1.153 1.144 0.986 1.000

Tension
E(x)

Case (b)
-1.0 1.154 1.146 0.985 1.000

0 1.000 1.000 1.000 1.000
0.5 1.043 1.085 1.000 1.001
1.0 1.175 1.377 1.003 1.022

Shear 
E(y)

-1.0 1.167 1.372 1.004 1.023
0 0.000 1.501 1.000 1.000

0.5 0.833 1.494 0.968 1.000
1.0 0.303 1.481 0.876 0.997

Bending
E(x)

-1.0 0.289 1.449 0.877 0.992

Spectral Analysis - Eigenvalue Test 

The eigenvalue test is performed for the single element stability 
check. The test can detect zero energy deformation modes (both 
rigid body and spurious modes). The element is not constrained so 
that the element stiffness matrix e  is the complete matrix. Thus 
three independent rigid-body motions exist in the plane, and three of 
the eigenvalues should be zero for a plane element. In addition, 
zero-energy or spurious singular modes also yield zero eigenvalues. 

The element is square, and its length and width are 1.0 with the 
origin (x = y = 0) at the left-bottom-corner node. In the element, 
Young's modulus is given by Eq.(30) with E1 =1.0 (normalized), 
and  = 0.0 (homogeneous) and 1.0 (nonhomogeneous material). 
The Poisson's ratio is assumed to be constant, i.e.  = 0.3. 

Figures 17 to 22 illustrate the results of the spectral analysis for 
the Q4, Q8, and Q9 considering =0 (homogeneous material) and 
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=1.0 (FGM). A comparison between the results for homogeneous 
materials and FGMs leads to the following observations: 

As expected, the number of rigid-body modes (three) is the same 
for both homogeneous and graded elements 

0 0 0 0.576923

0.576923 0.769231 0.769231 1.92308

Figure 17. Eigen-analysis for Q4 (2 x 2 Gauss quadrature) with = 0 
(homogeneous material). The numbers indicate the eigenvalues ( i). 
Compare with Figure 18. 

0 0 0 0.879799

0.932199 1.37192 1.38045 3.36442

Figure 18. Eigen-analysis for Q4 (2 x 2 Gauss quadrature) with = 1 
(FGM). The numbers indicate the eigenvalues ( i). Compare with Figure 17. 

0 0 0 0

0.331136 0.331136 0.457182 0.547639

0.769231 1.02564 1.4158 1.4158

2.40108 2.87615 5.75299 5.75299

Figure 19. Eigen-analysis for Q8 (2 x 2 Gauss quadrature) with = 0 
(homogeneous material). The numbers indicate the eigenvalues ( i). 
Compare with Figure 20. 

0 0 0 0

0.574346 0.587969 0.704296 0.843318

1.31823 1.71754 2.23293 2.45912

4.12507 4.70563 10.1332 10.2861

Figure 20. Eigen-analysis for Q8 (2 x 2 Gauss quadrature) with = 1 
(FGM). The numbers indicate the eigenvalues ( i). Compare with Figure 19. 

0 0 0 0.197823

0.292291 0.292291 0.459447 0.67402

0.76744 0.76744 0.93033 1.12821

1.68014 1.68014 2.63367 2.97645

6.60628 6.60628

Figure 21. Eigen-analysis for Q9 (3 x 3 Gauss quadrature) with = 0 
(homogeneous material). The numbers indicate the eigenvalues ( i). 
Compare with Figure 22. 

0 0 0 0.326525

0.459088 0.552241 0.678105 0.865915

0.452487 1.30954 1.71404 1.83463

2.78252 2.90923 4.49741 5.49997

11.2615 11.8956

Figure 22. Eigen-analysis for Q9 (3 x 3 Gauss quadrature) with = 1 
(FGM). The numbers indicate the eigenvalues ( i). Compare with Figure 21. 
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The number of spurious deformation (zero energy) modes is also 
the same for both homogeneous and graded elements, i.e. two 
spurious modes for Q4 with order of quadrature 1, one for Q8 with   
2 x 2 Gauss integration, and three for Q9 with 2 x 2 Gauss 
integration 
Symmetry, as expressed by the deformation modes (eigen-
vectors), is broken for graded elements, i.e. there are no repeated 
eigenmodes or repeated eigenvalues as in the homogeneous 
element. 
The total energy (Ui = i/2, i=1,...,NDOFs) increases for the FGM 
with  > 0 in comparison with that for the homogeneous material. 
Here NDOFs indicates the number of degrees of freedom in the 
element. 

Conclusions 
Once an element passes the patch test with a consistency and a 

stability check, convergence is assured as the size of elements tend 
to zero. The original patch test considers constant strain or stress 
state for conventional homogeneous finite elements. However, for 
nonhomogeneous materials, consistency and stability of graded 
finite elements are verified in the context of the weak patch test. In 
the preceding sections, convergence and convergence rates of the 
Q4, Q8, and Q9 graded elements (for both plane and axisymmetric 
problems) to the exact solutions have been studied under 
subdivision of finite elements.

This study indicates that, in general, 3 x 3 Gauss Quadrature for 
Q8 and Q9 elements shows better performance than 2 x 2 Gauss 
Quadrature for Q8, and that Q4 elements need to be used with care 
due to low convergence rates. Moreover, the stability investigation 
reveals that one should be very careful when using homogeneous 
elements with piecewise constant material properties to model 
nonhomogeneous materials. This paper has shown that the 
deformation modes (and associated strain energy) for graded 
elements (Figure 1(c)) are quite different from those for 
homogeneous elements (Figure 1(d)). Thus poor numerical results 
may be obtained when homogeneous elements are used instead of 
graded elements, especially when relatively coarse meshes are used 
to model FGMs. 
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