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Effects of the Initial Droplet 
Temperature on the Vaporization 
Process at High Pressure 
The aim of this study is to determine conditions for the quasi-steady regime (QSR) of 
vaporization of Methanol droplets in high pressure Nitrogen. Under the quasi-steady 
regime, the square of the droplet radius decreases linearly with time (QSR), a simple result 
that can be easily implemented in numerical codes. Nevertheless, the vaporization rate 
cannot be described by a simple expression. The vaporization rate depends initially on the 
quantity of gas dissolved inside the droplet, on the liquid phase expansion and on the mass 
loss to the gas phase which is controlled by the initial conditions of the droplet. After this 
initial period and the droplet heating period, when the heat flux from the gas phase is 
almost completely employed to vaporize the droplet, the vaporization rate can be 
expressed approximately by a quasi-steady model. As shown by the numerical results, the 
main unsteadiness source for the droplet vaporization at high pressure is the droplet 
heating. 
Keywords: droplet vaporization, critical condition 
 
 
 

Introduction 
Spray combustion studies have to simultaneously treat processes 

in several spatial scales. The spray spatial scale is specified by the 
boundaries of the combustion chamber, and the vaporization scale is 
characterised by the droplet sizes, therefore, the difference in these 
scales is of several orders of magnitude. There are many other scales 
present in this kind of problem, but they are not the focus of this 
work. Due to the high cost of numerical simulation of spray 
problems with multiple scales, analytical models are developed for 
small scale processes to be employed in simulation codes. This work 
addresses the vaporization problem at high pressure in order to 
determine the droplet initial conditions leading to a simplified model 
that can be easily employed in those codes. 

At low pressure, the thermal inertia of a region close to the 
droplet in the gas phase is much smaller than that of the liquid phase 
(QSR). Approximately, the difference between them is given by the 
ratio of the ambient gas density to the liquid density, ε = ρ∞/ρl. For 
normal ambient pressure, the condition ε ~ 10-3 is satisfied and 
thereby the gas phase behaves quasi-steadily in terms of any 
characteristic time scale of the liquid phase, i.e. droplet heating 
period or droplet vaporization. This behaviour leads to the well 
known linear decrease of the square of the droplet radius with time 
(Godsave, 1953; Spalding, 1953). For a larger region, with radius 
about ε–1/2 times the droplet radius in the gas phase, counting from 
the droplet surface, the thermal inertia becomes comparable to that 
of the liquid phase. Under this condition, the transient processes of 
accumulation of mass and energy in this broad region have a 
contribution on the liquid phase processes only of order of 
magnitude about ε1/2 ~ 1/30 (Crespo and Liñán, 1975; Fachini et al., 
1999).1 

There are some situations in which the representative ambient 
conditions lead to ε ~ 1 (Givler and Abraham, 1996). This condition 
is found inside the high-pressure combustion chambers of Diesel 
engines, turbines and rockets. Furthermore, the conditions can attain 
several times the thermodynamic critical conditions of the liquid. 
The gas phase close to the droplet looses its quasi-steady behaviour. 
The transient processes of mass and energy accumulation in the gas 
phase close to the droplet have the same importance as the diffusive 
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and convective processes on the vaporization rate control. Also, in 
the high pressure condition, the amount of gases dissolved in the 
liquid phase increases up to values of the same order of liquid 
concentrations. The properties of the gas-liquid mixture change 
drastically from those of the pure liquid. 

Despite the transient behaviour of the gas phase, the behaviour 
of the droplet radius squared is still linear with time under certain 
conditions. The tendency of the square of the droplet radius is 
reproduced by imposing the quasi-steady regime for the gas phase. 
However, the results using this model do not agree, as well as the 
results obtained by including the gas phase transient regime, with 
those found experimentally (Zhu et al., 2001). Therefore, the “quasi-
steady” results obtained from the transient model are a characteristic 
of the set of transient processes. The droplet initial conditions 
addressed in this analysis are those that lead to the ”quasi-steady” 
regime for the droplet radius taking into account the transient 
behaviour of the gas phase. 

