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Numerical Analysis of Thermal and 
Electrohydrodynamic Effects in 
Travelling-Wave Dielectrophoretic 
Devices 
Travelling-wave dielectrophoretic phenomena involving cell detection and manipulation 
are very interesting for biomedical and biotechnological applications. However, 
electrohydrodynamic phenomena may interfere with the action of dielectrophoresis. The 
main goal of our study is to calculate the interplay of these effects. In so doing, we have 
been able to go beyond the order-of-magnitude estimations, which were available in the 
literature. In this framework we have taken into account the effects of using square signals, 
which calls for a calculation of the combined polarisability effects due to the superposition 
of different frequencies. Thermal gradients are also a triggering agent of 
electrohydrodynamic effects. We have undertaken the pertinent thermal simulations with a 
concern for the influence of different boundary conditions. The dynamics of the thermal 
fields were also assessed in order to estimate the characteristic times of 
electrohydrodynamic phenomena. All these results have been used in a study of the fluid 
flow pattern motion at different frequencies and its influence on the particle behaviour. 
Keywords: computer modelling, Micromanipulators, electrohydrodynamics, 
dielectrophoresis 

Introduction 
1It has been known for a long time that an electric field in a 

suspension containing a polarisable material will induce a charge 
distribution on the particle's surface, which will accordingly behave 
as an effective dipole. 

When a non-uniform electric field is applied, particles, behaving 
as dipoles, experience a net force, which carries them towards or 
away from the field maximum, depending on the relation between 
the electrical properties (i.e. permittivity and conductivity) of 
particles and medium. This force causes the particle motion. This 
phenomenon of neutral-matter motion arising from its interaction 
with a non-uniform electric field was called dielectrophoresis (DEP) 
by Pohl (1951). This simple definition embeds three phenomena: 
common DEP (c-DEP), electrorotation (ROT) and travelling wave 
dielectrophoresis (TWD) which differ in the characteristics of the 
electric field: c-DEP is originated by electric fields inhomogeneous 
in amplitude, ROT is generated by rotary electric fields 
inhomogeneous in phase and TWD is produced by travelling wave 
of electric fields with inhomogeneities in both magnitude and phase. 

Furthermore, the force exerted on a particle varies with the 
frequency of the applied signal and making good use of this, DEP 
has been employed to characterise latex microparticles (Green and 
Morgan, 1999), and biological organisms (Müller et al., 2003), and 
to fabricate microdevices addressed to handling and manipulating 
cells and macromolecules (Rosenthel and Voldman, 2005), to 
perform linear motion and separation of cells and latex microbeads 
(Talary et al., 1996; Masuda et al., 1987), microparticle conveyors 
forming part of laboratory-on-a-chip devices (Pethig et al., 1998) 
and devices to concentrate and assay the viability of micro-
organisms (Goater et al., 1997). 

The electric conductivity of slightly conducting liquids often 
depends on temperature. Hence, if a thermal gradient is imposed 
inside the liquid, such as that arising from the Joule heating effect, it 
gives rise to a gradient in the liquid electrical conductivity and 
permittivity. Besides that, if a travelling electric field is imposed in 
the structure, it originates the bulk interaction of fluid with the 
travelling potential wave through the mechanism of a thermally 
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induced gradient in electrical conductivity and permittivity that 
produces fluid motion (Melcher and Firebaugh, 1967). This effect 
has been used as a mechanism of actuation to pump fluids in 
microchips (Müller et al., 1993). 

A review of the order-of-magnitude for the force on 
submicrometer particles in non-uniform alternating current (AC) 
electrical fields was carried out by Ramos and co-workers (1998). 
This theoretical study compares the relationship between forces 
acting in common-dielectrophoresis-based-devices (c-DEP devices), 
such as dielectrophoretic forces, Brownian motion and diffusion as 
well as electrohydrodynamic (EHD) effects triggered by the Joule 
heat generation effect caused by the applied potential. It was 
mentioned that EHD forces can affect the stable trapping of particles 
smaller than 1 µm, and, depending on the experimental conditions, 
the fluid velocity motion will govern the particle behaviour instead 
of the desired c-DEP forces. 

Despite the huge range of applications up to now the theoretical 
and numerical studies of DEP have concentrated on the electric field 
and dielectrophoretic force distributions (Wang et al., 1994; Hughes 
et al., 1996). On the other hand, the lack of calculations taking into 
account the influence of other related phenomena such as EHD is 
noticeable. Of course, to design much more reliable and controllable 
devices, for instance based on TWD, the influence of EHD 
phenomena has to be considered, especially when working with 
media of high conductivities and high-applied voltages. 

Our goal in this paper is the development of a general simulation 
methodology to study and calculate the particle dynamics, when 
subjected to DEP forces, in the case of TWD systems. The EHD 
effects involved in it have been taken into account. The employed 
methodology can be easily adapted to other geometries and DEP 
effects such as electrorotation. 

In order to achieve a good understanding of the coupled effects 
we begin with a description of the electrical model, which includes 
the particle electric modelling. We have been aware of the 
differences induced by the use of square-bipolar electric signals, 
which are a common experimental choice (Fuhr et al., 1994), 
usually ignored in theoretical approaches, with respect to a case of a 
sinusoidal signal. We have taken this difference into account both 
for the calculation of EHD fluid flow and for the calculation of a 
corrected Clausius-Mosotti factor relevant for the correct evaluation 
of DEP forces on suspended particles.  
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The second section is devoted to the calculation of the time-
varying electric field for a common TWD application with square-
bipolar signals and to the correction of the Clausius-Mosotti factor 
for this case. The calculation of the electric field is required for the 
thermal analysis, because it determines the loads. The correction to 
the Clausius-Mosotti factor is a useful result for the proper 
evaluation of DEP forces on a particle, in particular if it is necessary 
to compare DEP forces and drag forces induced by EHD effects. 

Also, the influence of the chip substrate and the ensuing thermal 
boundary conditions (BCs) is studied by means of a two-
dimensional (2-D) axisymmetrical model solved through the 
commercial program Ansys (Swanson Analysis Systems Inc.), 
which uses the Finite Element Method (FEM) for the solving of 
physical problems and which has been used for all FEM analysis in 
this work. The thermal analysis is presented in section three. The 
load for the thermal problem is the Joule effect induced in a 
conductive medium by the presence of the electric field, previously 
calculated. The results of this section are interesting because thermal 
gradients may be triggering agents of EHD phenomena as explained 
by Ramos and co-workers (1998), and their dynamics may help 
understand the time required for EHD phenomena to be observable. 
The results of the thermal FEM analysis are also required for the 
calculations of section fourth. 

