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Geometry, Dynamics and Fractals

Consider a collection of elastic wires folded adliog to a given pattern induced by a
sequence of fractal plane curves. The folded wiegsact as elastic springs. Therefore it
is easy to build up a corresponding sequence gjlsimscillators composed by the elastic
springs clamped at one end and carrying a masshatdpposite end. The oscillation
periods of the ordered sequence of these oscifiadoe related following a power law and
therefore display a fractal structure. The periaifseach oscillator clearly depend on the
mechanical properties of the wire, on the mas$atand and on the boundary conditions.
Therefore there are infinitely many possibilitiesdesign a dynamical fractal sequence in
opposition to the well defined fractal dimensiontleé underneath geometric sequence.
Nevertheless the geometric fractal dimension ofptti@ordial geometric curve is always
related somehow to the dynamical fractal dimensioaracterizing the oscillation period
sequence. It is important to emphasize that theayeal fractal dimension of a given
sequence built up after the geometry of a primdrdree is not unique. This peculiarity
introduces the possibility to have a broader infatibn spectrum about the geometry
which is otherwise impossible to achieve. Thisceffe clearly demonstrated for random
fractals. The present paper deals with a particufamily of curves, namely curves
belonging to the Koch family. The method is testedhe simple Koch triadic and for
random Koch curves. The method has also provedetadeful to identify the fractal
dimension of a sequence given just one of its telR&mnarkable is the quality of
information obtained with this technique based erysimple and basic concepts. Some of
these aspects will be presented in this paper hudhmmore, the authors believe, is still
hidden behind the dynamic properties of fractalistures.

Keywords: fractal curves, fractal dimension, random fractadlgnamical dimension, Koch

curves

Introduction.

The Hausdorff theory is the main reference to fmd the
geometric dimension of singular curves, since iv@l founded on
a rigorous analytical approach. But the determamatiof the
Hausdorff dimension (Falconer, 1990) is usuallywifficult since
in general it is far from trivial to find the propeover required by
the Hausdorff measure theory (Hausdorff, 1919). exubx |
introduces a very brief account of the basic elamenf the
Hausdorff measure and the related fractal dimenasosuggested in
(Bassingthwaighte et al., 1994). In order to overedhis difficulty
several other approximate methods have been prdpostetermine
what has been recently referred to as fractal daen of a
sequence of self-similar objects. We can pointtbatbox counting
method, mass distribution method and packing capafist to
mention some examples, (Feder, 1988), (Guyet, 19Béyilacqua,
2004). All those approaches are approximate arguénetly relying
on the observation of the behavior of numericalegixpents. The
validation is usually experimental by comparison rafmerical
outcomes with well known analytical results. Inngiple we can not
expect to have the same characterization with tvifberdnt
approaches.

Those methods are very efficient when informatiercéllected
under the format of digital data which usually che obtained
directly from patterns displayed on some suppdrthdwever, we
are dealing with material objects particularly aigeembedded into
a 3D space, those techniques may become unsuifBhie.paper
extends and presents a more rigorous approachnefvamethod
(Bevilacqua and Barros, 2007) that, besides thdicgtipn as a
numerical tool to characterize the fractal geomeifya given
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sequence, can also be used for this same purposegth direct
experiments performed on the object itself.

Ouitline of the Method

The method introduced here links geometry to plsysic
particularly the dynamical properties of geomethcaelf-similar
structures properly ordered. Suppose that we avengisome
geometrically self-similar sequence that we willl ¢he primordial
sequence. It is then possible to build up a comedimg one
consisting of harmonic oscillators after the geagneof the
primordial. We call this new sequence offspringjuence. The
periods of those oscillators as function of a degeometric and
physical parameters are related to a power lawnttagtcharacterize
the fractal dimension of the original objects.

Fig.1 displays the two fundamental sequences reptieg the
classical Koch triadic. The offspring sequence iasof very
simple harmonic oscillators connecting a conceetrahass at one
of the ends of a weightless elastic structure wigctlamped at the
opposite end. The motion of the mass is determiyetie boundary
conditions which are, in principle, arbitrary. To#spring sequence
translates the geometry into a physical phenomen®his
correlation is, however, not unique because theadherization of
the physical phenomenon, the period of oscillatifor, a given
geometry, depends on material properties and boymrdaditions.
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Figure 1. Primordial and offspring sequences after the Koch triadic.