Moreover, there are other processes, negligible at low pressure, 
that have a strong influence on the vaporization at high pressure 
conditions. The ideal gas hypothesis is not justified and, thereby, a 
real gas equation, such as the cubic equation of state can be used to 
describe the non-ideal gas behaviour (Zhu and Aggarwal, 2000). 
The closer the conditions are from the thermodynamic critical 
conditions, the closer the latent heat of vaporization and the surface 
tension are from zero. At first glance, the reduction of the latent heat 
of vaporization would lead to an increase of vaporization rate in the 
sprays, as shown by the low pressure quasi-steady model (Godsave, 
1953; Spalding, 1953), but in reality it leads to a decrease (Lazar 
and Faeth, 1972). The reduction of the surface tension and the 
impact of the liquid with high density ambient gas cause the 
atomization of the liquid in extremely small droplets. Under this 
condition, the liquid-gas system behaves in a homogeneous regime 
and the high concentration of the vapor in the environment around 
the droplets reduces the vaporization rate (Newman and 
Brzustowski, 1971). 

Numerical and experimental results (Canada and Faeth, 1974; 
Okai et al., 2000) reveal that, at the end of the droplet lifetime, the 
square droplet radius decreases linearly with time, a consequence of 
the quasi-steady behaviour of the liquid phase and of the gas phase 
around the droplet. These results have motivated this work which 
defined the initial conditions for the droplet that lead to a quasi-
steady behaviour for the vaporization rate as well as to the d-square 
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law suitable for part of the droplet lifetime. A Methanol droplet in 
high pressure Nitrogen is considered in the analysis. 

Nomenclature 

a = droplet radius, m 
a = non-dimensional droplet radius 
a& = time derivative of droplet radius 
a= parameter eq. of state (van der Waals) 
b= parameter eq. of state (van der Waals) 
A= parameter eq. of state (Peng-Robinson) 
B= parameter eq. of state (Peng-Robinson) 
cp= specific heat at constant pressure, J/kg.K 
Cp= specific heat at constant pressure, J/mol.K 
D = diffusion coefficient, m�/s 
f = fugacity, bar 

cFg ρρ /=  
h = enthalpy, J/kg 
k = thermal conductivity, W/(m.K) 
kY = non-dimensional diffusion coefficient 
kθ = non-dimensional thermal conductivity 
Kij = Peng-Robinson parameter 
L = latent heat of vaporization, J/kg 
Le = Lewis number, λcF/D(TcF ) 
Lθ = hc/(cpcF TcF ) 
m& = vaporization rate, kg/s 
M = molecular weight 
N = number of species 
P = pressure, bar 
r  = radial coordinate, m 
r = non-dimensional radial coordinate, r a  
R = universal gas constant, J/mol.K 
t = time, s 
T = absolute temperature, K 
u = non-dimensional radial velocity, 0Ua /λcF 
U = radial velocity, m/s 
X = mole fraction 
Y = mass fraction 
z = compressibility factor 
Greek Symbols 
β= vaporization constant 
∆Cp= real gas correction for the Cp 
ε = ρ ρ∞ l  

Γ= ( )1 64 4210 c cT M P  

λ= thermal diffusivity, m2/s 
ω= Pitzer acentric factor 

ρ= density, kg/m3 

τ= non-dimensional time, 2
0λcFt a  

θ= 
∞T T  

Subscripts 
0  initial condition 
∞  ambient condition 
c  critical condition 
eq  equilibrium condition 
i  i species 
F  droplet-forming substance 
g  ambient gas 
j  j species 
l  liquid condition 
r  reference condition 

v  vapor condition 
Superscripts 
L    liquid condition 
sat   saturation condition 
V    vapor condition 

Equation of State and Equilibrium Conditions 
Studies were performed to examine the effects of the equation of 

state on the vaporization and combustion of droplets at high 
pressure (Zhu and Aggarwal, 2000). These studies pointed out that 
the Peng-Robinson’s equation of state as being the better equation 
of state for predicting the experimental data over a wide range of 
pressure. Thereby, it has been employed in droplet problems at high 
pressure.  

