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Introduction

Flow in curved ducts occurs in several industriebcesses,
from heat transfer equipments to turbo-machinerny,chemical
reactors to flow separator devices and also inrahfphenomena
such as river meandering to cite a few. The subfeg been
drawing attention of the fluid mechanics commundynearly three
quarters of a century. Certainly, one of the piocimgeworks on this
subject belongs to Dean (1927). Nowadays the lgkdiohy is
extensive. The fluid flow and heat transfer in @thducts, with or
without finite pitches, for different cross-sectiorhave been
reviewed by Berger et. al. (1983), Berger (1991an8iakumar and
Masliyah (1986), Shah and Joshi (1987) and Ito 7).98

A curved duct can be described by a local coordirsystem
whose origin coincides with the curve passing thhothe duct's
cross section center. This curve is characterizethé curvature
and the torsiomn, to be defined on the next section. For null tmrsi
the curved duct degenerates to a toroidal shapde vibi null
curvature it degenerates in a twisted straight .d#ggure 1
represents, schematically, a curved duct with asgsection of size
‘a’ and pitch 2 for increasing values of torsion.

t.dh=0

7.dn=0.05 7.dn=0.1 1.dn=0.15

Figure 1. Helical channels with square cross sectio
K.dp = 1 and torsion 1.dj, spanning from 0 to 0.15.

n, constant curvature

The main feature in curved ducts is the secondavy. Near the
walls, the fluid is displaced inward due to the tcpetal force field
induced by the streamline curvature. Consideringidal ducts in
laminar regime the secondary flow is characteriagdwo counter
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rotating symmetrical cells. On the other hand felidal ducts, i.e.
non-null curvature and torsion, there are two ngmsaetrical

counter rotating cells which evolve to four where tReynolds
number increases. The non-null torsion present dlicdd ducts

introduces more complexity to the analysis as caath#o toroidal

ducts. One of the challenging aspects is the degmi of the

governing equations from a coordinate system. Taeksvof Wang

(1981) and Germano (1982) addresses the issuesafdbrdinate
system for circular cross section ducts. The forpreposes a non-
orthogonal coordinate system while the later usesoardinate

transformation to establish an orthogonal coordingtstem. The
torsion effect on the secondary flow is of firster accordingly to
Wang while it is of second order if one employs @@no’'s

coordinate system. Tutle (1990) reconciled theltexaf Wang and
Germano explaining that the differences arousetdube velocity

components calculated by distinct coordinate system

The effect of curvature and torsion on the fluidwfland heat
transfer in circular cross section pipes have Istedied by several
authors, among then, Kao (1987), Xie (1990), Hwand Chao
(1991), Liu and Masliyah (1993), Zabielski and M#41998), and
Hatzikonstantinou and Sakalis (2004). The workshefical ducts
with rectangular cross sections are more recentalybinal,
numerical and experimental works focusing on thigcat Reynolds
to flow bifurcations, the number of recirculatiorlls and the
increase on the friction factor and heat transéefficient in helical
ducts with rectangular cross section are foundanaBet al. (1992),
Chen and Jan, (1993), Bolinder and Sunden (199%)indier
(1996), Thonson et. al. (2001), Sakalis et al. 8J0ihd Chen et al.
(2006).

Despite of the recent efforts towards the flow ustinding in
helical ducts none of them deals with the flow pivaenon in the
presence of a free surface. This subject was ntetivay the recent
developments on the gas-liquid separators emplobgd the
petroleum industry (Rosa et al. 2001). Free surfedizal channel
flows are driven the gravity force but the chanmaurvature and
torsion develop a centrifugal force, tilt the irfiéee and shape the
flow velocity field. There is a large body of lisgure modeling
curved free surface channel’'s flow employing th@tHeaveraged
Navier Stokes equations proposed by Rodi (1993nwen (1993),
Meselhe (2000) and recently, Lu et al. (2004) te ai few. Albeit
this works, none of them deals with the simultaseeffect of
curvature and torsion on the flow. The objectiveha$ work is two-
fold: propose a simplified orthogonal set of thevida Stokes
equations for helical channels with rectangularssrsection and
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solve it for a free surface and fully developedaflemploying a
height of liquid method to capture the free surfposition.