A fractal offspring sequence as a matter of faciciser than the
primordial one since it displays not only a geometiractal
dimension but also fractal characteristics of défe nature.
Consider some primordial self-similar sequence laih@ curves
with a fractal dimension equal D. We claim that fregiods of the
oscillators composing the offspring sequence follbeslaw:

1
~(1-8)
Tk —g(a ) 2 |2
To ()lk{ LO] "
or
Iog[%} =log G(/lk)+%(1— B)Iog[i—';J (1b)

where the parameter B depends on D, on the geanagtti material
properties of the oscillators, on the massand on the boundary
conditions. Additionally:

0< lim G(A)<M (finite)
A -0

This means that the curve defined by equation (4gproaches
asymptotically a straight line with slope(l— B)/2 on the

pIaneIog(Tk/TO)ong(Ak/L ) In other words the governing

equation (1) tends to a power law whenk.

We will call B the dynamical dimension of the offsm
sequence. It will be shown that even i#D that is, when the
primordial sequence displays a fractal structure ttynamical
dimension can be made equal 1 by a proper selecfianaterial
properties, for instance. That is, physical prapsrof geometrically
self-similar sequences may have different fractalethsions.

As will be shown in the sequel,
consequently, equation (1-b) hold for plane curpesvided that
some regularity requirements are fulfilled.

Curves of the Clas$u/L o= and np“

Let us examine a particular deterministic law ofniation.
Consider the generator term composed by p elemeititslength
equal to I/q where p and g are integers. The seguenembedded
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in a one-dimensional topological space. Suppose the total
number of elements in the term of order k is gilegn

Ny = p*

and the corresponding length of the elements is:
/Lo =a™"

The above relations written in another form read:

logN, =klogp
Iog/]—k =-klogq
Lo

Eliminating k we obtain:

logNy = _logp log A )
logq Lo
_logp A . . . .
where D “loaa coincides with the Hausdorff dimension for this
0gq

particular case and also with the cluster dimensiad the box
dimension as well.

This paper deals with the family of curves, thall We called
Koch curves, for which the above relationships pilenamelyN, =
p“andidL, = g*.

Direct Problem.

Consider a primordial sequence of fractal objeei®iging to
the class defined above characterized by a fraditaknsion D.

equation (1-a) andSuppose for instance that the classical Koch tiadselected as the

reference geometry or with the present terminoldlyg, primordial
sequence. It is possible then to build up an offgpsequence as
shown in Fig. 1. A single element of the offsprisgquence is
shown in Fig. 2.
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Figure 2. Example of a harmonic oscillator corresponding to the second
term of the offspring sequence.

It is not our aim to discuss the dynamics of theillzgors that
otherwise is very simple. It suffices to say thatte oscillator is a
three-degree-of-freedom system. The mass displatemector
reads w
conditions on the mass can be represented by tice fectorf =
{H,V,M} T as shown in Fig. ZThe classical equations of motion can
be written under the form:

Mw + Kw = f (3a)

Clearly, M is the mass matrix is the rigidity matrix. Now the

components of can be chosen in such a way so as to put at leas

one of the equations (3-a) into a more conveniennf This is
equivalent to introducing a corresponding boundamdition, that
is, a suitable steering surface controlling th¢ettmry of the mass
my. In order to simplify some analytical developmemis will
introduce steering forces of the foffm= Qw. It is not difficult to
show that it is always possible to find a feedb@mekrix Q, such that
the first equation in the system (3-a) is reduced t

Uk
k
oy

Myl +—K- = 0) (3b)

where uk/ k) =

Note that it is not necessary to determine the imaf,
explicitly. Certainly, this procedure can be egualted for the other
two displacementy and 6 with feedback matrice€), and Qy
leading to:

Y
my Vi +% =0 (3c)
G2
and
34, +% =0 3d)
G33

with vk/c(k) =V and Bk/cg;) =M

Now C(k)(j 1,2,3) can be determined from the stored elastic

energy corresponding to the respective fotée¥, M as usual. Note
that the offspring sequence is composed of matel&hents, wire-
like folded structures. The stored bending endogythe K" order

term is:
( i )zds

where E; is the Young Modulus of the wire material ahdthe
moment of inertia of the wire cross section whiem de functions

11 Nk/‘k
2Eklk| oo

14 MZ(s)
Wk_EO Eklk ds

4
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{u,v,0}7 while the forces exerted by the boundary
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of k. M,
segment (i-1,i) as shown in Fig. 3 aNgdis the total number of
segments in thekorder term. We are disregarding the contribution
of shear and normal forces to the strain energy.

Let us consider first the case represented by (MNow the
offspring sequence fits into a box k hy as can be seen in Fig.3.
The bending moment along a segment (i-1,i) is:

[y + 9 - viH)

is the bending moment acting on the elementary

m) i (3) =

i1 whee 0<s<1

A

Mg

——
s/

/
O,

X
>

&

Figure 3. Bending moment along the segment (i-1,i) for a general term k
of the offspring sequence.