�n terms of the compressibility factor z, the Peng-Robinson’s 
equation of state can be expressed (Ohe, 1990) as 

 

( ) ( ) ( )3 2 2 2 31 3 2 0,− − + − − − − − =z B z A B B z AB B B  (1) 

 
in which 

 

2 2

a ,   ,   ,
g

P bP PA B z
R T RT R Tρ

= = =  

 
Rg = R/M is the gas constant, R is the universal gas constant and M 
represents the molecular weight. P, T and ρ represent the pressure, 
the temperature and the density, respectively. The parameters a and 
b, which have the same meaning of those of the van derWaals 
equation of state, represent the binary mixture of gas and are given 
by the following mixing rule 

 

1 1 1

a a ,         ,
N N N

i j ij i i
i j i
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in which Xi denotes the molar fraction of species i. The value of aij is 
defined as. 

 

( )( )1 2
a 1 a a .ij ij i jK= −  

 
The parameter Kij , known as Peng-Robinson’s parameter, is 

evaluated experimentally. For a binary mixture of gases, the value 
of Kij is presented elsewhere (Ohe, 1990). ai and bi are the values of 
a(T) and b for species i,  

 

( ) (

)( )

2 2

22 1 2

a 0.45724 1 0.37464

      1.54226 0.26992 1

i c c

r

R T P

Tω ω

= + +

− − 

 

 
and 

 
( )0.07780 ,=i c cb RT P  

 
in which =r cT T T  is the reduced temperature and the parameter ω, 
named as the Pitzer acentric factor and defined by 

10log 1ω = − −sat
rP  at Tr = 0.7. The subscript c identifies the critical 

conditions. 
Since the molecular characteristic time is much smaller than any 

characteristic time related to the vaporization process, the 
equilibrium hypothesis at the droplet surface is well justified. 
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Thereby, the concentrations at the liquid and vapor sides of the 
liquid-gas interface depend only on the temperature and pressure. 
The equilibrium regime is marked by the equality of temperature, 
pressure and chemical potential at both sides of the interface. For a 
general system, the equilibrium regime is characterised by the 
equality of fugacity fi for each species i, instead of the chemical 
potential (Prausnitz, 1969). By making use of the Gibbs-Duhem’s 
equation (Prausnitz, 1969) and of the Peng-Ronbinson’s equation of 
state, the fugacity of species i is evaluated by the expression 

 

( ) ( )

1

ln 1 ln
2 2

2 2.414a ln .
a 0.414

i i

i

N
i

j ij
j

f b Az z B
X P b B

b z BX
b z B=

= − − − − ×

  + −   −  
∑

 (2) 

 
The molar fraction of species i, Xi, is given in terms of the mass 

fraction 
i iY ρ ρ=  by ( ) ( )i i i i ii

X Y M Y M= ∑ , in which Mi 

represents the molecular weight of species i.  

Thermodynamic and Transport Coefficients 
At high pressure condition, the thermodynamic and the transport 

coefficients have a large difference from those calculated through 
the ideal gas hypothesis. By considering corrections as a function of 
the reduced temperature and pressure in the low pressure models, 
expressions for the real gas specific heat and for the thermal 
conductivity are determined as a function not only on the 
temperature, but also on the pressure. 

The difference between the real-gas specific heat Cp and the 
ideal-gas specific heat  Cp

0  can be expressed in terms of  
 

( )( ) ( )( )0 10 ,p p p pC C C Cω− = ∆ + ∆  (3) 

 
ω is the same acentric factor. The value of the corrections (∆Cp)(0) 
and (∆Cp)(1) are presented in elsewhere (Reid et al., 1986).  

