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Prebuckling Enhancement of Beams 
and Plates under Uncertain Loadings 
and Arbitrary Initial Imperfections 
Crooked beams and plates with arbitrary initial geometric imperfections are optimized in 
order to improve their prebuckling response in the presence of uncertain loadings. A novel 
optimization approach is presented to simultaneously handle the two types of 
uncertainties: arbitrary initial imperfection patterns and arbitrary loadings. A remarkable 
improvement in the prebuckling response of optimal designs is achieved by reducing the 
level of prebuckling displacements measured in some appropriate norm, irrespective of the 
uncertain imperfection pattern or loading. Two different norms are proposed, each one 
applicable to the beam or to the plate problem. The definitions of appropriate norms allow 
for the use of a minimax optimization approach that can consider the arbitrariness of both 
geometric imperfections and loadings. It is shown that the minimax procedure leads to 
optimum structural designs, in terms of optimal stiffness distribution, that are at the same 
time insensitive to perturbations in the loading space and to the pattern of initial 
imperfections in structure. 
Keywords: optimization, uncertainty, convex modeling 

Introduction 
1Real structures are not free of shape imperfections; a beam is 

slightly crooked, plates are not perfectly flat and shells exhibit 
similar deviations. In linear elastic analyses these imperfections (of 
small magnitude if compared to other dimensions of the structure) 
do not play a decisive role and can be neglected without detriment 
to the results. However, the shape imperfection effect is remarkable 
with respect to nonlinear stability theories. 

Today it is a well-known fact that initial geometric 
imperfections can knock down the critical buckling loads of 
structures which possess a downwards secondary equilibrium path 
departing from the critical point (Koiter, 1945; Thompson and Hunt, 
1973; Brush and Almroth, 1975; Roorda, 1986). Even when the post 
buckling equilibrium path does not turn downwards, as is the case 
with beams and plates, it is often required that initially imperfect 
structures remain as flat or undisturbed as possible under the 
application of in-plane loadings. Initial imperfections do not 
diminish the critical buckling load of beams or plates. However, in-
plane compressive forces do magnify their effects and can possibly 
impair the overall behavior of the structure. As an example, skin 
panels comprising a control surface in an airplane should not present 
significant out-of-plane displacements when subjected to operation 
loadings not to compromise its aerodynamical performance. 

Quantification of the initial imperfection effects in structures has 
been done (Adali, Richter and Verijenko, 1997; Hansen and Roorda, 
1974; Tennyson, Chan and Muggeridge, 1971). These investigations 
were of utmost importance because real structures always present 
some level of imperfections due to fabrication. The difficulty is then 
to assess the imperfection patterns since some initial imperfections 
can be more harmful than others. Moreover, real structures are 
subjected to several load cases during operation and a particular 
imperfection pattern that is irrelevant for one load case may be highly 
relevant to another one. Hence, it is important to be able to predict not 
only the possible imperfection patterns but also to assess how each 
load case magnifies the effect of each imperfection pattern. 

In this work an optimization procedure is proposed to improve the 
prebuckling response of crooked beams and plates with arbitrary 
initial geometric imperfections. Firstly, the crooked beam is presented 
to pose the problem in terms of formulation, applicable norms of 
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prebuckling displacement and the maximization strategy proposed. 
The initial imperfection pattern is not known beforehand what 
complicates the optimization problem since one particular optimal 
design good for one type of imperfection may be bad for another one. 
The beam is acted upon by a compressive axial force denoted λ0 and 
this is assumed to be the only applied load. From the governing 
equilibrium equations a procedure is proposed to handle the probable 
multiplicity of admissible imperfection patterns. Therefore, the beam 
problem is convenient as an introductory problem because of the 
simplification of admitting only one load case. 

A plate with initial imperfections is the second model problem 
examined in this article. In this case three types of loadings are 
admissible: uniform normal loading in the x direction, uniform 
normal loading in the y direction, and uniform shear. Moreover, 
these three loadings may be applied individually or as a convex 
combination. For instance, 30% normal loading in the x direction, 
20% normal loading in the y direction, and 50% shear loading. An 
optimization strategy is proposed where load ratios (0.3, 0.2 and 
0.5) are variable but somehow limited by a constraint relationship. 
The initial imperfection pattern is not determined beforehand and 
the multiplicity of admissible loads (arbitrary convex combinations) 
only adds to the level of uncertainty involved. Nevertheless, it is 
shown that neither the variability of the load ratios nor the 
uncertainty related to the initial imperfections impede the 
optimization procedure from being highly efficient. Direct extension 
of the three load case problem is easily envisioned in order to 
accommodate virtually any number of load cases that might be of 
interest or necessity from the designer's point of view. 