Flow M odeling

The first consideration in flow modeling is the aw® of a
suitable coordinate system. The helical channelgesty a
development from a general curve in space descriyedR(s)
coinciding with the channel’s axial centerline:

R(9=x(9 1+ W9 I+ {3

where ‘s’ is the arclength along the curve anglk are unit vectors
in a fixed Cartesian coordinate system, see Fig\ Batural set of
orthogonal vectors along ‘s’ is the triadt(s),N(s and'B

corresponding to the tangential, normal and binbmumgdt vectors.

They are related to the curvature, and to the torsiort, by the
Frenet relationship (Hsu, 1969):

1)

=,y _dR 1dT

T(s)=—, N3==——, °~ XN
(=4 N9= 5 bF
(2
d—N=—KT+TB, —B=—TN.
ds ds

The present analysis applies to helical channekh ‘iked
diameter and pitch; i.e., channels with constantvature and
torsion. For an observer moving along §, is invariant but
N and B are rotating. The geometrical properties and the angle
with the horizontalg, are defined in terms of the helix’s radilR
and helix’s pitch 2b accordingly:

R b

K= ;T= ;oa =

RO+p? R+b

arcTa(1 t?/}?: arcTént k- 3

Also the helix arclength ‘s’ and the displacemengla ¢,
measured counter-clockwise, are related by:

S-S
JR +b

One natural choice for coordinate is the (s, XJ,9ystem where
s is the arclength of the channel’s centerline Wiigcalways parallel

to the vectorT and the x’ and y’ which lies in a plane orthogotual
the vectorT . The vector positiorf in terms of (s, X', y') is:

#(s) = (4)

r=R(s)+xi+y" (5)
where i’ and T rotate with respect ttN and B as one proceeds
along ‘s’ in such a way to undo the torsional dffesee Fig. 2.
Germano (1982) recognized that the plane (x'y’) hasarbitrary

origin, @y and proposed a compensation ang® to the torsional
effect such that:

o(s) = [tds+q,. (6)
So
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Equation (6) is known as Germano’s transformatiofhe
representation of the (x,y,z) and (X',y’,s) coo@tigs as well as the
rotating angley(s) are shown in Fig. 2.

The metric of the (s, X, y') coordinate systemsas from the
scalar product of the infinitesimal changes of position vectorT
and from the use of the Frenet relationships:

df [@r =[1- k(x'cod@(s) + gy ) - y'sin(@ls) + @ )| ds? +dx?+dy?(7)

The lack of cross products among the infinitesimal
displacements in Eqg. (7) reveals that the (8)x'coordinate
system is orthogonal. For the sake of convenielngewithout loss
of generality, it is considered thgf= = 0 so the scale factors, for
each orthogonal direction become:

R=1 f=1e h[ 4 '€ §nl)sk 'y das))]s @)

& N
b
2

Figure 2. Schematic representation of the axial cen
triad and the rotating coordinate system (s,x,y’)
transformation.

ter line, s, the Frenet
resulting from Germano’s

Tutle (1990) refers to this coordinate system axegentered.
Constant values of ‘s’ define an (x',y’) plane whiis orthogonal to
the axial flow direction. Due to the x’ and y’ rtitan, the channel
boundaries are not constant but ‘s’ dependent.sTiceessive cross
sections of the helical channel are mapped ongfxgy() system as
a twisted channel with an anglewith the horizontal, see schematic
representation in Fig. 3a and 3b. The necessamyrei’'s length to
rotate the cross section mf4 radians is7t/4).(1f) as indicated on
Fig. 3b.