The thermal conductivity k for real gases can be approximately 
expressed (Reid et al., 1986) as  

 

( ) ( )5 2
0 1.14 10 exp 0.67 1.069c rk k z ρ−− Γ = × −    (4) 

 
in which zc is the compressibility factor at critical condition, 

( )1 64 4210 c cT M PΓ =  has the reciprocal thermal conductivity units 

and k0 is the thermal conductivity for low pressure condition. The 
above expression is valid for 0.5 < ρr < 2.0. The latent heat of 
vaporization for each species is estimated by the difference of 
enthalpy at both sides of the liquid-gas interface (Prausnitz, 1969) 

 

( )2 ln lnL V V L
i i i i i iL h h RT f f

T
∂

= − = −
∂

 (5) 

 
The binary-diffusion coefficient D for high pressures, adopted in 

this work, follows the Takahashi’s model (Takahashi, 1974), 
 

( ) ( )( )  1 1B E
r rTrD P D P AT CT− −

→∞
= − −  (6) 

 
in which ,  ,  A B C  and E  are functions of the reduced pressure and 
the value for ( ) 

Tr
D P

→∞
 is close to one. 

 
 

Mathematical Formulation  
The present model, describing the droplet vaporization at high 

pressure, neglects the effects of gravitational and dissipative forces and 
the heat transfer produced by mass diffusion. Moreover, it is presumed 
that the droplet and the gas phase around the droplet present spherical 
symmetry during the lifetime of the droplet, ( )a t  is the droplet radius 

at time t. This problem is marked by the fact that the gas-liquid interface 
is a free boundary, the eigenvalue of the problem, that is determined 
when an extra boundary condition is imposed. �n computational terms, it 
is more convenient, through a spatial transformation ( )r r a t ≡  , to 

fix the free frontier than to change the grid of each time step (Crank, 
1987). The eigenvalue disappears from the boundary condition, but it 
appears in the conservation equations. 

Under these conditions, the non-dimensional conservation 
equations (mass, species and energy) present the accumulative, 
convective and diffusive terms, 

 

( ) ( )3 2 2 2 0,a r g a r g u ra
rτ

∂ ∂  + − = ∂ ∂
&  (7) 

 

( ) ( )3 2 2 2

2

,

F F

Y
F

a r gY a r g u ra Y
r

ar k Y
r Le r

τ
∂ ∂  + − = ∂ ∂
 ∂ ∂
 ∂ ∂ 

&
 (8) 

 

( ) ( )3 2 2 2

2

,

a r gh a r g u ra h
r

ar k
r L r

θ

θ

τ

θ

∂ ∂  + − = ∂ ∂
 ∂ ∂
 ∂ ∂ 

&
 (9) 

 
in which 

0a a a=  is the non-dimensional droplet radius and 

( )0 0a a= ; a&  represents the derivative of droplet radius with 

respect to time ( da dτ ). The non-dimensional time τ is defined by 
2
0cFt aλ  (the subscript F denotes the substance from the droplet). λ, 

defined by ( )pk cρ , is the thermal diffusivity. The functions 

Y F cFk D D=  and 
ck k kθ =  retain the dependence of the diffusion 

coefficient and the thermal conductivity on temperature and 
concentration. 

The non-dimensional radial fluid velocity u corresponds to 

0 cFUa λ , the non-dimensional temperature θ and the non-
dimensional density g are determined by 

cFT Tθ =  and 
cFg ρ ρ= , 

respectively. The non-dimensional enthalpy h is given by 
 

( )2 2298 298
/ ,

T T

F pF N pN ch Y c dT Y c dT h= +∫ ∫  

 
where 

 

298

T

c pFh c dT= ∫  

 
The parameter Lθ represents ( )c pcF cFh c T  and 

Le Dλ=

 Le is the Lewis 

number. 
The conservation equations (7) to (9) and the equation of state, 

Eq. (1), form a closed set of equations, to which is necessary to 
specify initial and boundary conditions. From the defined problem, 
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values for density, velocity, temperature and concentrations are 
determined inside and outside the droplet 

The initial conditions, say at τ = 0, are: inside the droplet ( 0 1r≤ ≤ ) 
the temperature is uniform and equal to l l cFT Tθ =  and outside the 
droplet (1 r≤ ) the temperature 

g g cFT Tθ =  is also uniform, but the 

value is different from that inside the droplet. The pressure is kept 
constant, cFp P P∞= , thereby, the initial profile of the density inside 

the droplet is ( ) 0 1l l cFg rρ ρ= ≤ ≤  and outside the droplet is 

( ) 1g g cFg rρ ρ= ≤ . Consequently, the velocity is zero everywhere, 

u = 0 ( r∀ ). By presuming that liquid is in equilibrium with gas for the 
initial conditions, the portion of liquid inside the droplet is 