Now introducing Eq. (5) into Eq. (4),
segment3, and summing up we get:

integratingres all

1 H?
Wi _E_I AGNQ
Byl

where Q, _Ni Y aj (k) and a;(k) :% ziz_l +z47 + ziz
ki

=1
with z; =y; /hg .

Note that from the definition ofghclearly z < 1for all j, and
consequently;(k) < 1.
The horizontal displacement then reads:

2
hy
Exlk

W _
oH

Uy = N A Q(K) (6)

Therefore

k) =

C11

N A Q(K)

Introducing this expression into Eq. (3-b) we obtai

dzuk
dt?

1
-

2
Tk

Uk=0

where the period (is given by:

n’l(h)LO /]k N Q (7)
Bk Lo

The mass attached at the free end of the oscilist@presented

by m.. Suppose thaty, E, andl, vary according to the power laws:

T =

January-March 2008, Vol. XXX, No. 1/ 13



v y u
Ag Ag Ag
m, = L E, = E5| — l, =1npl —
k mo(l_o] k O[Lo] k O(LO

wherev, y andu are real numbers.
Introducing in Eq.(7) the expression fog biven by Eq.(2) and
after some straightforward calculations we obtain:

A
|Og[;ll:_|7} = %|Ong +%(1— B)'Og[—k] (8&)

0 Lo

where: B=-v+y+u+D and D =logp/logq is the classical
fractal dimension, that coincides with the Haustdifnension for
this caseT{ is a reference period:
2 haL
(Tol) ~MoMolo
Eolo

Luiz Bevilacqua et al

Proposition I. As k-»oo the curve given by equation (8-a)
approaches asymptotically a straight line with slopqual to (1-
B)/2.

Now following the same procedure for the casesesmpwnding
to equations (3-c) and (3-d) relative to the etastiergy produced
by a vertical force and to a couple respectiveilg periods of the
offspring sequence terms are given by:

Iog[T—k] = %Iog W +%(1— B)Iog[%)

” (@)
T 0 0

for the energy generated by the action of a vériozae, and

IOQ[TZTT,} = %(1— B)Iog(i—';J

The parameteB is the dynamical fractal dimension. It coincides

with the box and the Hausdorff fractal dimensionsvjrled that the
mass, the Young modulus and the diameter of the evivss section
are all constant, that isy=x=0.

Now, if the offspring sequence has a fractal cheraation,
that is, the normalized periods of the correspogdierms are
governed by a power law, it is necessary that tpgagon (8-a)
plotted on the plan&} x X,, with Y, = log (TW/Tg) and X, = log
(4/Lo), approaches a straight line whose angular céefids equal
to (1-B)/2 as shown in Fig.4. Define the functional relati
Yy < Xy as a continuous curve with sectionaly continuoust fi

derivative, composed by straight segments conrgctihe

points(Xk,Yk ); (X k+1va+1)- Let us prove the asymptotic behavior.

The following lemma is proved in the Appendix II.

for the energy generated by the action of a couple.

The behavior of the functioW, is similar to the behavior @b,.
Therefore we will skip the discussion about thismte The
computational experiments will make it clear. Nasimilar term is
missing for the case represented by equation (#@ined with the
energy induced only by the action of a couple. fdason is that for
this case the bending moment is constant alongrliee length of
the wire. The sum on the left hand side of equaf®nreduces to

NAM 2.
The respective normalizing periods are:

_Jolo

(T” )2 :m.;l_% i

and (—l—lll )2
0 Eolo 0

Lemma. For curves belonging to the Koch family — class of

curves defined by N= p* and 4/L, = 1/g¢ - the first order
differential form of the bilinear ter?, with respect tdy is finite for
increasing values of k, or equivalently decreasialyies ofl,. That
s lim (AQ, /M) (AQ /AA) — finite .

= lim
Ak -0

A

lo o CT u Tg) Y

¥

IOg ?‘«k/LO)

X

Figure 4. Normalized period as function of the length ratio for a sequence
of fractal curves.

Now, recalling equation (8-a) and with=log(T/T,) and
Xi=log(4/Lo), the calculation of the differential ratid, /AX
after some simple operations gives:

A 1180, 1

AX, 20, M K2

Therefore from the lemma above and sifggis finite and
different from zero we have:

14 / Vol. XXX, No. 1, January-March 2008

Note that), is the reference rotational inertia for the equa(3-
d).