The usefulness of Germano’s transformation liethencompact
representation of the transport equations dueemtthogonally of
the coordinate system. On the other hand it brovgsdisadvantage
for rectangular cross section ducts, the boundanpot invariant but
it continuously changes along ‘s’ as suggested lyy Bb. To
overcome this difficult one has to take two appmeadions. The first
deals with the area transformation between cootdindhe
relationship of the element of area between thesighy and
transformed planes is approximated by:

dx Tely' 0( dxCdy) OC oar) 9)

Equation (9) approximate the cross section areghenx',y’)
plane to the physical helical channel cross sedi@a projected by
the channel’s centerline inclination angle,This procedure is exact
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Modeling of Free Surface Flow in a Helical Channel with Finite Pitch

for toroidal channels but the bias increases withihcrease of the
torsion. Alves (2000) found a maximum deviationwesn areas of
2% for a series of helical channels with distingpect ratio,
curvature and torsion. The second approximatiorlsdedth the
twist rate. A direct comparison between the necgdsagth ‘s’ to
rotate the cross section bytand the hydraulic diameter of the
section, ¢, gives an estimate of how fast the twist anglengfes.

choosingd = w or u or v which represent the flow velociteeng
the s, X' and y’ directions, respectively. The déffon coefficient is
the dynamic liquid viscosity]T = W Source terms arise from
transport tensor due to the products of the deviesitof the scale
factors. Finally the pressure term exists onlylmt'y’ plane due to
the secondary flow currents. There is no presstadignt along the
‘s’ direction since this is a fully developed grgvidriven flow.

When the ratio #/(t.dy) >> 1 the channel has a slow twist rate, theTable 1 summarizes the substitutions for the massraomentum

flow changes slowly along ‘s’ direction in such aaywthat is
reasonable to assume fully developed flow, g¢ds = 0. Since the

flow is considered invariant along ‘s’ and centgrihe analysis in
cross sections wherg = (2T|/T).n (n=1, 2, 3,...) the scale factors

take the form,

h,=1+«ky , h= ph= 10 (20)
with the first and second order derivatives givgn b
0h5 = 0; ahs =K; % = -X"TK 2(0h5j:—'[|( E 0h5 =0
ox’' oy’ 0s os\ ox' os\ ay'
(11)

The form of the transport equations for a genesiéable § in
fully developed flow is:
ops) , 1 [0

9 (12)
h.h,h|ax

(nna)+ 2 Mg)} = s

where S’ are the source terms] and P’ represent the transport
tensor and the pressure terms,

I oo

h, 0x;

10P

X =pVo - and P = (13)

]

andTl is the diffusion coefficient.

s constant
surface

(b)

cross
section-|

liquid

Figure 3. Schematic representation of the helical c
plane or (x)y,z) coordinates, (b) transformed plane
coordinates.

hannel (a) physical
or ( Xy, s)

The mass conservation equatierset up substituting =1, =

S = P? =0 as well as formulae from Egs. (10) and (11 i&qg.
(12). Similarly the momentum transport equationg aet by
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equations.

For toroidal channels, i.e. null torsion, the seuterms of the
transport equations reduces to those presentechtayddd Sokhey
(1977). But for helical channels the influence ahmull torsion
appears on the momentum equation as source tesmkimg from
products of other variables with the helix torsigege Table 1 for
reference.

Numerical M ethod

The fully developed flow equations in conjunctiorithwthe
interface tracking method are embodied in the nigakcode. This
section briefs the particular features of the fulgveloped flow and
of the interface tracking models. It also depicke tsolution
algorithm, the boundary and initial condition aatiJast, presents a
grid test.

Usually fully developed flows are achieved numdhjcasing
forward-marching procedures from the inlet planestacessive
planes in the main flow direction until the flowoperties are
invariant along the axial direction. Clearly, thprocedure is
inefficient if one recognizes that in fully-devekxp flows the axial
convection and the diffusion are null. So, if thass flow or the
mean axial pressure gradient are specified, thatisol may be
obtained by performing calculations repeatedly fwa dimensional
grid along the (x,y’) plane. A detailed descriptiof the two-
dimensional grid has been provided by Madhav (19%2i in
essence the method calculates the axial pressadeegt iteratively
from overall continuity by means of a truncated moiof the
streamwise momentum equation.