Beam Problem Formulation 

Consider a simply supported crooked beam as shown in Fig. 1a 
where w*(x) is the imperfection pattern. It should be clear that the 
initial imperfections are exaggerated only to facilitate visualization. 
After a compressive load λ0 is applied the beam develops out-of-
plane displacements w(x) as illustrated in Fig. 1b. The total potential 
energy Π associated with the beam can be written as (de Faria and 
Almeida, 1999): 

2 2 *0
11 , , 0 , ,0 0 0

1
,

2 2

L L L

xx x x xD w dx w dx w w dx
λ λΠ = − −∫ ∫ ∫  (1) 
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where D11 is the bending stiffness of the beam that can be used in 
the case of composite beams (assuming that the laminate is 
symmetric) (de Faria and Almeida, 1999). Equation (1) is the basis 
for a finite element discretization of the beam model. The global 
finite element matrix equations are 

*
0)( qKqKK GGi λλ =−  (2) 

where K is the global stiffness matrix, KG is the global geometric 
stiffness matrix, q is the global vector of displacements and q* is the 
global vector of initial imperfections. It is clear that K and KG

correspond respectively to the first and second terms in Eq. (1). 
Matrix K depends of the thickness distribution of the beam and is 
independent of λ0. On the other hand, matrix KG is independent of 
both thickness distribution and λ0. Notice that if w*(x) is available 
analytically, then it must be transformed into vector q* through use 
of the element interpolation functions. 

Figure 1. Crooked beam.  

Solution of Eq. (2) yields vector q. Moreover, the critical 
buckling load associated with the perfectly straight beam can also be 
obtained from Eq. (2) making q* = 0. This leads to the 
eigenproblem in Eq. (3) whose eigenpairs (buckling load, buckling 
mode) are (λi, φφφφi), i = 1, 2, …, n, n being the total number of degrees 
of freedom in the finite element model. 

0φKK =− iGi )( λ  (3)  

Insight into the issue of a suitable norm for prebuckling 
displacements can be gained if q and q* are spanned in the basis of 
buckling modes such that 
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where ai and bi are coefficients that can be computed noticing that 
the buckling modes are mutually orthogonal with respect to both K
and KG. Hence, substitution of Eq. (4) into (2) leads to 
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The issue of prebuckling enhancement requires the proposal of a 
norm to measure pre-buckling displacement. The prebuckling 
displacements depend on λ0, however, let us λ0 for a moment and 
return to this issue shortly. A possible norm consists in choosing one 
particular point on the beam and selecting the magnitude of its 
transverse displacement as a norm. This, however, can be 
misleading. For instance, suppose that the mid point of the beam is 
elected but the imperfection pattern is such that it matches exactly 
the second buckling mode of the simply supported beam. Assuming 
a constant thickness beam, from Eq. (5) it is concluded that, in this 
case w*(x) = sin(2πx/L),  a1 = 0, a2 ≠ 0, a3 = a4 = … = 0. 

Moreover, from Eq. (5), q = a2φφφφ2, showing that the solution 
vector matches the second buckling mode which, in turn, has zero 
transverse displacement at the beam mid point. 

A more comprehensive norm would be one that considers all 
response coefficients ai simultaneously. This norm can be proposed 
as the maximum of all |ai| for all i = 1, …, n such that 

max .i
i

a=q (6)  

The norm defined in Eq. (6) makes sense as long as the 
imperfection vector q* is unique, i.e., if the imperfection pattern is 
known. However, that is not generally the case in real applications. 
Usually there is uncertainty associated with q*. Suppose that there 
may exist m (m < n) possible imperfection patterns q1*, q2*, ..., qm* 
that exist individually or as a convex combination of the form 

*

1

,
m

j j
j

ξ
=

=∑*q q (7)  

where  ξ1, ξ2, ..., ξm are arbitrary coefficients that satisfy 

1

1.
m

j
j

ξ
=

=∑ (8)  

The magnitude of the admissible imperfection patterns q1*, q2*, 
..., qm* has an influence on the overall imperfection q*. Therefore, 
their magnitudes should not be too dispair. One way of guaranteeing 
equivalent magnitudes among q1*, q2*, ..., qm* is to make them 
equal to the buckling modes normalized with respect to the 
geometric stiffness matrix KG. Notice that m can be (and usually is) 
much smaller than n. Hence, the number of buckling modes used to 
represent the admissible imperfection patterns (m) is much smaller 
than the finite element model dimension (n). 