The fluid motion pattern as a consequence of EHD 
(electrostrictive and coulombic) forces is analysed in section “fluid 
model simulation”. Actually, only the lowest-order correction in 
terms of the applied electric signal to the unperturbed, static fluid is 
retained in our calculation, for which we have followed the analysis 
of Ramos et al., (1998). Here we use the results of sections 
“Electrical Modelling” and “Thermal Modelling” of that work. For 
this lowest-order correction, the thermal dependence of permittivity 
and conductivity of the medium has to be taken into account, but not 
that of viscosity, which would be relevant for higher-order 
corrections. It is apposite to note that our flow model, including 
fluid motion equations and inputs thereof (i.e. electric and 
temperature fields), takes only the fluid into account and not the 
presence of any particles. See the work of O’Brien (1979) for the 
impact of interacting particles on the transport properties (thermal 
conductivity and viscosity) of a suspension. Therefore, any 
discussion concerning the influence of the fluid flow solution as 
derived in this work on the motion of the suspended particles 
implicitly assumes a very low particle concentration and excludes 
situations when this condition breaks down. 

Lastly, we devote section five to summary of the conclusions 
and a discussion of the possible interplay of DEP and EHD effects 
in the dynamics of suspended particles in the presence of electric 
fields. 

Electrical Modelling 

DEP Analysis Background 

It is well known that if an AC electric field expressed by Eq. (1) 

)(exp)( 0 tjt ωEE =  (1) 

is applied to a liquid suspension which contains electrically neutral 
matter as depicted in Fig. 1, it will induce the appearance of an 
electric charge distribution onto the particle surface. 

Figure 1. Spherical particle of radius R and complex dielectric permittivity 

2ε
~  given by ωj
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dielectric permittivity 1ε
~  given by 
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1ε1ε +=~ . εεεε1 , σσσσ1 , εεεε2 and σσσσ2 are the 

permittivity and electrical conductivity of medium and particle, 
respectively. ωωωω is the angular frequency of the applied field. 

When the particle size is small enough compared with the 
characteristic length of variation of the electric field, the electric 
charge distribution can be treated as a dipole. Taking advantage of 
it, the particle external potential extφ  can be written as: 
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where peff is the effective induced dipolar moment, which for a 
spherical particle of radius R is given by: 

Ep 3
14 RKeff επ=  (3) 

where K is the well-known Clausius-Mosotti factor, which 
represents the particle polarisability with respect to its surrounding 
medium and can be expressed as: 
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The frequency dependence of this expression has been exploited 
for the characterisation and control of artificial and natural materials 
(Fuhr and Shirley, 1998). 

When the applied electric field has spatial inhomogeneities, its 
interaction with the induced dipole moment gives rise to a net force, 
the dielectrophoretic force ( DEPF ), which leads the particle towards 

(so called positive DEP, p-DEP)) or away from (also called negative 
DEP, n-DEP)) regions where the electric field strength is maximum. 
If the dipolar approximation is acceptable, DEPF  can be expressed 

as: 

( )EpF ∇⋅= effDEP
. (5) 

Moreover, if the applied field rotates, it will induce a rotational 
torque on the particle, which can be co- or anti-field-oriented 
depending on the polarity of the Clausius-Mosotti factor. This rotary 
torque T  is given by: 

EpT ×= eff
(6) 
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Dielectrophoretic Force CalculatedbBy Means of the Fourier 

Decomposition 

In a broader sense, any periodic applied electric field can be 
represented by its equivalent Fourier series expansion as: 

( )tkjeE
k

k
ii ωexp)( ⋅=∑  (7) 

where the subscript i represents the spatial components in the 
Cartesian coordinate frame, k is the number of the harmonic 

frequency component and )(k
ie  denotes the complex Fourier 

coefficients, which can be written as: 

( ))()()( exp k
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k
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k
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described in terms of magnitude and phase, respectively. 
Employing the general electric field representation expressed by 

Eq. (7), the time-averaged dielectrophoretic force exerted on a 
spherical particle may be calculated, leading to: 
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where the subscript w indicates the Cartesian component of the 
force. The derivation of this result goes as follows: first, insert Eq. 
(8) into Eq. (7); then employ this result in order to have a similar 
Fourier expansion for the effective dipolar moment using Eq. (3); 
now you may combine these expansion for the dipolar moment and 
the electric field to derive an expression for the DEP force at any 
time (Eq. (5)), the time average over one period being Eq. (9). 

Two terms can be clearly identified on the right-hand side of Eq. 
(9). The first one is governed by the real part of the Clausius-
Mosotti factor. If Re(K)>0 the particle is attracted towards regions 
of high-strength electric fields (p-DEP) and vice versa, i.e. if 
Re(K)<0 the particle will be repelled away from those intense field 
regions (n-DEP). This term is usually identified as the common 
dielectrophoretic force, whose magnitude also varies like the second 
power of the applied signal. 

The second term is ruled by the imaginary part of the 
polarisability function and controls both rotary and travelling 
phenomena depending of the sign of Im(K) given by: 

( ) ( ) ( ) ( )12121212 22 σσεεεεσσ −+−−+  (10) 

If Im(K) is positive, particles will rotate (or translate) in a sense 
that opposes that of the rotating fields and vice versa. This term also 
depends on the spatial phase inhomogeneities of the travelling 
applied field.  

Particle Dynamics 

The movement equation of a particle suspended in a liquid and 
subjected to a dielectrophoretic force can be expressed as: 

( ) DEPbfluid mR Fgvr ++−−= &ηπ60  (11) 

where r  is the particle position vector. If one may calculate the 
DEP force, which calls for the calculation of the electric field, and 
the velocity flow field in the fluid, Eq. (11) makes possible the 
integration of the particle trajectory. In this work we explain in 
detail how to realise these calculations. 