We will refer in the sequel as case I, Il and lhetplots
representing respectively the curves given by égost(8-a), (8-b)
and (8-c). Let us examine now some examples. Cenglie first 9
terms of the offspring sequence derived from thetKtriadic as
primordial sequence. We will assume here for saksirplicity
v=y=u=0 which makesB=D. The normalized periods ()
corresponding to cases I, Il and Il as functionhaf ratio §,/Lo) are
depicted in the Fig.5.

" memenmt —&—
vartical forcs —{5—
hortoatalfores —G— |

Case ITIY

DA

02

o} 4

a
= o2t Case 1T
A
Case' I
ET])
ot
“
“+5 - 35 3 25 2 ET) E] 08 [
B0 /L)

Figure 5. Logarithm of the normalized period versus the logarithm of the
relative length of the elementary segment for cases I, Il and Ill.
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Table 1. Slope of the last segment connecting the two last points of the
curves in the figure 5 and the corresponding fractal dimension.

Table 2. Slope of the last segment connecting the two last points of the
curves and the corresponding fractal dimension.

Type of motion Slope of last two points Dynamiaalctal dim.

Type of motion Slope of last two points Dynamiaalctal dim.

Case | -0.13093495 1,26187 Case | -0.26186467 1,26186
Case Il -0.13093002 1.26186 Case ll -0.26185975 1.26186
Case Il -0.13092075 1,26186 Case lll -0.26186467 1,26186

We expect the normalized periods versus the reldaagth to
approach asymptotically a straight line with sl¢peD)/2 for cases |
and Il. For case lll, as can be seen from the éou#8-c) the curve
is a straight line. The exact fractal dimensiorthaf Koch triadic is
found to be log4/log3 or approximately 1.26186 woptte fifth
decimal place. The values obtained from the dynapjwroach are
given in the Table I. It is also clear from Fig.tifat the curve
corresponding to the case | approaches asympigtite straight
line with slope 0.13093. Fig. 6 shows the ratiQ/Ry.c Where
Dk =AYk /AXk
exact value up to the fourth decimal digit.

ERROCR - CIRECT PROBLEM

momont — A
vamcal forca ——+—
nortzentel forea. —{3

DOp s

102 b
10 |
ﬂj::::::_ﬁvg_ﬁ_ = £ £ o
0.0 N i A . .
1 z 3 4 -3 L3 7 a
AT of Poms

Figure 6. Variation of the ratio Dgyn/Dexact-

A first approximation to simulate the dynamical heior under
the action of the weight can be obtained by takthg mass

proportional to the total length for each termtad sequence. That is

my = mO(Nk/lk / LO) or equivalently takingy = @-D in the

expression for B withE, andl, constants. It is easy to find that the

term (1-B)/2 appearing in the equations (8-a,b,itl) ve multiplied
by 2. The results for this variable mass approaehshown in Fig.
7. As can be seen the solutions are equally good.

12 T T T T T T T

et —5—
variical displacemantt ——
1 é\xkﬁ‘-.kl nOmZan mEpacemat —=— |
= .,
e 1
[T = . -
_— .
HE o4 L\E\‘I '\-\.__Lﬁ\ J
~ nol G i
S \e.\& . 1
o i3]
ls] 42 - — 4
— e
L L = k
-
45 &@l“ Bl
i \ﬂ\ﬂ |
-1 1 1 1 1 1 1 1 1
48§ F] 35 3 25 2 15 B 05 o

Figure 7. Logarithm of the normalized period versus the logarithm of the
relative length of the elementary segment for variable mass proportional
to the total wire length. Cases I,Il and III.
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The values obtained are in agreement with the

Copyright O 2008 by ABCM

Inverse Problem

More interesting is the inverse problem. The qis# find out
the topological characteristics of a primordial sence given a
representative term of order n. L&, be such a term of the

primordial sequence. Build up the correspondmmt@ of the
of'fsprlng sequence. Let the total length ®f, and consequently of

» be Ly and the projection on the horizontal axis be edoadl,.

The question now is to find out whether or not sofrectal
structure, if any, can be associated to the primabrsequence.
Select first one of the uncoupled displacements,vu,or 6
corresponding to cases |, Il and Ill respectivElgllowing a similar
procedure as that introduced to obtain the dyn&matal dimension

for the direct problem, obtain first the periogof én .

The second step is to cut off successively frén a subset

©nh/1:9n/2-.-Oym 10 get an offspring sub-sequence with

projections l, Ly, . LymoOn the horizontal axis and find the periods
To, T, ...Tum Of these new oscillators subjected to the same
boundary conditions. Fig. 8 displays an examplévddrfrom the
Koch triadic. If the original object belongs to arficular fractal
primordial sequence then it is possible to showt thiae
corresponding dynamic fractal dimension can beinbthfrom the
offspring sub-sequence as explained above. Morethere exists
also a self-similar primordial sequence subjacenthe terms [,
Ly, . Lum Consider the # order term. For case Il the vibration
perlod of the Mt term of the offspring sequence is given by:

JImkm An

(Tm )2: Eolo Lm

ﬁ/f%%/\ﬂ& " ﬁ% "
< > «—

9)

m)

Lﬂ Ll
® Mg
—— -
Lj Lk

Figure 8. Samples L;, Lj,...
curve L.