In general, assume that the imperfection patterns are spanned by 
the buckling modes normalized with respect to matrix KG such that 

∑
=

=
n

i
iijj b

1
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and, accordingly, the displacement vectors are 
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where, following Eq. (5), 
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The “max” norm proposed in Eq. (6) must therefore be 
expanded to max |aij| for all i = 1, …, n and for all j = 1, …, m. The 
following obvious inequality holds: 

,
max    1,  ...,     1,  ...,  .ij kl

i j
a a k n l m≥ = =  (12)  

Equation (12) can be multiplied by the positive number |ξj| and 
summed up to yield 
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where Eq. (8) has been employed. Notice that other relations 
involving the ξj's in Eq. (8) are also applicable. One could, for 
instance, adopt 2

1
1

m

jj
ξ

=
=∑ . 

Since Eq. (13) is valid for all k = 1,…, n, it is particularly valid for 

,
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Considering now an imperfection of the form given in Eq. (7), 
its associated displacement vector is 
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Equations (15), (6) and (14) yield 

,
m ax .ij

i j
a≤q (16)  

where q is a function of arbitrary ξj's as given by Eq. (15). 
Equation (16) states that ||q|| is less or equal to max |aij|, even 

when an uncertain, arbitrary imperfection pattern of the form given 
in Eq. (7) exists. The equality sign in Eq. (16) holds when ξj = 1 and 
ξ1 = … = ξj-1 = ξj+1 = … = ξm = 0. Therefore, from Eq. (16), 

1 ,..., ,
max max .

m
ij

i j
a

ξ ξ
≤q  (17)  

The conclusion reached in Eq. (17) can be used to advantage in 
an optimization procedure. Consider the problem of minimizing the 
prebuckling displacements of a crooked beam with constant mass 
where the imperfection patterns on that beam are uncertain. This 
uncertainty is reflected in the fact that there are m admissible 
imperfection patterns q1*, q2*, ..., qm* that may be applied 
separately or as a convex combination expressed in Eq. (7) with 
arbitrary ξ1, ξ2, ..., ξm that satisfy Eq. (8) or another equivalent 
constraint. This problem can be formulated as 

1 ,...,
min max

mξ ξh
q (18)  

where h is a vector describing the thickness distribution. Within the 
finite element context h is the vector of nodal thicknesses. 
Expression (18) is a minimax problem (Demjanov and Malozemov, 
1972). It provides simultaneously the best possible design against 
the worst possible combination of imperfection patterns. 

In expression (18) a tremendous advantage has been gained 
from the fact that Eq. (17) holds. Actually, notice that expression 
(18) can be re-stated as 

1 ,..., ,
min max min max

m
ij

i j
a

ξ ξ
=

h h
q  (19)  

Thus, the problem of maximizing ||q|| with respect to ξ1, …, ξm

can be replaced by the problem of finding the maximum |aij|, which 
is considerably simpler. A systematic procedure to find max |aij| 
consists in, firstly extracting all the eigenpairs of the buckling 
problem stated in Eq. (3) and secondly computing all the aij from 
Eq. (5). Usually, obtaining all the eigenpairs of the buckling 
problem is not feasible. It is more practical to obtain a few buckling 
loads and modes corresponding to the lowest |λi|. The absolute value 
of λi is redundant in the beam problem since both the stiffness K
and geometric stiffness KG matrices are positive definite, which is 
easily inferred from their definitions in Eqs. (1) and (2). However, 
as will be shown in the plate case, negative eigenvalues may be 
present in the analysis. 