( ) ( ),  0 1
eqF F lY Y T P r= ≤ ≤ . The equilibrium assumption between the 

droplet substance and the Nitrogen is not unrealistic. �t represents the 
conditions reached by the droplet substance and the Nitrogen, just after 
the atomization but before starting the vaporization, when the relative 
velocity between the liquid and gas phases is not negligible, this 
situation induces recirculation inside the droplet that imposes 

( )1 ; ,
eqF F lY Y r T P−= =  everywhere in the droplet. 

The boundary conditions satisfied by equations (7) to (9) are 
specified at the droplet center, at the droplet surface and in the ambient 
atmosphere. At the center, there is no flux. At the droplet surface, mass, 
momentum and energy are conserved and the liquid and gas are in 
equilibrium. The ambient conditions are imposed in a numerical finite 
domain, which is large enough to represent well the ambient 
atmosphere. Mathematically, these conditions are expressed by 

 

0   at   0FYgu r
r r r

θ
θ

∂∂ ∂
= = = = =
∂ ∂
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( ) ( )

1 1

1 1 ,

r r

r r

L V
F Ff f

θ θ− +

= =

= = =

=

 (14) 

 
0     Fu g g Y rθ θ∞ ∞= − = = − = →∞  (15) 

 
The extra condition, from which the droplet radius a(τ) is 

determined, is the equilibrium condition for the ambient gas at the 
droplet surface. By writing it in terms of the mass fraction of the 
substance that composes the droplet 

2
1N FY Y= − , it follows that 

 

1 1r r

L V
g gf f

= =

=  (16) 

 
Note that the integration of the mass conservation equation (7) 

from the center to the surface of the droplet, 
 

( ) ( )
13 2 2

10 r

dm a r gdr a g u a
dr =

= − = −∫& &  (17) 

 
defines the vaporization rate m& . 

The system of equations (7) to (9) is integrated numerically 
satisfying the initial conditions and the boundary conditions 
expressed by Eqs. (10) to (16). Since the flow is generated only by 
the thermal expansion (Stefan flow) and the phase change of the 
substance of the droplet, the velocity is much smaller than that of 
the sound. Thereby, pressure changes could be neglected. �n 
addition, for the ambient condition close to the substance critical 
conditions, the contribution of the phase change on the flow is of the 
same order of that produced by the thermal expansion. Due to the 
problem characteristic, two simple strategies can be applied to 
solve: One of them works with mass contained up to a spatial 
coordinate r, thus the independent spatial variable is φ  (material 
function). Thereby, the new spatial coordinate has the following 
characteristics: 3 2r a r gφ∂ ∂ =  and ( )3 2a r g u raφ τ∂ ∂ = − − & . The 

expressions for rφ∂ ∂  and φ τ∂ ∂  satisfy the mass conservation 
equation. �n addition, the transformation from ( ),rτ  to ( ),τ φ  leads 

to equations of transient-diffusive type. 
The other strategy is to fix the droplet surface with the 

transformation r r a= . This procedure was adopted in this analysis 
because there is an advantage in having the eigenvalue a in the 
system of equations instead of having it in the boundary conditions, 
as already mentioned. 

The finite difference method was used to the discretization of 
the equations in a implicit scheme (Oran and Boris, 1987; Fletcher, 
1991; Ferziger and Peric, 1999). The system of nonlinear algebraic 
equations was solved by the Newton-Raphson Method employing 
the LU decomposition to solve the linear algebraic equations (Press 
et al., 1988). �n each time step, a density profile was guessed and the 
velocity, mass fraction YF and temperature θ were determined by 
Eqs. (7) to (9). At same time the accuracy of the guessed density 
profile was verified by the equation of state Eq. (1) and a new 
guessed density profile was found. This procedure was repeated up 
to satisfying the established accuracy criteria. 