Lk with different sizes extracted from the original

It is assumed that the rotation inerfig can be variable. Note
that for this case the length of the elementarymeey is 4,
corresponding to the ter®,, . Let us taked,, =0,ymJ, WhereJ,
is the rotation inertia for the original term. Thiat the rotation
inertias corresponding to the samples are propwtiado J,.
Equation (9) can be rewritten:

M Jnkn Nodn _( |||)2
(Tn/m)2 Un/m m Un/m

Elp L, (10)

January-March 2008, Vol. XXX, No. 1/ 15
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Now L., is a subset of the original set.LThe subset |} is
scaled relatively to Lsuch that |, = bL,. (‘I’m)2 [

mthLO nN Q ] Qn/m (13)
N

EO'O I-0 n Qn
Proposition 2 Let L, be the horizontal projection of a sample
cut off from a fractal curve whose horizontal pxdjen is L, if Ly, We introduced now the following proposition haviimg mind
= byl, then N,=pm (b)° N, provided that the curve is a term of athat the termsa; (n) are quadratic functions of the ordinates of the

sequence belonging to the clasg Np* and /Lo = (1/a) The  comers of the A order element in the series:

correction factorp,, depends strongly on the boundary conditions . ) o

and varies within the interval < pp, <1+ ¢ wheree is small for Proposition 3. Let Ly, be the horizontal projection of a sample
sufficiently large . cut off from a fractal curve whose horizontal peijen is L,. The

The factor b,)° can be interpreted as the stretching ratio, that iéruncation of order m, i.eQ;y, of the quadratic formQ, is
the total length of the sampl®,;, given by/i,Ny, divided by the gjven by Qn/m = rn/anbr%, where by, = Ly,/Ly , and 1 < ryp
total length of the original curv®, given byi,N,. That is, the <1+e,eis sma_lll and depends on the boundar_y conditiomuideg
ratios of the stretched curves divided by the aiive factorp, thatthe curve Is a term of a sequence belongirtgealass = p
constitute a fractal sequence with the same diroengi as the and4/Lo=(1/a). _ o

B B, th | of thi ition i lid £ After propositions 2 and 3, with the mass variatgiven by
curvesd, , O, themselves. Of course, this proposition is valid fo My, =0y, » the equation (13) reads:
regular curves and for sufficiently large scalesackal theory of
plane curves, and in general fractal theory, habeicseen as the
geometric counter part of the fuzzy set theory.r&hare relations (Tn' /m)z T202 ™ a1 mbmPm (14)
that are approximately valid or valid under certgilcumstances.

Introducing this correlation in Eq.(9) we obtainteaf some qr:
simple operations:

n/m o 1 1
log = Blogb, +Elogrn,m +Elogpm (15)

I"I

n

D 1
Iog[ ;”"J 2Iogan/m —10glbtm) + > logan (11)
Now considering, as previously, the cases of comstaass

) . o On/m =1, mass proportional to the total length of the damp
Consider now three possible cases. Constant ineyjg, =1,

_ _ D . . .
inertia proportional to the total length of the gdhen In/m =Nm/Np =by and mass proportional to the projection of

Onim=Nm/Ny =bP and inertia proportional to the projection ofthe sample on the horizontal axiszy/m =Lm/Ln =by , the

the sample on the horizontal axisy,;y, = Ly/Ln =by, . For those  corresponding three values Bfare obtained:
three cases equation (9) takes the following fonespectively: 1 1
B :E(D+2) ,B=(D+1) and B :E(D+3)
Iog[ = m] loQ(bm)+%|ngm (11a)

n Case Il is similar to case |. Proposition 3 holds ¥,,,,, and

Y, in the place of Q,/,, and Q, and s,,, defined as

1
n/m =
|09[ T ] DIOg(bm)+2|ngm (11b) W m = SymWabZ varying within the same limits as,; .

n
Therefore, equation (15) holds for the case Il végh,,, in the place

of rh/m-

Next let us present some numerical experiments.siden the
sequence of cuts of the Koch triadic as shown q8FiThe results
For cases | and I, the solution can be deducddvibig the corresponding to cases |, Il and Il with constanass are depicted

steps introduced previously. Equation (7) adjudtedthe present in Fig.9 and Fig.10.
case, considering variable mass, reads:

Iog( “T"“J ;(1+ D)Iog(bm)+%logpm (11c)

n

1

" mamont —&—

(Tnllm mthLO /]n N Qn/m (12)
Eolo LO -1
Here the termQ,,, is the truncation of order m of the term ®

B
Q,, defined before, that is: E a
N -
1 m

Qn/m _N_ Z ( ) <

where the parameters; (n) refer to the elements of order n. Note

that here the integer m serves onIy to count thebmu of segments

and has nothing to do with the"melement of the series. EquationFigure 9. Assessment of the fractal identification procedure through the
(12) can now be rewritten as: dynamical test for cases I, Il and Ill. Successive terms scaled with 1/b=1.3.

-+ -5 -1 25 -2 1.5 -1 05 [}
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Table 3. Average slope and corresponding approximated fractal.

Type of motion Ster D
Case | 1.63515805 1.2708
Case ll 1.63107795 1.2621

The reference term corresponds to tfeem in the primordial
sequence and the cuts are such that two consedetives of the
offspring sub-sequence scale always with the saatie, rthat is
I—m+1=b|-m-

The slopes of the interpolated straight lingg.Sbtained by
minimizing the root mean square deviations frompgbhats derived
from equations (11-a) and (15) properly adjustedctses | and Il
are shown in tables Ill and IV. Clearly it is sebat the nonlinear

term I/,

causing the more significant deviation — 1.38%o#fthe expected
fractal dimension in comparison with 0.34% for clsand 0.614%

for case Il with the scale factor equal to 1/1s3depicted in Fig. 8.
Nevertheless even the largest deviation is quite@able. Note that
for the scale factor equal 1/2.0 — Fig. 9 — theiat@ns fall down

considerably, 0.669% , 0.019% and 0.264% respédygtioe cases

I,II and lll. The reason for this reduction is tHat this particular

scale the terms of the offspring sub-sequence ateat very

particular positions preserving the integrity ofetkKoch triadic

generator along the length of each term.

a1 Tg)
[

i i
25 -2 -15 -1

legiL /gl

i .
-4 -5 -3 05 ]

Figure 10. Assessment of the fractal identification procedure through the
dynamical test for cases I, Il and Ill. Successive terms scaled with b=1/2.0.

Table. Average slope and corresponding approximated fractal.

Type of motion Seer D
Case | 1.62220225 1.2444
Case Il 1.63113080 1.2622
Case llI 0.62707315 1.2541

Under more general conditions the offspring subsage may
be cut at random, that is, the extremities of a@anmay not
coincide with any particular convenient points loé fpreceding one.
In any case it is important to observe that vergrskamples may
introduce relatively large errors in the analysiss convenient to
keep the shortest sample with a projection lengipOL4L, as
indicated by numerical experiments since the dynamfractal
characteristics fade out for very short lengths.

The solutions corresponding to variable mass ptapwl to the
total length and to the projection on the horizbragis of the
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and possibly,, introduce large perturbations for case |
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samples are presented on Figs.11-a,b for the $aeter equal to
1.3.
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Figure 11. Assessment of the fractal identification procedure through the
dynamical test for cases I, Il and Ill. Successive terms scaled with 1/b=1.3.

Variable mass proportional to the total length (a) and proportional to the
horizontal projection (b).

Clearly the most sensitive case corresponds tohtreontal
force with deviation of the order of 5%. It is inteting that this
disadvantage of the horizontal force for the regulaterministic
case turns out to be a great advantage to idematifjlom deviation
in the formation process of the Koch curves as bédlseen in the
next section.

Random Fractals

In this section we will examine a simple case ofd@m fractals
using again the Koch triadic as the fundamentadregfce curve.
The random character is very simple, neverthelesg Mustrative
to show the power of the dynamical dimension. Rebat the Koch
triadic sequence can be built up using each pregeerm to derive
the next one.

Consider the term of order k of the random Kochdig¢ as a
support. Attach to each elementary segmignthe Koch triadic
generator properly down scaled, that is, with asbl@mgth equal to
J and elementary segmentd;,; = A, /3, call it G..

Now the randomness introduced here is simply towalthe
orientation of the s to be taken by chance starting with the first
term of the sequence k=1. This formation law ctsravith the
well organized deterministic Koch triadic as intnodd earlier. So
the terms obtained are not strictly self-similashewn in Fig.12.