The fully developed free surface flow has two digtished
features related to the axial momentum equatiois: driven by the
gravity and it has no pressure gradient. The woislds treated as a
scalar once it has no coupling with the pressumageand, for any
given grid node, w may change value on (x'y’) ltuis invariant
along ‘s’ direction. The secondary flow is deteretdnsolving the u
and v momentum equations coupled with the laten@ssure
gradients, —dp/dx’, —0p/dy . The mass conservation equation

reduces to u and v components but it has an &aitifilcass source
term due to the difference between the given axiass flow rate

and the resulting axial mass flow rami!,r, the last one calculated
from the w velocity field. The mass source terrdédined as:

SM = Mg - M. (14)
When the resulting mass flow rate is equal to thvergmass

flow rate the mass source vanishes and the w weldigld is
converged.
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Table 1. Terms of transport equations applied to fu
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lly developed flow.
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The free interface is captured using a height fonctmethod
which was originally proposed by Nichols and Hit973). They
extended the idea of interface marker particlesdbgting interface
points to points to a certain reference plane.imteface location is
then defined by its height or distance from themefice plane. The
major limitation is that it applies only to a sieghterface for each
vertical column of cells, i.e., it does not handialtiples interfaces
neither interface overturn. On the other hand & tne advantage of
tracking the interface using the mass conservatigmation rather
than obeying a kinematic condition. The method, ceéorth
denominated by height of liquid — HOL, is purelgetbraic, does

volumes with a finer mesh near the walls. The efee value to the

grid test was the averaged friction factEJ,, as defined by Eq. (20).

The test results are reported in Table 2. The wmifgrid is not so
sensitive on the mesh size and exhibits a deviatiorf, on 3%.

But the non-uniform grid, with the same 1375 volgmieas a 1.5%
deviation. The non-uniform grid is preferred forntanding less

computational effort without worsening tlﬁ estimate.

Table 2. Grid test.

not exhibit numerical diffusion, is extremely eféat in terms of
computer storage and is most suitable for modedingon-complex

Grid Number of Grid Aspect

free surfaces (Spalding, 1994; Mashayek and Ashij#ig4).

The relative importance of the surface tensionke tmodel is
accessed by the Bond number. Experimental evidesicew that
the interface is smooth and exhibits a curvaturégheforder of the
channel’'s hydraulic diameter. The ratio between ghavity and

surface tension forcespgdﬁ/o, gives Bo of 160 meaning a surface

x.y) Type Volumes Ratio fb

80x30 Uniform 2400 1.8 0.065

55x25 Uniform 1375 2.1 0.063
Non-

55x25 uniform 1375 not apply 0.064

tension force two orders of magnitude less thangtaity force.
Based on this estimate the effect of surface tensias neglected on
the HOL method.

This study employs a helical channel, with dimensidefined
in Table 3, for which experimental data is avaiablhe transport
equations are discretized employing the finite wwdu method
(Patankar, 1980) with a staggered grid and a hyxriteme for the
convective terms. The initial condition is a fladrlzontal interface
with w, u and v velocities initially set to T The no-slip
conditions are prescribed at the walls. At therfiate the velocity,
the shear and the normal stresses are intrinsicaliigfied by the
HOL method, as it treats the two fluids as singtage with step
changes on the fluid properties defined by therfate position. A
false transient method is used to advance the ricahesolution
with a constant time step of 0.005 second. At ¢adle step the
momentum and mass equations are solved for vedscitind
pressure, a new interface positioning is determibgdthe HOL
method and the mass source, Eq. (14), is evaludied. fully
developed flow is achieved when the source of nimdess than
0.0001. The computational procedure was set upirwRoenics-
CFD 2.0 software package and it is fully describedMorales
(2000).

A grid test was conducted to access the solutiositety on
the grid size. The test employed three grids: twifoum grids with
2400 and 1375 volumes and one non-uniform grid wiBv5
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Experimental Data

The interface position was experimentally determiirfer a
helical channel with size described in Table 3. Piteh is 114.9
mm while the centerline radiuR is 56.6 mm. The channel
curvature and torsion are shown in the fourth diftidl ¢olumns. The
centerline angle with horizontaky, is of 17.95 degrees. The
channel’ height, width and cross section area, ldnd A, as seen
on plane x'y’, are in the seventh to ninth columBmally the last
column shows the channel hydraulic radius definedthe ratio
between the cross section area ahd the channel perimeter,
2(H+d). A schematic view of the channel’s crosgisecon X'y’ and
xy plane is shown in Figure 4 to aid the undersitaod