The applied compressive loading λ0 has been kept fixed up to 
now. The question of how the variation of λ0 affects the proposed 
strategy can be elucidated if a graph of Eq. (5) is investigated. This is 
illustrated in Fig. 2 where a monotonically increasing function can 
be seen in the interval [0,1]. Hence, if λ0 is decreased, it is certain that 
|aij| also decreases for 0 > λ0 < λi. It is interesting to notice that, when 
λ0 < 0, |aij| < |bij|, no matter how large |λ0| is. Physically it means that 
traction forces tend to alleviate the effect of initial imperfections. 

Plate Problem Formulation 

Consider a simply supported plate as shown in Fig. 3. Three 
types of loadings are applied to the plate: uniform normal loading 
in the x direction, uniform normal loading in the y direction, and 
uniform shear. These loadings are described in terms of two 
parameters: loading parameters denoted by R and a magnitude 
parameter denoted by λ0. Different combinations of loading 
parameters may be applied indicating that there is uncertainty in the 
applied loadings. However, a constraint among them exists, namely, 

1.xx yy xyR R R+ + =  (20)  

Figure 2. Response coefficients and variable loading.  
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Figure 3. Plate with eligible loadings.  

After a prebuckling load λ0 is applied the plate develops out-of-
plane displacements w(x). The total potential energy Π associated 
with the beam can be written as (Brush and Almroth, 1975): 
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where the entries Dij correspond to bending stiffnesses of a laminate 
plate, admitting a symmetric laminate (Daniel and Ishai, 2006). The 
global finite element matrices are therefore 

*
00 )( qKqKK GG λλ =−  (22)  

where 

GxyxyGyyyyGxxxxG RRR KKKK ++=  (23)  

and the geometric stiffness matrices KGxx, KGyy, KGxy are related to 
terms 2 2

, , , ,,  ,  2x y x yw d w d w w dΩ Ω Ω∫ ∫ ∫ , respectively. 

Unlike the beam problem, a norm based on the coefficients aij, 
buckling loads λi and the buckling modes φφφφi is not convenient 
because it cannot be proved that a strong property given by Eq. (16) 
holds for all combinations of Rxx, Ryy, Rxy. An alternative norm to 
measure the prebuckling displacements is proposed as 

qKKqq )(
2

1
|||| 0 G

T λ−=  (24)  

Notice that the norm defined in Eq. (24) satisfies the condition 
that it must be positive, provided K – λ0KG is positive definite, what 
is always true if buckling has not occurred. This last claim may not 
seem so trivial because KG may be indefinite. As a matter of fact, 
when shear loadings are applied, KG is indefinite. A proof of this 
claim can be found in the work of de Faria and Almeida (2006). 

The goal now is to prove that the norm defined in Eq. (24) is 
concave with respect to variations in the loading parameters. This 
can be done through a perturbation technique. When small 
perturbations δRxx, δRyy, δRxy are imposed on the loading parameters 
the norm in Eq. (24) is also perturbed as in 
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where 

GxyxyGyyyyGxxxxG RRR KKKK δδδδ ++=  (26)  

In order to investigate the concavity of ||q|| it is important to 
study the sign of its second variation δ²||q||. Thus, collecting second 
order terms in Eq. (25), 
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Simplification to Eq. (25) is obtained considering the 
perturbation of Eq. (22) that is 
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Equation (28) can be split into zero, first, second, etc. order 
terms as in 
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Substitution of the second order term of Eq. (29) into (27) leads to 

qKKqq δλδδ )(
2

1
|||| 0

2
G

T −=  (30)  

The right hand side of Eq. (30) is positive if λ0 is below the 
buckling load. Hence, δ²||q|| > 0. Since ||q|| is concave with respect 
to the loading parameters, maximization of ||q|| with respect to Rxx, 
Ryy, Rxy subjected to Eq. (20) is easily accomplished. It is sufficient 
to check, one at time, six load cases: (i) Rxx  = 1 and Ryy = Rxy = 0, 
(ii) Rxx = – 1 and Ryy = Rxy = 0, (iii) Ryy = 1 and Rxx = Rxy = 0, (iv) Ryy

= – 1 and Rxx  = Rxy  = 0, (v) Rxy  = 1 and Rxx = Ryy  = 0, and (vi) Rxy = 
– 1 and Rxx = Ryy = 0. Actually, cases (ii) and (iv) do not have to be 
checked because KGxx and KGyy are both positive definite. 
Moreover, if an isotropic plate is considered, cases (v) and (vi) 
possess exactly the same eigenvalues. The highest ||q|| among cases 
(i), (iii) and (v) is the overall norm. Any convex combination of 
loading parameters is guaranteed to have a smaller norm. 