On the right-hand side of Eq. (11) three terms are clearly 
identified. The first one is the Stokes drag formula for a sphere 
moving through a liquid with dynamic viscosity η . In the 

derivation of the Stokes formula one assumes very low Reynolds 
numbers (much lower than 1), which is a condition satisfied by 
typical dielectrophoretic applications as we shall see in section 
”Analitical estimation of the DEP force”, where we estimate the 
magnitude of the dielectrophoretic force. The second one is the 
buoyancy force, which depends on g , the acceleration due to the 

action of gravity, and the buoyant mass which can be expressed by: 

( )12

3

3

4 ρρπ −= R
mb

 (12) 

where ρ1 and ρ2 are the mass densities of fluid and particle, 
respectively. 

The third term denotes the previously defined dielectrophoretic 
force. It has to be highlighted that depending on the fluid velocity, 
the viscous drag force can dominate the particle behaviour instead 
of the desired DEPF . 

If no DEPF  is applied, the terminal particle velocity in the 

ensuing 'free fall' situation is 
R

gmv b
term ηπ6= . For instance, in the 

case of latex microspheres, usually employed as test particles in 
DEP devices, with a density of 1.05 gr cm-3 and radius of 3.4 µm 
submersed in water this terminal velocity amounts to 1.4 mm s-1. 
The left-hand side of Eq. (11) denotes the absence of an inertial 
term, which is only relevant at extremely short time scales given by 

η
ρ 2R , which using the data above yields an order of magnitude of 

a few tenths of microseconds. When we solve the electric field and 
the fluid equations of motion, we may check that within this time 
scale, neither dielectrophoretic nor fluid drag forces on a particle 
significantly change. We implicitly assume no interactions between 
particles, which is true in the limit of vanishing particle volumetric 
fraction. Brownian motion is also ignored. Last but not least, Eq. 
(11) neglects lift forces as a result of the very low Reynolds 
numbers and no rotation model. 

We have to check that particle velocities induced by buoyancy 
and dielectrophoretic forces are consistent with the assumption of 
very low Reynolds numbers. In the case of buoyancy forces (free 
fall), and if we use the same figures as in the previous paragraph, we 
get Reynolds numbers around 10-5. As for the velocity induced by 
dielectrophoretic forces, one may check the self-consistency of Eq. 
(11) with the numerical results obtained with our analysis in the 
sequel. The bottom line is that even forces resulting in drag 
velocities which are some orders of magnitude greater than the free-
fall velocity for our application lead to Reynolds numbers much 
lower than 1. 

General Field-Modelling Procedure by FEM 

The first part of this study consists of the correct calculation of 
the electric field generated by four bipolar signals phased 90° from 
each other, which are periodically repeated every four electrodes in 
order to generate the travelling electric field signal. 

In principle, four consecutive electrodes would have to be 
included in the model to obtain the whole electric field distribution. 
However, taking advantage of periodicity, a unique electrostatic 
simulation of only one electrode domain suffices to extract the 
complete information from the electric field at any time, as 
illustrated in Fig. 2(a). Looking at the field profile of a generic point 
P in Fig. 2(b), it is evident that the third and fourth quarters of a 
period correspond to the first and the second ones reversed in sign, 
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respectively. Besides that, and because of the symmetries of the 
problem, the electric field at point P in the second quarter of a 
period will be equal to the value at P', obtained from P by spatial 
symmetry within the same electrode domain, in the first quarter of a 
period but inverting its X component. 

Figure 2(a). This sketch shows four consecutive electrodes driven by four 
bipolar signals, φφφφ1 to φφφφ4. The four possible temporal states are also 
depicted below the electrodes. P denotes an arbitrary point that has a field 
value of E(P,1) in the first quarter of a period, while P' represents the 
related symmetric point in the same electrode domain. 

Figure 2(b). Electric field profile generated by the four voltage pattern 
shown in figure 2(a). The signal symmetries can be clearly seen. 

It may be concluded that the four quarters of a whole electric 
field period can be assessed by modelling one electrode domain and 
performing one single electrostatic simulation. We may for instance 
consider boundary conditions for the leftmost domain in Fig. 2(a) in 
the first quarter of a period. These boundary conditions are 
described in Eq. (13) and Fig. 3. 
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The model employed for the calculation of the electric field 
assumes a plane 2-D model. However, we shall use in the following 
chapters the results from this calculation as input for the calculation 
of thermal gradients and the fluid flow using an axisymmetric model 
of a dielectrophoretic device, whose geometry is discussed in 
section “Thermal modelling”. This is a source of error, which may 
be effectively reduced by a wise choice of the geometric location of 
the electrodes in the axisymmetric thermal and fluid models, as will 
be explained in the next section. 

Figure 3. Single electrode domain with the related BCs. The lower, thinner 
rectangle at the bottom is SiO2. The black one on top of it is the electrode. 
The rest of the domain is occupied by fluid. L stands for the width of an 
electrode domain. 

The DEP Electrical Model Revisited 

When a non-sinusoidal signal is employed, the polarisability 
function has to be recalculated in order to include the effects of the 
high-frequency harmonic terms of the signal. 

Taking into account the electric field approach described above, 
the dielectrophoretic force can be rewritten as: 
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where, )1(E  denotes the electric field in the first quarter of a period 

and )2(E  represents the electric field in the second quarter of a 

period. 
The whole expression for the Clausius-Mosotti factor must be 

modified to suit the square-signal case outlined in the last 
subsection. This quantity can be obtained after some straightforward 
but tedious calculation (see the appendix for an expression of K' and 
for details of its derivation and for that of Eq. (14)).  

As shown in Fig. 4, the modified Clausius-Mosotti factor is 
somewhat rounder than the normal one. The qualitative dependence 
on frequency is quite similar for both factors, but it is important to 
point out that for some frequency ranges their real part may have 
large relative differences, which may have a dramatic impact on the 
particle motion, as explained in the following subsection, which 
should make it clear that the ratio of the real and imaginary parts 
may convey insight into the final particle velocity in TWD 
applications. 
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Figure 4. Real and imaginary parts of the Clausius-Mosotti factor showing 
the differences between the 'pure' and modified Clausius-Mosotti factor (K 
for sinusoidal and K’ for square signals). This example is based on 
following material properties for medium and particles: σσσσ1= σσσσ2= 0.01 S m-1, 
εεεε1= 80 and εεεε2= 50. 
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It is also important to know the real value and shapes of 
Clausius-Mosotti factor, because it is the most influential parameter 
in the behaviour of the dielectrophoretic force. Slight differences in 
this factor can move the crossover frequency bringing about big 
changes in the particle polarisability such as going from p-DEP to n-
DEP, or reversing the motion direction. 