This code was considered validated when the linear decrease 
behaviour of the droplet radius square at the end of the droplet 
lifetime was obtained as pointed out by previous analyses (Canada 
and Faeth, 1974; Okai et al., 2000).  

Results and Comments 
The model developed here was applied to the vaporization of 

Methanol droplets with Tc = 512.6 K and pressure Pc = 80 bar in an 
atmosphere containing only Nitrogen, at a temperature of 800 K and 
at the pressure of 75 bar. The ambient temperature is representative 
of self-ignition conditions of droplet combustion (Kadota et al., 
1998; Ruszalo and Hallett, 1992). The pressure is close to the 
critical pressure of the Methanol. The states of the gas and of the 
liquid, which is presumed to be a dense gas, are specified by the 
Peng-Robinson’s equation of state. Also, the liquid-gas interface has 
been assumed to be in equilibrium immediately after the droplet is 
formed in the gas phase. This initial condition is justified because 
the equilibrium is achieved in a characteristic time much shorter 
than that of the conduction. 

The choice of the Methanol as the analized substance is based 
on the fact that its molecular weight is very close to the molecular 
weight of the Nitrogen, ambient substance. Thereby, the effects of 
the number of moles of the substances could be neglected. �n first 
approximation, the assumption Yi = Xi could be used. 
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The present results show the vaporization process of a Methanol 
droplet in a quiescent atmosphere. Three initial temperatures for the 
droplet were considered: 300, 350 and 400 K; or in terms of the non-
dimensional temperature, θ = T/TC: 0.585, 0.683 and 0.780, respectively. 

For the pair Methanol and Nitrogen and under the conditions 
considered here, the Lewis number Le, is equal to 5.86; its value is in 
accordance with previous work (Harstad and Bellan, 1999). Also, the 
parameter Lθ is equal to 5.58. 

�n general, the vaporization process is controlled by the heat flux 
from the gas phase to the liquid phase. Part of this flux is employed to 
heat up the droplet and the other part is used to vaporize the droplet. 
Contrary to the low pressure condition where the droplet heating process 
occurs almost separately from the vaporization process, for high 
pressure conditions, the vaporization initiates simultaneously with the 
heating up after the droplet is formed. The two processes take place 
together as a consequence of the low latent heat. Also, the droplet 
evaporation is marked, not only by the gas phase heat flux, but also by 
the initial energetic state of the droplet. 

The set of Figs. 1, 2, 3, and 4 shows the evolution of some 
parameters of the droplet. 

Figure 1 displays the evolution of the temperatures at the center and at 
the surface of the droplet. To highlight each initial condition, the same line 
style is used for both temperatures; curves for higher temperature represent 
the condition at the droplet surface and curves for lower temperature 
represent the condition at the droplet center. The results show that the 
droplet heating process occurs during the whole droplet life (Jia and 
Gogos, 1999), as pointing out the difference between the two temperatures 
(at center and surface). �n addition, the droplet surface temperature has a 
fast increase in the first moments of vaporization as a result of the large 
heat flux from the gas phase to the liquid phase, generated by the 
difference of the temperatures between the two phases. However, the 
droplet center temperature takes a certain time to show visually changes. 
For an initial temperature of the droplet equal to 400 K (θ = 0.78), it is 
observed that the temperature at the surface decreases initially, but 
increases after a short period of time. This cooling process occurs due to 
the vaporization supported by the initial energetic state of the droplet that 
imposes a large concentration of Methanol vapor at the surface that, 
consequently, imposes a large Methanol mass flux to the ambient 
atmosphere. The cooling process is not significant in the other two cases 
(350 and 300 K) because the heat loss driven by the vaporization can be 
compensated by the heat flux from the gas phase. 

The temperature at the surface reaches the same value for all 
three cases. This is a indication that value of 440.8 K (θ = 0.86) is 
the equilibrium temperature for the mixture of Methanol and 
Nitrogen in an ambient pressure of 75 bar.  