The optimization problem posed is 

1 ,..., , , ,
min max

m xx yy xyR R Rξ ξh
q  (31)  

where the “max” part of the above expression is until here only 
partially solved since it was shown that ||q|| is concave with respect 
to the loading parameters. However, it remains to investigate what is 
the worst possible combination of ξ1, ξ2, ... ξm. In order to do it, 
assume that Rxx, Ryy, Rxy are fixed and the uncertain imperfection 
pattern is given by Eq. (7). 
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Moreover, the imperfection vector qj* is given by Eq. (9), and 
the associated displacements by Eq. (10). Substitution of Eqs. (7), 
(9) and (10) into Eq. (24) yields 
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Simplification of Eq. (32) can be done recalling the 
orthogonality of φφφφi. Notice, however, that KG may be indefinite what 
leads to negative eigenvalues in the buckling problem. The 
orthogonalization relations are 
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where 
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Substitution of Eq. (33) into Eq. (32) results in 
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Equation (35) can be recast into a more convenient form if two 
vectors are defined: 
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where T
iii aaC =  and ∑ =
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n

i ii1 0 CC λλ . Notice that Ci is 

symmetric and positive definite and so is C. The relationship 
involving ξ1, ..., ξm is given by Eq. (8). Since C is positive definite it 
is certain that the norm expressed in Eq. (37) is a concave with 
respect to ξξξξ. Hence, the maximum value of ||q|| subjected to Eq. (8) 
is exactly the maximum value among the entries of C in its principal 
diagonal. This can also be mathematically argued. The positive 
definiteness of C allows one to write 

0)()( ≥−− i
T
i

T eξCeξ  (38)  

where ei is the vector with ith component equal to unity and all the 
others zero. Considering that |ξi| > ξi, Eq. (38) can be multiplied by 
ξi to yield 
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T
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T
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where cii is the ith term of the principal diagonal of C. Summing up 
Eqs. (39), recognizing that ξξξξ = Σξi ei, cii > 0 and using (8), 
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where cMM is the maximum of all cii, for i = 1; …, m. 
The optimization procedure in the plate case is: 

• Solve three buckling problems 0φKK =− iGi )( λ associated with 

loading parameters labelled as cases (i), (iii) and (v); 
• for each of these three cases find the prebuckling displacement 

vectors from *)( jGijGi qKqKK λλ =−  and related aij; 

• form matrices Ci, C and obtain cMM; 
• among the three cMM's obtained, the largest one is taken as ||q||. 

Subsequently, proceed with the “min" part of the problem. A 
word of caution is worth giving regarding the “min" optimization 
problem: a method based on gradients is not recommended because 
the objective function involved comes from a maximization problem 
and, therefore, its derivatives may be highly discontinuous what 
leads to serious convergence difficulties. Therefore, the numerical 
optimization method selected to solve the “min" problem in this 
work is the Powell's method (Powell, 1964). 

The question of whether the norm defined in Eq. (24) increases 
or decreases with λ0 can be answered by taking its first derivative: 
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where, in view of Eq. (2), 
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Substituting Eq. (42) into (41), 
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Numerical Examples 

The numerical examples intend to compare the prebuckling 
behavior of a variable thickness beam and a variable thickness plate 
before and after optimization. They also provide some ideas for 
code implementation and the give a few details on the numerical 
methods and elements used to solve the structural problems. In all 
examples presented the optimization procedure is carried out in two 
steps: 50,000 random designs are generated and the best one is 
selected as the starting point for a Powell's search. 
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The Beam Example 

Consider a beam that has variable thickness and an arbitrary 
number of elements. Figure 4 illustrates such a beam modeled with 
eight elements, nine nodes and piecewise linear thickness 
distribution. The thicknesses need not to be defined at every node. 
In Fig. 4 they are defined at nodes 1, 3, 5, 7 and 9. Thicknesses at 
nodes 2, 4, 6 and 8 are obtained through linear interpolation of t1

and t2, t2 and t3, t3 and t4, and t4 and t5, respectively. 

Figure 4. Variable thickness beam.  