Analytical Estimation of the DEP Force 

In spite of the power of FEM analysis, it is always interesting to 
obtain an analytical approach to estimate the relation between the 
different effects involved. As shown in Fig. 2 and in subsection 
“General field-modelling procedure by FEM”, the electric field may 
be fully characterised by means of a unique simulation defined on 
the quasi-rectangular domain of a single electrode with the boundary 
conditions indicated in Fig. 3. The geometric shape of the domain 
justifies under some restrictions that the electric potential may be 
described in terms of a Fourier series as: 
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where L is the characteristic electrode domain length (electrode 
width plus gap). It can be seen that the first term, k=0, dominates at 
long heights. Eq. (15) does exactly satisfy boundary conditions at 
x=0 and x=L as described by Eq. (13) and Fig. 3 but not those at 
y=0 and y=H. As for those at y=0, we have to restrict the validity of 
Eq. (15) to a subdomain with y values above the metal electrode: 
y>yel. Such a subdomain is materially homogeneous consisting only 
of water, and the electric potential satisfies the Laplace equation. 
Then, given the solution of the electric potential, its values at y=yel

determine the coefficients of the Fourier series ck. Even then, Eq. 
(15) only yields the exact solution in the fluid when H, the height of 
the domain, tends to infinity. Nevertheless, this approximation is 
quite suitable for our application with L=40 µm and H=200 µm. 

We see that under these restrictions, Eq. (15) predicts that the 
dielectrophoretic force will decay exponentially with distance from 
the electrode plane at a rate governed by L, if only the first term of 
the Fourier expansion is taken into account. This information can be 
employed in the design of DEP devices for microparticle levitation. 
If we retain only the first term in Eq. (15), DEPF  takes on the 

following form: 
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Knowing the ratio of the real and imaginary parts of the 
modified Clausius-Mosotti factor makes it possible to estimate the 
horizontal travelling component of the particle velocity. The point is 
that the vertical component of the DEP force, once the particle 
height is stable, should counterbalance the natural sedimentation 
force and has the same numerical value, which only depends on the 
particle geometry and its differential density with respect to the 
medium. If the ratio of the real and imaginary parts of the Clausius-
Mosotti factor is known, we may calculate the X component of the 
DEP force (the value of the Y component being fixed by the 
sedimentation force) from Eq. (16). From this we may easily derive 
the particle travelling velocity by a simple application of Stokes’ 
drag formula, yielding: 

( )
( )'Re

'Im.
, K

K
vV term

approx
DEPx ⋅= , (17) 

which involves the terminal free fall velocity and the imaginary and 
real parts of the modified Clausius-Mosotti factor. This approach is 
admittedly only correct as long as the hypothesis justifying Eq. (16) 
hold, which may be expected to be valid when the levitation height 
is not too close to the electrodes. 

DEP force calculations are usually performed under the dipole 
approximation. Under the approximation that justifies Eq. (16) and 
for the case of lossless particle and medium, the quadrupolar 
correction to the force has been obtained assuming that a spherical 
particle is immersed in an electric field determined by the potential 
of Eq. (15) where only the first term is retained. Under these 
conditions one may consider the classical problem of solving for the 
electric field, which is distorted by the particle in its neighbourhood, 
using spherical harmonics. When one uses this result in terms of a 
series of spherical harmonics to work out the DEP force on the 
particle, the first term has the form of Eq. (16), which contains only 
the dipolar term. Eq. (18) gives the ratio of the quadrupolar 
correction to the force. 
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By way of numerical example this correction amounts to 1% in 
the case of a particle whose radius equals 4 µm, with L = 40 µm, ε1 

= 80 and ε2 = 50. In the sequel we assume that the quadrupolar 
correction is negligible. 

Eq. (16) has been used only in the discussions of this work 
where it is explicitly mentioned. For the thermal and flow FEM 
analysis that are shown in other sections of this work we have 
resorted to the results of the electric FEM analysis obtained as 
explained in section “General field-modelling procedure by FEM”. 

Thermal Modelling 

Loads, Geometry and Simplifications 

The presence of electric fields in the device around the 
electrodes acts as a heating mechanism that may be modelled in 
terms of Joule heat, and we may write down: 

22 Ev σρρ +∇=
∂
∂+∇⋅ Tk

t

T
cTc pmfluidpm

  (19) 

ρm is the medium density. cp is the medium specific heat capacity. k
is the medium heat conductivity. σ is the medium electrical 
conductivity. The first, advective term may be neglected as 
discussed in Ramos et al., (1998), thereby uncoupling the thermal 
field from the fluidic one. This may be justified by a comparison of 
the advective versus the diffusive term, which is characterized by 

the Peclet number: 
k

Lvc
Pe fluidpmρ

= . In our case a conservative 

characteristic length for the temperature field is provided by the 
separation between electrodes (20 µm) and we consider fluid 
velocity values to lie in the range up to some tenths of microns per 
second (25 µm s-1). Using material properties of water, with a 
thermal diffusivity of 1.5·10-3 cm2 s-1, Peclet numbers lie in a range 
under 10-2. 

We have considered an axisymmetric thermal model with four 
different materials: silicon, silicon oxide, aluminium and water. A 
general view thereof is in the lower image of Fig. 5. Water and 
silicon are 200 µm thick. The axis of the azimuthal symmetry is the 
leftmost part of the model (X=0 in Fig. 5). The three-dimensional 
model, which is effectively calculated, should be fancied by 
extruding the lower image along a circular path about the Y axis. A 
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first zoom of the electrode region is produced on the upper left 
quarter of Fig. 5, in which only a few electrode domains are shown 
of a total of 23 electrodes in the model (the lower image produces 
only 7 for the sake of clarity). Each electrode is 20 µm wide and 1 
µm thick. The space between electrodes is 20 µm. The central 
electrode has been placed at 1200 µm from the central axis (X=0). 
Aluminum electrodes and the thin layer of silicon oxide are 1 µm 
thick. The total height of the model is 401 µm. The whole model has 
a radius of R=8000 µm (horizontal dimension of the lower image in 
Fig. 5). 