The evolution of the center temperature for the case with an initial 
temperature of 400 K shows initially a little increase that is not 
observed in the other cases. Since it was assumed in this model that 
the liquid phase attained immediately an equilibrium composition of 
Methanol and Nitrogen, the initial heating of the whole droplet is 
caused by the Nitrogen dissolved inside the droplet. This is not seen in 
the other cases because the initial equilibrium composition has a very 
small concentration of Nitrogen in the liquid phase. 

For an initial droplet temperature equal to 300K, it is shown that 
the vaporization rate is negative, which means that the gain of mass 
due to the Nitrogen dissolved in the liquid is larger than the loss of 
Methanol mass to the atmosphere. 

 

 
Figure 1. The evolution of the temperature at the center �lower curves) and 
at the surface �higher curves) of a Methanol droplet in Nitrogen 
atmosphere, for three representative initial droplet temperatures. The 
ambient temperature is 800 K and the ambient pressure is 75 bar. 

 

 
Figure 2. Evolution of Methanol mass fraction in the liquid side of the 
droplet surface for three representative initial droplet temperatures: 300, 
350 and 400 K. The ambient temperature is 800 K and the ambient 
pressure is 75 bar. 

 
The Methanol mass fraction in the liquid and gas sides at the 

droplet surface is presented in Figs. 2 and 3. The same behaviour 
observed in the temperature profiles is noted in the concentration 
profiles. For an initial droplet temperature of 400 K, the initial mass 
fraction of liquid Methanol is lesser than the other two initial mass 
fraction, for initial droplet temperatures of 350 and 300 K. However, 
at the end of lifetime of the droplet, those mass fractions reach the 
same value, that corresponds to the condition YF l  = 0.9715. The 
results for the Methanol mass fraction in the gas phase side at the 
droplet surface show the influence of the cooling process for an 
initial droplet temperature of 400 K. 
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Figure 3. Evolution of the Methanol mass fraction in the gas side of the 
droplet surface, for three representative initial droplet temperatures: 300, 
350 and 400K. The ambient temperature is 800 K and the ambient pressure 
is 75 bar. 

 

 
Figure 4. Evolution of the Methanol droplet radius a for three 
representative initial droplet temperatures: 300, 350 and 400 K. The 
ambient temperature is 800 K and the ambient pressure is 75 bar. 

 
The Methanol mass fraction decreases initially, but after the 

cooling process it increases during the lifetime of the droplet. Close 
to the end of the droplet lifetime, the Methanol concentration in gas 
phase increases faster. The equilibrium composition for a 
temperature equal to 440.8 K and pressure equal to 75 bar does not 
show YF l ~ YF v. However, the fast increase of YF l at the end of the 
droplet lifetime, indicates that the condition T = 440.8 K, P = 75 bar 
is very close to the critical condition of the mixture (Ohe, 1990). 

As seen in Fig. 4, the evolution of the droplet radius a shows the 
behaviour a ~ τm by the end of the vaporization process. As the 
droplet lifetime is approached, the derivative of the curve shifts to 
infinity. From Fig. 5, it is noted that the value of m is 1/2, the quasi-
steady result found in low pressure condition. However, for the 
highest initial droplet temperature, 400 K, the variation of the square 
droplet radius follows almost exactly the expression a� = 1 − βτ 

Recalling that for low pressure condition (QSR), the value of β is a 
constant, called vaporization constant, and β.a is proportional to the 
vaporization rate, because the density inside the liquid phase is 
constant. Note that 2da dβ τ= − . As the initial droplet temperature is 
reduced, linear dependence of the square droplet radius on time 
becomes less representative to the numerical results. β is no longer a 
constant but a time dependent function.  

 

 
Figure 5. Evolution of the square of the non-dimensional Methanol droplet 
radius a2, for three initial droplet temperatures: 300, 350 and 400 K. The 
ambient temperature is 800 K and the ambient pressure is 75 bar. 

 

 
Figure 6. Variation of the non-dimensional vaporization rate m˙ as a 
function of time ττττ, for three representative initial Methanol droplet 
temperatures: 300, 350 and 400 K. The ambient temperature is 800 K and 
the ambient pressure is 75 bar. 