The Hausdorff dimension for this fractal sequerscéhe same as
that for the deterministic, well organized, sethdar, Koch triadic
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sequence, that is B1,26186. The reason is that the outer measur

of the cover for this sequence is undistinguish&iole that used for
the deterministic Koch triadic. Therefore the Haaréddimension
does not detect the randomness of this sequencanguow to the
dynamical dimensional we have at least two possésl Consider
first the case Ill. In that case the strain endggthe same for all
elementary segments of a given term k. Therefagesthain energy
corresponding to any two different terms, k and lseales exactly
as determined by the Hausdorff dimension. Consetyutire result
obtained with the boundary conditions correspondinthe case |l
should lead to the Hausdorff dimension.

Generator Gy :
Koch Triadic

Figure 12. Example of three first terms of a random fractal generated by
the Koch triadic.
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Figure 13. Logarithm of the normalized period versus the logarithm of the
relative length of the elementary element for six random triadic sequences
for case L.

This is clearly apparent from Fig.13. Six randongusnces
were generated independently. The straight linpsesenting the
logarithm of the normalized periods versus the flitigan of A, /L,

coincide for all cases. The straight line slopelteto the value of
the Hausdorff dimension within the expected appration

interval. Now if we plot the normalized periods iemponding to the
case | the results are not regular as shown irl&igrhe reason is
that the strain energy doesn't scale as assumetheoyHausdorff
theory. In this case even small deviation from ttlassical

deterministic triadic is detected by the perturtratbn the energy
distribution.
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Figure 14. Logarithm of the normalized period versus the logarithm of the

relative length of the elementary element for six random triadic sequences
for case I.

Conclusions

As far as we know, the concept of dynamical fradiadension
has not been explored before. This first attempt $tzown to be
encouraging. Although this paper deals with Koctves, numerical
experiments have shown that this method applies fs more
complex curves (Barros 2007). The dynamical fraciahension
depends on the distribution of the elastic enedye to bending,
along the components of the offspring sequencthefdistribution
is uniform the dynamic dimension coincides with tHausdorff
dimension. The reason is that this uniform distitnu is the
dynamical equivalent of the cover proposed by Hatféd~or non
uniform distributions the dynamical dimension maneerge to a
different value. If on one hand the diversificatiohthe boundary
conditions determines the multiplicity of dynamichimensions on
the other hand it may provide meaningful informatfor random
fractals as shown in the previous section. Thia great advantage
over the classical methods that are unable to @eovsuch
information. Another interesting outcome is thatrotigh the
comparison of the results obtained experimentalth weal objects
— wires — where all the energy components areeptes bending,
shear forces and normal forces — with computatioesiilts taking
into account only the bending energy, it is possibl determine the
contribution of shear and normal forces for thaltefastic energy
stored in the wire. Therefore we don’t see the apittueness of the
dynamical dimension as a disadvantage of the metthedpoint is
that additional information has to be provided whgoes together
with the dynamical dimension.

It is important to remark that the theory developkedre
disregard dissipative effects. The inclusion of darg introduces a

correction factor on the frequency equal 2 whereg = clo

and 2c is the damping coefficient. This factor i®qgtiency
dependent and therefore will disturb the
relationT, /Ty = f(A/Lo) . How this new function would provide

information about the fractal characteristics o gequence under
consideration deserves further investigation. Magdi®e important
information about damping effects could be obtairfezm the
behavior of this new function.

We have shown with simple examples that the fratitaension
of a given primordial sequence may be unrelatedht fractal
characteristics of the offspring sequence. Thisneehat physics is
not always hooked up by geometry. Nature can takergtage of
this property and human design as well. Here wee ldmalt with
dynamical characterization but certainly other ¢glsphenomena
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could be used. Mandelbrot (1982) discussed seezeathples where
fractal geometry is present in nature. Particularly biological
phenomena (Bassingthwaighte et alli, 1994) thedtigation of the
fractal aspects of geometry and physics could Ipéoead.

The theory is barely beginning so there are mdtgassibilities
to explore theoretical developments as multi-fisctaand
applications as the fractal nature of compositeenals and tissue
fibers.
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Appendix |

Consider a fractal obje@. Let B a countable set of Borel balls

ball. Let this set to be a cover Bf that is,)X belongs to NB;. The
outer measure of the cover is defined to be lesqoal to the sum
of the diameters of all balls of the cover. Thelimensional
Hausdorff outer measuité(s,r) is the infimum of the all measures
raised to the powey of all such covers, that is:

H(s,r)=inf [z (diameterB)sj

Moreover there exists one and only one numhgr Befined as
the Hausdorff dimension of the fractal object stheit:

im (H(s,r) =  forall s>Dy
r-0

im (H(sr)) -0

forall s<Dy

Application for the Koch triadic.