The electric field was calculated under the assumption of a plane 
geometry, not using an axisymmetric model. For this reason it is 
advisable that in the axisymmetric model the region where the 
electrodes are located is not too close to the azimuthal of the 
structure; in our case the innermost electrode lies at about 800 µm 
from it, which is sufficiently large compared with the 40 µm 
corresponding to an electrode domain. Another source of error with 
the strategy that we have employed is that the electric field has been 
calculated assuming that the structure of electrodes extends 
periodically without limits. In order to reduce this error a reasonably 
high number of electrodes is accordingly recommended, which 
makes the approximation pretty good except for the first and final 
electrodes. 

Figure 5. Geometry of the thermal model. Relative dimensions of different 
parts in the model are not shown consistently for the sake of clarity; with 
regard to the lower part of the figure, the electrode size has been 
exaggerated. Model radius is R=8000 µm and model height Hm=401 µm. 

Heat Paths and Boundary Conditions: Static Effects 

It is typical in the context of thermal problems in electronic 
devices that final results have a strong dependence on the prevailing 
particular boundary condition, and so it is in our case, as far as the 
temperature distribution is concerned.  

 
Figure 6(a). Heat flux through the microstructure in the region close to the 
electrodes. Almost three electrode domains are produced. Arrow length is 
proportional to the magnitude of the heat flux. Heat fluxes are seen to flow 
downwards and highest magnitudes are observed close to the electrode 
corners. 

Figure 6(b). Heat flux through the microstructure in the region close to the 
electrodes. More than six electrode domains are produced. Arrow lengths 
are constant. Above a given height over the electrodes, the vertical 
component of the heat flux flips its sign and is directed upwards. 

Figure 6(c). Heat flux through in the whole structure. Arrow length is 
constant. The role of silicon as heat spreader is apparent. 

However, it is not in the temperature distribution that we are 
interested in, but rather in its gradient in the neighbourhood of the 
electrodes, as will be apparent when we consider the EHD forces 
acting on the medium. With regard to this point our results may 
claim some degree of universality, which will be clarified in the 
sequel. We may consider a situation in which the thermal resistance 
of the model is controlled by adjusting a uniform heat convection 
coefficient for all the outer “surfaces” of it. A value of hfilm=10 W m-

2 K-1 was chosen for this numerical experiment, which is somewhat 
greater than a typical value for natural convection. Anyway, the 
purpose of this discussion is not a derivation of realistic final 
temperatures, but rather to provide an insight regarding the impact 
of different boundary conditions. For the sake of simplicity we have 
used temperature-independent thermal properties for all materials 
using properties at 300 K. So, boundary conditions may be 
described in terms of ( ) 0=−+∇⋅ extfilm TThTk n , where k is the 

material conductivity at issue and Text is an arbitrary external 
temperature, for the boundaries defined by X=R, Y=Hm and Y=0.  

We may compare the results obtained from this first set of 
boundary conditions against those from a second case, obtained 
from the previous one by simply switching off convection at the 
base of the structure. So, the second set of boundary conditions may 
also be written as ( ) 0=−+∇⋅ extfilm TThTk n , but only at X=R and 

Y=Hm. Fig. 6 has been obtained with this second set of boundary 
conditions. This is an interesting case study because depending on 
the mounting device conditions, many situations may be conceived 
to result in different thermal convection coefficients at every 
surface. Of course, if the comparison is reduced to the temperature 
field, this second set of boundary conditions results in a temperature 
increase, which almost doubles that of the first case. This is 
perfectly predictable from the increase of external thermal 
resistance. However, if what we compare is the difference in the 
velocity flow pattern between both situations, then relative velocity 
differences of less than 10% are obtained. The flow in the medium 
is triggered by EHD forces, which appear because of the presence of 
thermal gradients and electric fields, as explained in the next 
section. Fig. 6 is based on this second set of boundary conditions. 

If the sensitivity to the boundary conditions is that low, this may 
be easily explained in terms of the heat-spreading effect of the 



Flavio H. Fernández Morales et al 

416 / Vol. XXIX, No. 4, October-December 2007 ABCM

silicon substrate. In the medium surrounding the electrodes the 
dominant heat paths are directed downwards into the substrate, see 
Fig. 6(a). Then heat is effectively spread through the substrate, and 
silicon gradually gives it off upwards delivering it into the liquid in 
the model, as is apparent in Fig. 6(c), and downwards into the 
surrounding air (this latter escape path only exists in the first case 
considered, because in the second one convection is suppressed at 
the lower surface). It is precisely because of this spreading effect 
that in the aqueous medium around the electrodes heat paths are 
directed downwards in a way that is quite independent from the 
boundary conditions 

We content ourselves with the intuition gleaned from this 
particular test, inasmuch as it strongly suggests that a useful 
understanding of the behaviour of EHD effects may be grasped 
without going through a painstaking study of the effects of different 
BCs. The calculations that follow are based on the first of the two 
commented sets of boundary conditions, i.e. convection takes place 
on all external interfaces of the system with the same convection 
coefficient. We want here to emphasise that although these 
predictions would not be exactly the same if the second case had 
been chosen, the general conclusions would remain valid, and the 
flow patterns that would be obtained in the section devoted to fluid 
modelling could be qualitatively hardly differentiated from those 
actually presented, with quantitative discrepancies of about 10% in 
spite of the drastic change of BCs. Of course, these differences are 
irrelevant for the purposes of this work. 

Dynamic Thermal Effects 

If the thermal problem is involved in the mechanism that sets 
the medium in motion, it is justifiable to study what the 
characteristic times that govern it are, because these should give 
insight into the characteristic times required for the EHD forces to 
be noticeable. In the case of the temperature field, the dynamics are 
quite slow. Times of about 102 seconds are required for the 
temperature to stabilise, see Fig. 7 (but this strongly depends on the 
boundary conditions). We have chosen three points over the 
electrode in the aqueous medium at different heights: L/10, L/2 and 
1.75*L over the SiO2 surface, where L is the characteristic electrode 
domain length i.e. electrode width plus gap. Fig. 7 shows the 
evolution of normalised temperature increases (i.e. temperature 
increase divided by the steady-state value, which is 0.6586, 0.6616 
and 0.6614 K, respectively). The fourth curve in Fig. 7 produces the 
results from the lumped-capacitance model (Incropera and De Witt, 
1996): ( )τ∆