 
The vaporization rate m&  for the three initial droplet temperature 

is presented in Fig. 6. The vaporization rate for the temperature of 
400 K is controlled mainly by the Methanol diffusive flux into the 
gas phase in the first stages of the vaporization. The mass flux is 
large and is imposed by the difference of the concentration from the 
surface, YF = 0.27, to the ambient atmosphere, YF = 0; as pointing an 
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analysis of Eq. (12) with the information 0~1−=rFY∆  a2nd 

1
~ 0.27F r

Y +=
∆ . After this short period, the vaporization rate is 

driven by the heat flux coming from the gas phase. 
The energetic state for the case of the initial droplet temperature 

of 300 K is such that the Methanol mass fraction at the vapor side of 
the liquid-gas interface is not large enough to impose a positive 
vaporization rate. The conditions lead to a gain of mass of the 
droplet caused by the gas dissolved in the liquid phase. Thereby, the 
initial vaporization rate in Fig. 6 for this initial temperature shows a 
negative value. For the intermediate initial droplet temperature, 350 
K, the vaporization rate profile is almost constant up to the half of 
the droplet lifetime. �n the other half, the vaporization rate is close 
to that described by the quasi-steady model. 

 

 
Figure 7. The ratio of non-dimensional vaporization rate m&  to �3ββββa/2) as a 
function of time ττττ, for three representative initial droplet temperatures: 
300, 350 and 400K. The ambient temperature is 800K and the ambient 
pressure is 75 bar. 

 
Despite the fact that the vaporization is an unsteady process 

during the whole droplet lifetime, there are situations in which the 
quasi-steady model is a good approximation to describe the square 
droplet radius variation, as seen in Fig. 5 for the initial temperature 
of 400K, and the vaporization rate, as seen in Fig. 6. Fig. 7 shows 
the ratio of the nondimensional vaporization rate to (3βa/2), that 
would be the vaporization rate in the QSR. The results for the 
temperature of 400 K display that the transient regime occurs in the 
very beginning of the vaporization process, but after that the 
vaporization rate is very close to that described by the QSR; 

( )3 2 ~ 1m aβ& . Note that 2da dβ τ= −  and 33 2a da dβ τ= − , the 

evaluation of β is at the end of the droplet lifetime. 
From the results presented here, i.e. the difference of the droplet 

center and droplet surface temperatures ( )s lθ θ− , it is observed that 

the droplet heating is present in the whole droplet lifetime, Thereby, it 
is the main process responsible by the unsteadiness for the droplet 
vaporization at high pressure. Therefore, by increasing the initial 
temperature of the droplet, the problem unsteadiness is reduced and 
the variation of the square of the droplet radius is approximated by a 
linear function of time, like that one given by the QSR. Also, the 
vaporization rate can be represented by the expression of the QSR. 

Due to the lack of experimental data on Methanol droplet 
vaporization at pressures close to the critical condition, the numerical 
results from this model were not compared to measured results.  

Conclusions 
The analysis revealed that, depending on the initial droplet 

temperature, the behaviour of the droplet radius and the vaporization 
rate can be described by a quasi-steady model, although the 
processes in the gas phase is transient during all the droplet lifetime. 
�t seems that the movement of the interface liquid-gas does not 
cause a strong unsteadiness.  

The vaporization process can have two different regimes during 
the droplet lifetime depending on the initial temperature of the 
droplet. For the initial temperature far from the critical condition, a 
unique regime controls the vaporization, i.e. the heat flux from the 
gas phase to the liquid phase. For the initial temperature close to the 
critical condition, the initial energetic state of the droplet is able to 
impose a large mass flux from the liquid phase to the gas phase, 
independently from the heat flux from the gas phase. During the 
period of time in which the initial droplet energetic state controls the 
vaporization, the droplet is cooling. The cooling process takes place 
in a short period of time because the decrease of the droplet 
temperature increases the heat flux from the gas phase to the liquid 
phase. After this short period of time , the heat flux is the process 
that controls the vaporization. 

By playing with these two regimes, changing the initial droplet 
temperature, it is possible to have an almost constant vaporization rate 
up to half of the droplet lifetime and after that the vaporization rate 
follows approximately that one determined by the quasi-steady model.  
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