The experimental measurements were taken at tlve degtion
after five complete turns, ot = 1800 degrees, downstream the
channel inlet to assure a fully developed flow. Has and liquid
phases were air and a solution of corn syrup anderwat
concentrations of 82% in volume exhibiting Newtaniaehavior.
The density and viscosity of the liquid phase wefe324 kg/ni
and 96 cP, respectively. The free surface positiaa measured for
a set of three runs with mass flow rates of 0.55,k9.98 kg/s and
1.57 kg/s. The observed flow regime in all runs Jasinar. The
fluid properties and the flow rates for runs #¥8®are in Table 4.
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Modeling of Free Surface Flow in a Helical Channel with Finite Pitch

Table 3. Channel’'s main dimensions.

2mb R K T a H d At Ric
(mm) (mm) (/m) (L/m) (degree) (mm) (mm) (mn?¥) (mm)
1149 56.5 16.04 5.19 17.95 109.28 24.10 2633.6 7 9.8
1.00 - T
[AN
A -
N e T T - -
H1 [ LA o
1 ~
q ht 1
1
000 Analytical result
1
| ---- Hess & Smith method
o X //
O L Present method R4
-1.00 1
200 -
‘ T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00

Figure 4 . Channel’s cross section and nomenclature

Table 4. Tests flow rates and fluid properties.

Mass flow rate Density Viscosity

Test # (kg/s) (kg/n?) (cP) Liquid Solution
1 0.55 1324.0 94.50 Syrup 82%
2 0.98 1324.0 96.70 Syrup 82%
3 1.57 1324.0 98.96 Syrup 82%

The experimentally determined free surface posiisoshown in
Figs 5 as a scatter plot. The experimental teclaigonployed a
parallel wire probe with a traverse mechanism spldice the probe.
The experimental data consist of liquid film heighaken along
radial positions having as reference the bottorthefchannel. The
uncertainty of the liquid height is up to 4 mm wiidn terms of
error bars, is equivalent to two minor ticks on yhecale of Fig. 5.
The uncertainties result from the probe positioningrobe
calibration procedure, changes in liquid electricahductivity due
to the ambient temperature variation and to then ceyrup
concentration. The experimental set up and the umeseent
technique are described in Alves (2000). The datalysis is
presented in the next section in conjunction witle humerical
results.

Results

Figure 5 compares the numerical estimates of therface
position against the experimental data for teststd@t1#3. The
experimental data display the interface climbing tuter wall due
to the centrifugal force induced by the streamlougvature. The
numerical estimates of the interface’s positiotofglthe same trend
within 2mm bias. The data agreement, bounded bgxperimental
uncertainty, gives support to the physical and migak
consistencies of the model.
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for the X'y’ and xy plane.
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Figure 5. Interface position : (a) Re = 353 & Fr = 1.15, (b) Re = 484 & Fr =
1.67 and (c) Re = 602 & Fr = 2.20. (__) numerical, (+++) experimental
(Alves, 2000), (- - -) mean interface tilt angle.

Knowing the interface position it is possible totetenine the
channel-flow properties listed in Table 5. The ldjtnoldup,¢, is
defined as the ratio between the cross section areapied by the
liquid, A, and the channel cross section arga,TAe liquid wetted
perimeter, B, is determined summing the wall lengths wettedhzy
liquid. The mean axial velocity, w the hydraulic radius, R and
the Reynolds and Froude channel’'s numbers are:

y 2
Wm: Min , R_':At[} ; Rg4mm’m[RH : Fr_Klem:
PLA (2 Pn H g
(15)
by ABCM October-December 2007, Vol. XXIX, No. 4 / 349



wherep andp refer to the liquid density and viscosity respesii.

As seen from Table 5, all listed channel-flow pndigs
increases as the mass flow rate increases. Ondeofrelevant
variables to channel’s design is the liquid holduiguid holdup of
unit defines, in terms of mass flow rate, the clelisnmaximum
capacity. The tests #1 to #3 disclose a steadgaser on the liquid
holdup from 18.7% to 76.9% when the mass flow ch@nged from
0.55 kg/s to 1.57 kg/s. Complementary, while thessnBiow rate
increased by a factor of 2.8 cross section areantddy the liquid
increased by a factor of 4.1 and the liquid mednoity by a factor
of 1.4. Therefore the channel's mass flow rate @sthy increased
by the increase on the liquid holdup rather thanhgyincrease on
the liquid mean velocity.