∆ t
T

T −−=
∞

exp1 , where the left-hand side is the 

normalized temperature increase and τ is a characteristic time 
(109.1 s in our model) accounting for the thermal capacitance in the 
model, whose main contributors are water and silicon, and the 
thermal resistance associated with the convective boundary 
conditions. A necessary condition for the validity of this 
approximation is that the thermal resistance associated with the 
conductive heat paths is much lower than the thermal resistance 
associated with the external boundary conditions. This ratio is the 
meaning of the Biot number, which, when much smaller than 1, 
entails a large degree of uniformity of the temperature field, which 
is confirmed by the simulations. A detailed discussion on a rigorous 
estimate of the Biot number would require some additional 
disquisition because even in so simple a problem as ours there are 
several length scales involved. On top of that, the lumped-
capacitance model may only be expected to be applicable for time 
scales much larger than the time required for an effective heat 
spreading from the electrode region into the whole model. This time 

scale may be estimated to be at least 
water

c
diff

L
ατ

2
= , involving 

as length scale the height of the water domain (200 µm) and the 
thermal diffusivity of water, yielding an estimate of 0.3 s. 

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Time (s)

N
o

rm
al

iz
ed

 te
m

p
er

at
u

re
 in

cr
ea

se

Height = L/10

Height = L/2

Height = 1.75 * L

Lumped  model

 
Figure 7. Dynamic evolution of the normalised temperature increase 
(thermal increase divided by the steady-state value) at three different 
points over an electrode. The fourth curve is the lumped-capacitance 
model prediction. 

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Time (s)

N
o

rm
al

iz
ed

 te
m

p
er

at
u

re
 g

ra
d

ie
n

t
Height = L/10

Height = L/2

Height = 1.75*L

Figure 8. Dynamic evolution of the normalised magnitude of the thermal 
gradient at the same three points as in Fig. 7. 

However, as far as EHD effects are concerned, it is the thermal 
gradient that deserves our attention; and to be more precise, the 
thermal gradient in a neighbourhood of the electrodes, for the 
electric fields should also be appreciable for the EHD forces to be 
significant. A chart of the normalised module of the themal gradient 
may be seen in Fig. 8 (module divided by the steady-state value, 
which is 7.71E-04, 1.52E-04 and 4.48E-05 K µm-1 for the same 
three points as in Fig. 7). Now a time close to one second is enough 
for these gradients to stabilise. This is an indication that once a DEP 
device is switched on, EHD effects are triggered within a delay that 
is much shorter than that associated with the temperature field. 

Fluid Model Simulation 

EHD Forces Background 

In this subsection we resort to the analysis contained in Ramos 
et al., (1998). To be brief, we produce below the final expression for 
the EHD force per unit volume. 

( ) ( ) 0001
2
02

1
EEEEEf ⋅∇+⋅∇+∇−= εεεehd

  
 (20) 

In this expression 
0E  is the electric field calculated according to 

the scheme expounded in subsection “General field-modelling 
procedure by FEM”, whose components are periodic functions of 
time with a shape as shown in Fig. 2(b). Thermal dependence of 
both permittivity and conductivity has been linearised about the 
working point: 
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which embodies the sources of inhomogeneities in the medium. 1E

is the first-order correction to the electric field attributable to the 
aforementioned inhomogeneities, from which we only need 
calculate its divergence. In order to work out this correction, it is 
necessary to solve an ordinary differential equation for every space 
point: 

( )
tt ∂

∂
⋅∇−⋅∇−=⋅∇+

∂
⋅∇∂⋅ 0

01
1 E

EE
E εσσε   (22) 

The right-hand side of Eq. (22), the source term to the 
dynamical equation for the correction of the divergence of the 
electric field, is obtained from an electrostatic FEM analysis as 
explained subsection “General field-modelling procedure by FEM”, 
which permits us to calculate the components of the field 0E , and 

from the thermal FEM simulations of section “Thermal modelling”, 
which are required for the calculation of the gradients of the 

permittivity and the conductivity of the medium. Eq. (22) may be 
analytically solved and is uniquely determined by imposing that 

1E⋅∇  be periodic in time. Now we may substitute this result into 

Eq. (20) and derive an expression for the force per unit volume 
acting on the liquid. 

Fluid motion can be described in terms of the Navier-Stokes 
equation. However, as it was outlined by the order-of-magnitude 
calculations computed in Ramos et al., (1998), for the case of liquid 
motion in dielectrophoretic microdevices the Reynolds number is 
very small. According to this remark, the non-linear (inertial) terms 
of the Navier-Stokes equation may be confidently dropped. 

Some possible limitations of this approximation to the EHD 
forces are also discussed in Ramos et al., (1998). In particular it 
should be pointed out that it may fail at low frequencies if “electro-
osmotic” effects are not considered. We also want to point out that 
the mechanical load for the Navier-Stokes equation has been 
obtained by averaging the result of Eq. (20) over a period of the 
signal. A necessary condition for the validity of this averaging is 
that the typical fluid velocity multiplied by the period of the signal 
is much shorter than L or a characteristic length for the variation of 
the time-averaged force field, but this condition is satisfied for the 
signal frequencies and amplitudes we have considered in this work. 

Flow Modelling 

Figure 9. This figure sequence shows the fluid motion behaviour at the following frequencies: a) 10 kHz, b) 100 kHz, c) 1 MHz and d) 10MHz. On the left-
hand-side figures a few electrode domains are shown, while on the right-hand-side ones a zoom of the neighbourhood of an electrode is represented. 
The applied voltage was 1 volt in a liquid of σσσσ1= 0.01 S m-1 and εεεε1= 80. Velocity values are given in µµµµm s-1. 
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The fluid model is geometrically identical to the thermal model, 
reduced to its elements of water. The fluid velocity satisfies the non-
slip condition at all the boundaries of the model. This corresponds to 
a situation where the fluid is completely enclosed and covered by a 
lid. 