B; with radiusr — the largest distance of two points belonging to the

M=1/3,N=4

For this case it is easy to see that the minimeécof a general
term of order n consists of balls with diameter acgio An = (LO
/3)n Therefore:

(< A3 e o 346

Now the limit when 2= (1/3]' — 0 is equivalent to let A» co.
Let D= log4 / log3. If s > D then H> 0 and if s < D then H».
The measure jumps from zero to infinity when srscjsely equal
to log4/log3. According to the definition of the talorff
dimension:

s =D =log4 / log3 is the Hausdorff dimension leé Koch triadic.

Appendix Il

We want to show that the first derivative of théngar termQ,
with respect td is finite for increasing values of k. Recall that:

Qy :i’\gai (k) and
Nk i=0

First let us writey;(K) under the form:
ai(k) =322, + 72, (A1)

where:
Z; =(za+2z)/2 and Az =(z -z4)/2

Introducing equation (A1) in the expression fag we get:
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A3 =1/27, N =64

1 Nk(_ 1
Q =—_Z[42—1i +§Aziz—lij (A2)

Nk i=0
Clearly z; <1 and |A2i—1,i| <1.

A

y

Ayf—l,i

L 4

Figure Al. Mean value yj_1 j and difference Ayj_1-

Consider first the second term on the right hadé sif equation
(A2). By definition Ay,.1; = y; — ¥.1 as shown in Fig.Al and
therefore it is possible to write:

AYi-1j = Viaidk  Wih pigj <1,

from which follows:
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1
Vi = Biaidk

1
AV = h
o

Az, = h
0

Introducing this expression in equation (A2 ) wé& ge

Qi _N_Z[Zl—l,l +Z B4 j (A3)
k i=0

Now define the vector functions:

7 = [ W5 S0 5K ]
0,1 12 i TN -LNg

and
T_ (K) p(k) (k) (k)
H=sh |88 8Y, Y |

Then the equation (A3) in vector notation reads:
Qy ——(Zkzk +A ﬂkﬁ'k)

Now since:

|Zi—1.i| < 1'|:Bi—li| <1and /]k <M

for all k and M is finite we may claim thax, is finite as k-oo.
Similarly the term of order k+1 can be written as:

T = 1
(Zi-(r+12k+l +§Aﬁ+1ﬂll—+lﬁk+lj

Qui =
k+1

where the components gf., are proportional to the ordinates of the

corners of the curve corresponding to the term rofeo k+1. In
general we may write:

To_ 1 { (k+2) o (k+1). (k+2)
k+1  hy Yo YT Y2 -

gl }

z YN+

Referring to the preceding term in the sequencshasvn in
Fig.A2 we have:

T
Zier T ho {yO

(9,09, {6

01" (p 1)

(k)

i+l

};

£
e S

.
>

Figure A2. Term of order k+1 attached to the previous term of order k. MN
=A Mm=mn=no =or =rN = Ag1.
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Note that
y(lz —y(r')‘,f;) , y.( )‘yg(,ﬂ),ylg )—yg‘,ﬁ) ,1=0,.N-1j=1..p-1

represents respectively the ordinates of the ceroérthe K'
curve in the sequence and the ordinates of thedadoimers for the
(k+1)" curve. It is possible then to decompose the vegtgiin the
following way:

Zi41 = Ug {YSk)yj(_k)yg\ll(z }T +

Ty
+K{ 0.y -5 A o

Yor- (Zx 1)Y1

whereU,; andU, are Boolean matrices.
Now, with this decomposition it is not difficult how that the

vector 7., can be written as:

Zv = Rz + R(Azk)+)lkpk+1, where
(k+1)

|

nd R is a Boolean matrix.
Now using the definition of Q.

(42) = Ay

and recalling that

2 T
A1 Brs1Brsa

1
Qi =Q +
k+1 k+1 3Nk+1

where:

O =—1 (3 R Rz, + 24T R Rpy o+
Nk+1

(Akﬂ-kr RTRZ, + ApraaRZ + /‘ﬁPLlRﬂk)
k+1

2 T
(/‘kpk+1pk+1)

k+1

Recalling that:

<1 ‘ pi(k+l)

791<1 |59 <1 |5 =
‘ (k)‘<l,‘ﬂ(k)‘<l,‘ﬂ(k 1) <1

Nis1 = PNi, Ak = Ac/q

and thaRR is a Boolean matrix we arrive at:

1 T 1
N ( p(ZEZk +§/]Eﬂll—ﬂij +

+ ARy (K, k +2) + 2Ry (K, k +1)

Q1 =

whereR(k,k+1) andR,(k,k+1) are finite for all k, max®, , R;) <M
(finite). Finally we get:

Qg = Qg +/1kR1(k,k+1)+AER2(k,k+1).

Now noting that:
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