Table 5. Channel flow properties.

Mass ¢ W, P Ry
TeSt kals) () (i) (mm) (mm) & FT
1 0.55 18.7 0.84 66.0 7.47 3528 1.15
2 0.98 27.7 1.01 83.8 8.71 483.9 1.67
3 1.57 76.9 1.16 1055 9.72 601.6 2.20

The free surface is displaced outwardly due to dbmbined
action of the gravity and centrifugal force fieldBhe averaged

e e i

(b)

Figure 6. Axial velocity field and secondary flow f

The secondary current affects substantially thenebhifriction
factor. The local wall shear stress is evaluataderically by:

(16)
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interface’s tilt angle with the horizontal is eséited taking the arc
tangent of the Froude number. For tests #1 to #8etlvalues are,
respectively, of 49, 59 and 66 degrees which cjosgpresent the
averaged tendency of the numerical data, see dédislesdn Fig. 5.

The axial velocity field and the secondary flowcta plot are
shown in Fig. 6. The maximum axial velocity happeesr the air-
liquid interface but shifted outwardly due to thentrifugal force
action on the liquid body. From a qualitative paifitview this is a
distinguished feature as compared with open chaftmes without
curvature. Close to the interface the gradienhefaxial velocity is
normal to the interface due to the viscosity défere between the
liquid and the air. The curves of constant axialowity nearly
follow the channel’s boundaries but, surprisinghpegh, they show
a local maximum located at the midpoint nearly abtive bottom
wall. This low shear region also coincides with tenter of the
main secondary flow cell. The same feature is &smd for flows
in closed helical ducts, Bolinder and Sunden (19Bgure 6 shows
the secondary currents exhibiting two non-symmatricounter
rotating recirculation cells. The cells are one@m of the other. The
lower one covers a greater area as compared véthgper one. The
clockwise direction of the lower cell is due théi@aae of the pressure
gradient on the liquid near the lower wall whiclejrig retarded due
to the viscous forces, do not have enough inestieounter-balance
the pressure gradient and is driven inward. Thesupgll, driven by
the lower cell, rotates counter-clockwise.

Wwim/s)

ield; (@) Re =353 & Fr=1.15, (b) Re =484 & Fr = 1.67 and (c) Re = 602 & Fr = 2.20.

TW
0.50p, w, 2

an

The local friction factor along each channel’'s wad in Fig. 7.
For referencing purposes the figure inset iderstifiee channel's
walls. The local friction factor exhibits two geaécharacteristics:

whered is the distance to the wall of the first grid naat§acent to null at the channel's corners and inversely prdpodl to the
the wall and w and v, are, respectively, the axial and the secondarfzeynolds number. The local friction factor for timeer wall is null
velocities of the first node adjacent to the wallse local wall shear at the corner and then increases as the distamicetfre inner corner

is conveniently expressed as a local friction faétwy Eq. (17): increases up to a x distance about 12 mm becaissis tloughly the
maximum wetted extension along inner wall, see Figrhe friction

factor's growing rate does not change substantialtyen the
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Reynolds almost doubles from 353 to 601. At dlger wall the
friction factor has a fast growing rate at posisosway from the
corner. At distances greater than 8 mm from theeoit achieves
an almost constant value. Further out from the eoitrthen exhibits
a falling tendency as the liquid-air interface ppeoached. Finally
the local friction factor at théower wall has a minimum near the
corner regions, y<1mm and y>23mm and a maximum tieamid
distance coinciding with the lower secondary celiter.