The fluid motion velocity scales like the fourth power of the 
applied signal amplitude because the EHD force also scales this 
way. Such a scaling law allows us to have a quick look at the fluid 
velocity in the structure by solving the model only once for any 
amplitude value of the applied signal. For an electrode width and 
separation of 20 µm (our study case), and a signal amplitude of 1 
volt applied to an electrode array covered by water (i.e. ρm = 103 kg 

m-3, η = 10-3 kg m-1s-1, 1σ = 0.01 S m-1 and 1ε = 80), typical fluid 

velocities of around 0.025 µm s-1 are obtained, which are completely 
negligible compared to usual particle velocity values. If the voltage 
rises to 5 volts, common fluid velocities increase up to 16 µm s-1, 
which in many cases may be important as compared to that of the 
particle “free-fall” sedimentation velocity. In this case the particle 
may be dragged by the fluid stream or its velocity can be slowed 
down, depending on whether the particle moves in the same 
direction as the fluid or opposing it. Furthermore, if the driven 

voltage is set to 10 volts, the liquid velocity will be around 250 µm 
s-1, which cannot be ignored at all. As can be seen, increasing the 
supplied voltage in a moderate way will cause a dramatic influence 
on the microdevice fluid motion pattern. In fact, such high velocity, 
as that described in the last case, will largely dominate the particle 
motion behaviour. 

Another parameter that affects the EHD force and also the fluid 
pattern motion is the frequency of the applied signal. At low 
frequencies, see Figs. 9(a) and 9(b), the flow pattern is almost equal 
to that observed in the c-DEP case, i.e. the fluid motion consists of a 
couple of whirlpools rotating in opposite directions; while the left 
one spins counter-clockwise, the other one rotates clockwise. 

As the frequency increases, see Fig. 9(c) (frequency = 1 MHz), 
the whirlpools are highly suppressed and the flow develops a 
continuous stream over the electrode surface with the same direction 
as that of the applied travelling-wave electrical field. Figure 9(d) 
(frequency = 10 MHz) shows that the uniformity of the flow pattern 
increases with frequency. Nevertheless, the observed velocity 
magnitude is reduced as compared with Fig. 9(c). Inverting the 
signal supply sequence causes the fluid motion direction also to be 
inverted.  

Discussion 

Table 1 Results for the particle motion for several particle property values, signal amplitude and frequency. 
<VX,DEP> stands for the average x-component of the velocity induced by DEP.<HLEV > is the average levitation 
height over the electrodes. Additionally we list the estimate of the x-component of the velocity as discussed in 
section “Analytical estimation of the DEP force” (Eq. (17)) and also the typical value of the fluid velocity field 
induced by EHD effects as calculated in section “flow modelling”, which has not been taken into account for 
the calculation of the trajectory of the particle. 

Case ε σ
mS m-1

Amplitude  
Volt 

Freq. Hz 
m

,

1 µµ −sm

DEPVx

m

HLEV

µ 1

.
,

−sm

V approx
DEPx

µ 1

.
,

−sm

V approx
DEPx

µ
1 50 0 1 1M -0.4 60 -0.4 ~10-3 

2 3.5 10 1 100K 0.6 17 1.4 ~10-3

3 50 10 1 100K ~10-3 9 1.4 ~10-3

4 50 10 5 100K 2.1 36 1.4 3 

Taking advantage of these results, we may calculate the 
behaviour of particles in the medium exposed to both DEP and fluid 
drag forces. Furthermore, the accuracy of the analytic estimate for 
the DEP force discussed in subsection “Analytical estimation of the 
DEP force”, may be tested. Thus, we have considered several study 
cases in a medium whose relative permittivity equals 80 and whose 
conductivity equals 10 mS m-1. 

The particle radius is 3.4 µm and the particle density is 1.05 gr 
cm-3. The first case (see Table 1 below) is that of a particle with ε = 
50 and σ = 0 mS m-1 in a device driven by a 1 volt square signal at 
1 MHz. We obtain a trajectory with a levitation height of 60 µm and 
a quite uniform travelling speed of -0.4 µm s-1. The voltage is so low 
that the EHD-related drag force is almost negligible. In this case the 
prediction derived from our analytic approximation (Eq. (17)) well 
matches the calculated particle velocity. In contrast, if we consider a 
particle with ε = 3.5 and σ = 10 mS m-1 in a device driven by a 1 
volt square signal at 100 kHz, case 2 in the table, EHD effects are 
also negligible but now the levitation height is only 17 µm, which is 
not big compared with the electrode domain width (40 µm). The 
calculated averaged travelling velocity is 0.6 µm s-1, whereas the 
analytic estimate predicts 1.4 µm s-1. This failure may be expected 
as a result of the low levitation height. A third case of a particle with 
ε = 50 and σ = 10 mS m-1 in a device driven by a 1 volt square 
signal at 100 KHz is even more unpredictable, for after the first 
transient motion it is seen to stop not far from the edge of the 
electrode at 9 µm over it. For the sake of completeness, it is worth 

studying a fourth case where the influence of a change of the driving 
voltage may be illustrated. That is why we have studied the same 
particle of the third case at the same frequency (100 KHz) when the 
driving square signal has amplitude of 5 volts. In this case the 
particle levitates at 36 µm and its speed would be 2.1 µm s-1 if EHD 
effects were ignored, but if these are taken into account, we see that 
the drag forces bring about an increment of 3 µm s-1. Needless to 
say that if the fluid speed scales like the fourth power of the applied 
voltage, then higher voltages generate situations in which DEP 
forces may be negligible compared to EHD effects. 

Conclusions 

In this study we have been able to make for the first time, to the 
best of our knowledge, a calculation beyond an order-of-magnitude 
estimation of the effect of the fluid motion on the behaviour of 
particles in TWD-based devices. Nevertheless, the same 
methodology could have been applied to other DEP-related 
phenomena such as c-DEP and ROT. We should like to stress the 
relevance of our results inasmuch as they are helpful to correctly 
interpret the measurements obtained in this kind of devices, 
especially when working at high voltages and medium 
conductivities. 

In order to deal with this problem, we have begun with an 
analysis of the electrical field distribution around the electrodes and 
its influence on the particles. With regard to this point, we have 
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considered the effects of a square-shaped signal, which is 
experimentally a widely employed choice, but is usually ignored in 
analytical studies. In contrast with this lack of accuracy, we have 
undertaken an approach which takes the effects of the presence of an 
infinite number of frequencies, thus motivating the introduction of a 
complex quantity which plays the role of the Clausius-Mosotti 
factor but adapted to this square-signal case.  