The element used is the traditional Euler-Bernoulli beam element 
with two nodes, two degrees of freedom per node, rectangular cross 
section and Hermite cubics as interpolation functions. Since the 
thickness varies within the element, the expression for the stiffness 
matrix must be integrated keeping that in mind. Assuming an element 
with length le, thickness t1 in node 1, thickness t2 in node 2 and made 
of a material with Young modulus E, the expression for its stiffness 
and geometric stiffness matrices are 
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 (44)  

It can be seen from Eq. (44) that KGe does not depend on the 
element thickness as expected. The imperfection pattern selected in 
the simulations correspond to the buckling modes of the simply 
supported uniform beam, i.e., 
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 (45)  

The number of imperfection patterns is arbitrarily selected to 5 
(m = 5) whereas 25 eigenpairs (n = 25) are extracted using the 
Lanczos algorithm (de Faria, 2005). The beam is discretized using 
40 equal length elements and 9 thicknesses defined at nodes 1, 6, 11, 
16, 21, 26, 31, 36, 41. 

The optimization problem considers a constant mass constraint 
where the total constant mass is the mass of a uniform beam with L = 1 
m, E = 70 GPa and t = 1 mm. This beam has a buckling load of λ0 = 
57.5727 N/m. Another constraint is added to the problem in order to 
avoid buckling loads smaller than λ0 = 57.5727 N/m, otherwise optimal 
designs with excellent performance against initial imperfections but very 
low buckling loads could be obtained. The applied compressive loading 
is taken as 95% of λ0, that is, 54.694 N/m. 

Table 1 presents the uniform design and the optimal design 
obtained. It is observed that not only the maximum |aij| decreased 
but also the buckling load increased. Actually, in can be seen from 
Eq. (11) that higher λi tend to decrease aij. Figure 5 gives an idea of 
the improvement achieved by comparing the uniform design against 
the optimal design. 

The Plate Example 

Consider a plate with variable thickness as illustrated in Fig. 
6.In a similar procedure used to describe the thickness distribution 
in the 1D beam problem, the plate thickness distribution is 
piecewise linear in 2D, i.e., the thicknesses at a few nodes are 
specified and the thickness at the other nodes are obtained through 
interpolation of using the bilinear shape functions
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 (46)

Table 1. Beam optimization. 

thickness (mm) design 
t1 t2 t3 t4 t5 t6 t7 t8 t9

λ1(N/m)
ijaji,max

uniform 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 57.5727 59.6 

optimal 0.27 0.90 1.09 1.25 1.25 1.25 1.09 0.90 0.27 80.1951 6.55 
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Figure 5. Uniform and optimal beam designs.  

Figure 6. Representative variable thickness plate. 

The finite element model employs Lagrange biquadratic 
elements with 9 nodes. The element formulation follows the 
Mindlin plate theory where each node has three degrees of freedom: 
one transverse displacement and two rotations. This element is 
prone to shear locking but in the present simulations this undesirable 
drawback has not been observed. Moreover, it can be conveniently 
avoided by reduced selective integration schemes if necessary. 

The integrations required at the element level to form Ke and 
KGe are done numerically through Gaussian quadrature with 3 points 
in each local coordinate direction (ξ and η), summing up to nine 
integration stations. 

The imperfection patterns are assumed to be sinusoidal and of 
the form 
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where a and b are the simply supported plate sides measured along x
and y respectively. In the plate example a = 1.0 m and b = 1.5 m. A 
total of 32 eigenpairs are extracted. The thickness is defined at 15 
stations, with 3 equally spaced stations in the x directions and 5 

equally spaced in the y direction. However, 4 elements are used 
along x and 8 along y. Figure 7 shows the stations where the 15 
thicknesses have been defined and the 4 × 8 mesh. Comparison 
against the 8 × 16 mesh shows that the 4 × 8 mesh delivers accurate 
results. The optimization problem considers a constant mass 
constraint where the total constant mass is the mass of a uniform 
plate with E = 70 GPa and t = 5 mm. 

Figure 7. Plate thickness stations and mesh. 

The question of selecting a suitable λ0 is arbitrary. In the case of 
the simulations λ0 is taken to be the least of the three buckling loads of 
the uniform plate when subjected to individual loadings Rxx = 1, Ryy = 
1 and Rxy = 1. As in the beam example, an additional constraint is 
imposed to avoid designs that possess buckling loads smaller than λ0. 