The mean friction factorfyy, , is defined by weight-average
procedure of the local friction factor along thetied perimeter:

Pm
jfw.
0

. 1

(18)

Equation (18) requires detailed information regagdithe
velocity field and the wall distance to compute tbeal friction
factor. There is though a less troublesome way&uate the mean
friction factor. Since the fully developed flow igertia free the
mean shear force is balanced by the liquid weight:

Tw (P = p [y CSire (& OA, (19)

where Ty, represents the mean shear stress acting on theallsa
wetted perimeter. From Eq. (19) is possible to expm in terms

of mean friction factorfp , which turns to be:

— _ 2 DeAt Og OSina)
fp = 5 .
Fm Bvm

(20)

Equation (20) is readily evaluated employing theeraged
channel-flow properties given in Table 5. A strafghward
comparison between the procedures stated by Eq.ddé (20)
exhibits a maximum deviation of 1% as shown in €abl The
satisfactory agreement between the two procedwassures the
model consistency because the same averaged rrigsictor is
achieved using two distinct procedures: one basedoocal flow
field information while the other supported by aged flow
properties.
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Figure 7. Local wall friction factor along the inne  r, outer and lower walls

for tests #1, #2 and #3.
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Table 6. Friction factors.
Test g fm f fm=Tb 400
# € m b n
b
1 352.8 0.0628 0.0635 -1.0
2 483.9 0.0506 0.0511 -1.0
3 601.6 0.0439 0.0438 +0.2
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Despite of the small deviation betweés, and fp the later is

preferred because it comes from averaged flow ptiggewhich are
less prone to oscillations than first order derxegt which are the

basis to evaluatgy .
The friction factor augmentation due to curvatunel d@orsion
effects is assessed comparin‘@ against the friction factor

occurring in a laminar, fully developed straightaohel flow with
square cross section, fs = 14.22/Re (White 1986%ehes of 16
runs with distinct mass flow rates was conducted rémder

Rigoberto E. M. Morales and Eugénio S. Rosa

experimental data of the free surface position lapdhe averaged
friction factor estimates.

The numerical data disclosed the free surface’stipnsthe
axial velocity field, the secondary flow currentsdathe friction
factor. The channel’s flow capacity is directly @sated with the
liquid holdup, i.e., an increase on the flow rateuwd increase the
liquid holdup. The centrifugal force field displac¢he body of
liquid, within the channel's cross section, outwgrdThe free
surface’s tilt angle increases as the channel'sidfedncrease and,
for the present tests, its averaged value ranged 49 to 66 degrees
with the horizontal. The axial velocity field hasreaximum at the

numerical values o% Ifs . The results, shown in Fig. 8, exhibit thefree surface but shifted outwardly due to the dfrgal field. Close

ratio %/fs growing monotonically with Re. Furthermore, tlifeet

of curvature and torsion enhances the frictiondiably a factor of
1.3 for Reynolds number as low as 200 and attaitoffeof 2.3 for
Reynolds number of 1200.

The friction factor ratio is also compared agaitiet Bolinder
(1995) correlation for forced flow in helical pip&€his correlation
resulted from numerical laminar flow simulationsairtlosed helical
channel employing a non-orthogonal coordinate systeholds for
4KkRy < 0.4 and Re < 600 with the definitions of Bnd Re given in
Eq. (15). Even though Bolinder’s correlation does account for
the asymmetries due to the outward displacemethiecfree surface,
the results matches the present work estimatesinwiPo. This
evidence supports once more the reliability of tieysical and
numerical models developed.
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Conclusion

A numerical model is developed to simulate theyfdiéveloped
flow in laminar regime occurring in a helical chahmwith a free
surface. The transport equations are written for cathogonal
coordinate system using Germano’'s (1982) transfooma The
cross sections of the helical channel are mappta dnccessive
cross sections of a twisted channel with the sanggeawith the
horizontal. To enforce the fully developed condititne twist angle
has to change slowly with the axial position av(2dy) >>1. The
interface position was numerically determined emiplg a height
method based on mass conservation for interfacéutgapThe
transport equation set was solved using the fistame method for
a single slab of cells. The consistencies of thgsighl modeling
and of the numerical procedures are favorably abecigainst

352 / Vol. XXIX, No. 4, October-December 2007

to the interface the axial velocity gradient ismat to the interface
due to the viscosity difference between the liqaidi the air. The
secondary flow has two recirculation cells. Therot&'s curvature
and torsion have a strong effect on the averagdetiofn factor. For
Reynolds spanning from 200 up to 1200 the aver&gsdn factor

is of 1.3 to 2.3 times greater than the frictioctéa found in an
equivalent straight channel.
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