Taking into account the symmetries and periodicity of the 
electric field, we have been able to fully evaluate it at any point and 
time through a unique static simulation of only one electrode 
domain. Moreover, we have justified a Fourier-transform-based 
analytical estimate of the electric field and of the DEP force acting 
on a particle, which permits us at a first glance to assess its 
travelling-motion velocity when the particle levitates far enough 
from the electrodes and the electrical properties of medium and 
particle are known. 

The next step was a thorough investigation of the thermal 
features of the problem. The first issue concerned the universality of 
our results with respect to different boundary conditions. That is 
why we analysed two extreme cases, and although some quantitative 
influence on the medium flow was noticed, the difference was low 
enough (around 10%) to make us confident that our results have a 
great scope of validity. This reduced sensitivity to the boundary 
conditions may be attributed to the heat spreading action of the 
silicon substrate. 

The second issue related to the thermal behaviour was the 
dynamics of the thermal field distributions. As the thermal gradients 
are a triggering agent of EHD forces, and they are certainly the 
slowest, it is worth studying their dynamics. Our investigations 
conclusively reveal that contrary to the temperature distribution, 
whose stabilisation time lies in ranges of at least several seconds, 
the thermal gradient distribution close to the electrodes stabilises 
within a second. Thus one may expect that the action of EHD forces 
is quite immediate once the device is energised. 

All these results have been combined in the calculation of the 
medium flow pattern. This procedure has proved to be effective to 
quantitatively assess the drag forces to which the particle is exposed. 
Even the qualitative results are enlightening. In this respect, the flow 
pattern shows different shapes and velocities at different 
frequencies. At low frequencies whirlpools are induced tending to 
drag the particles towards the centre of the electrodes, while at 
progressively higher frequencies these whirlpools vanish giving rise 
to an almost flat liquid stream.  

Making good use of the these results, it was possible to calculate 
the behaviour of particles in the medium exposed to both DEP and 
fluid drag forces, showing that if the particle levitates high enough, 
the analytic estimate for the DEP force well matches the 
numerically calculated particle velocity. But depending on the 
electrical properties of the test particle, its behaviour can become 
unpredictable compelling the use of the numerical approach instead 
of the analytic one in order to obtain more reliable results. 

To sum up, although the effect of DEP-related particle 
behaviour may be entangled with EHD effects, we have shown that 
all these phenomena and the particle trajectories may be calculated. 
We deem that these results should be helpful for the correct 
interpretation of experimental results and for gaining insight into a 
more precise design of DEP-based devices. 

Appendix 

In this appendix we produce the expressions for the real and 
imaginary parts of the modified Clausius-Mosotti factor to be 
applied in the case of TWD applications with four square signals 
shifted in time 90º from each other. 

( )







−−



























 −−
+

=′
−

12

4

21

1

42

14
)Re( σσ

λεελ

λT

eT

T
K

( ) ( )
































+−−

−










−

+











−

−−−

−

−

4
12

1244

2

4

11

1

1
TTT

T

T

eee

e

e
λλλ

λ

λ

εε
λ

σσ (A.1) 

( ) ( )



 −−

−

+







 −

+
−=′

−

−

12
12

2

24

21 1

1

2

14
Im εε

λ
σσ

εελ λ

λ

T

T

e

e

T
K

(A.2) 

where T is the period of the applied signal, ε1 and σ1 are the 
permittivity and conductivity of the medium, ε2 and σ2 are those of 

the particle, and 
21

21

2

2

εε
σσλ

+
+=  is the inverse of the relaxation time 

constant associated with the accumulation of charge at the surface of 
the particle. 

This expression is derived as a by-product of the calculation of 
the DEP force (Eq. (14)) in the case of a square-shaped applied 
signal giving rise to electric fields of the form illustrated in Fig. 
2(b). This calculation has two steps: the first one is the computation 
of the dynamic behaviour of the particle dipolar moment, and the 
second one is the averaging in time of Eq. (5) to arrive at Eq. (14). 

The first step deserves perhaps some additional comments. If the 
curious reader wants to reproduce this step, he or she must first 
consider the following problem: work out the electric field around a 
sphere of radius R with permittivity ε2 and conductivity σ2

immersed in a medium with permittivity ε1 and conductivity σ1 if at 
long distances (compared with R), the electric field is locally 
uniform and a periodic function of time, which for every point P has 
a variation in a period characterised by two values ( )1(E  and )2(E ) 

as represented in Fig. 2(b) for a generic component. For every 
component of this locally uniform electric field, we may write a 
contribution to the scalar electric potential, which may be separated 
in terms of an inner region (I, the particle) and an outer region (II, 
the medium), as follows: 

( )
,),()(

),()()( 2

φθ
φθ

Ψ=Φ
Ψ+=Φ −

rtA

rtBrtA

IIII

III  (A.3) 

where r  is the distance from the centre of the particle to the point 
for which the potential is being calculated, and ),( φθΨ is a proper 

combination of spherical harmonics of total angular momentum 1 
(dipolar functions) for the component of the electric field that is 
being considered. The normalisation of this combination of 
spherical harmonics may always be so chosen that )(tA I  may be 

identified with the component of the electric field which is being 
considered with a reversed sign. The solution to this problem of 
elementary electrodynamics leads to the following differential 
equation for )(tB I : 

( ) ( ) ( ) ( ) ,)()(2
1

)()(2
1

1221312213
tEtB

R
tEtB

R
II

&& εεσσσσεε −++−−=+
 (A.4) 

where )(tE  is the function in time of a generic component of the 

electric field. Note that this equation has Dirac deltas in the source 
term, which implies that )(tB I

 will be a function with jump 

discontinuities like )(tE . The solution to this differential equation is 



Flavio H. Fernández Morales et al 

420 / Vol. XXIX, No. 4, October-December 2007 ABCM

determined by imposing that )(tB I
 is periodic, which is the 

relevant solution once the early transients have vanished. But the 
corresponding component of the effective dipolar potential is 
directly given by )(4 1 tB Iεπ , which completes step 1. The 

algebraic details of the solution to the latter differential equation are 
left to the reader. Incidentally, note the mathematical resemblance of 
the latter equation and Eq. (22), which makes the mathematical 
solution of one useful for the other. Once the first step, that is, the 
characterisation of the effective dipolar moment has been 
determined in terms of the electric properties of the medium and the 
particle and in terms of the two values of the electric field 

)1(E  and 

)2(E , has been accomplished, the second step offers no further 

complications and leads directly to Eq. (14). 
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