Table 2 presents the uniform design and the optimal design 
obtained. The uniform plate has the least buckling load of 16.5 
kN/m associated with Rxx = 1. Therefore, λ0 = 16.5 kN/m. It is 
observed that not only the maximum ||q|| dramatically decreased but 
also the buckling load slightly increased. Moreover, the least ¸λ1 is 
no more associated with Rxx = 1 as in the uniform plate design but 
with Ryy = 1. This is evidence that the multiplicity of admissible 
loadings must be incorporated in the optimization search. 

The optimal design is one that has no planes of symmetry 
(except the xy plane). If optimal designs with planes of symmetry 
are required for aesthetic or functional reasons then it is necessary to 
impose this condition in the optimization search. Interesting to 
notice that the beam optimal design possesses symmetry but not the 
plate optimal design. 

Table 2. Plate optimization. 

thickness (mm) 
t1 t2 t3 t4 t5

t6 t7 t8 t9 t10

design 

t11 t12 t13 t14 t15

λ1xx

(kN/m)
λ1yy

(kN/m)
λ1xy

(kN/m)
max q

5.0 5.0 5.0 5.0 5.0 
5.0 5.0 5.0 5.0 5.0 

uniform 

5.0 5.0 5.0 5.0 5.0 

16.5 34.3 56.4 1.3 × 107

7.30 0.84 4.08 0.44 5.45 
2.13 3.15 13.9 6.05 4.41 

optimal 

4.00 2.03 2.53 1.99 10.5 

21.3 17.2 49.5 6.8 × 105
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Figure 8 gives an idea of the improvement achieved by comparing 
the uniform design against the optimal design. The horizontal axis is 
normalized by the norm associated with the uniform design 
presented in Tab. 2 of 1.3 × 107 whereas the applied load is 
normalized by the λ1xx of the uniform plate. In fact, the 
computations presented in Fig. 8 were conducted up to 95% of λ1xx. 
A remarkable prebuckling enhancement can be observed since the 
equilibrium path of the optimal plate is as close to the vertical axis 
as it can get without violating the constraint on λ1. 

Figure 8. Uniform and optimal plate designs.  

Comments and Conclusions 

Two norms were proposed to measure the quality of prebuckling 
response of beams and plates. It was shown that the first norm, 
given by Eq. (6), is suitable for situations where only one load case 
is of interest. Since this is not a common situation encountered in 
practical applications, a second norm was proposed as in Eq. (24). It 
was further proven that both norms possess the physically intuitive 
property that they increase monotonically with the applied loadings. 

In addition to the load case multiplicity, the realistic situation of 
multiple and usually unknown initial imperfection patterns is 
addressed. This multiplicity is represented mathematically through a 
convex combination of arbitrary parameters ξξξξ. Furthermore, it was 
proven that the proposed norms have the additional desirable property 
of being concave with respect to ξξξξ, what ultimately renders the 
twofold optimization procedure employed very efficiently. In the case 
of the second norm (Eq. (24)) concavity with respect to the admissible 
loadings is also proven. Hence, this norm has extremely desirable 
properties of concavity with respect to ξξξξ and concavity with respect to 
the loading parameters, as long as buckling has not occurred. 

When one analyzes the field of optimized thickness presented in 
the examples it is clear that there are some regions whose thickness 

is much larger than the ones found in other areas. For example, in 
Tab. 2, the optimized values for t4 and t8 are 0.44 mm and 13.9 mm, 
which represents a significant difference. Hence, it is clear that there 
are stress concentrations due to the variable nature of the thickness 
distribution, what could be the cause of fatigue related problems in 
real structures. There are two ways to overcome the stress 
concentration problem: (i) to directly include additional constraints 
that limit the von Mises stress levels in order to guarantee that those 
levels are within an acceptable range, or (ii) to avoid excessive 
thickness variation by imposing a base thickness that is constant 
throughout the beam or plate and, on this base structure, add a thin 
layer of material with variable thickness. 

Two numerical examples highlight the tremendous improvement 
achieved in terms of prebuckling response (Figs. 5 and 8). Although 
applied to two simple structures, the optimization strategy presented 
can be used in real application where multiple load cases exist 
and/or uncertain imperfection patterns are present.
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