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In mechanical system modeling, uncertainties arespnt and, to improve the
predictability of the models, they should be taketo account. This work discusses
uncertainties present in boundary conditions udimg model of a vibrating Timoshenko
beam, free in one end and pinned with rotation traimsed by a linear elastic torsional
spring in the other end. The Finite Element Metlsodsed to discretize the system and two
probabilistic approaches are considered to modeldhcertainties: (1) the stiffness of the
torsional spring is taken as uncertain and a randmariable is associated to it
(parametric probabilistic approach); (2) the whokiffness matrix is considered as
uncertain and a probabilistic model is constructieat the associated random matrix
(nonparametric probabilistic approach). In both appches, the probability density
functions are deduced from the Maximum Entropy ¢¥pie. In the first approach only the
uncertainty of a parameter is taken into accoumgdan the second approach, the
uncertainties of the model are taken into accoglabally. Both approaches are compared
and their capability to improve the predictabiliy the system response is discussed.
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Introduction

Uncertainties have been studied in order to improlve
predictability of models. In a general way, uncatias can be
classified in two types: data uncertainties and ehadcertainties.

The aim here is to model uncertainties presenterbbundary
conditions of a beam, considering those two tygesoertainties.

This work has, basically, two main motivations. Tirst one
comes from the fact that, in general, natural fegmies measured
from a cantilever beam do not match the naturafjuescies
predicted from numerical simulation, even if themauical errors
are minimized. The second one is to investigatenttrgparametric
stochastic approach (which takes into account modekrtainty)
for uncertainties on the boundary conditions.

Probability tools are used to model the uncertaiurigary
conditions, that is, random variables are assatitte¢he uncertain
parameters or matrices and probability density tons are
constructed. The strategy used here is the samieagdp Soize
(2001, 2005), Cataldo et al. (2007, 2008, 2009), &ampaio and
Soize (2007).

The process of modeling mechanical systems intmesluwo
types of uncertainties: (1) uncertainties relatedhie parameters of
the model such as geometrical and constitutiverpeters, which

First, the torsional spring is considered uncertaid a random
variable is associated to it. This randomizatioocpss is called the
parametric stochastic approach because model aimdgrtis not
considered (a probability density function is comsted for a
parameter of the model). Afterwards, the wholefregs matrix is
considered uncertain. This other randomization gseds called the
nonparametric stochastic approach because moddrtaimty is
taken into account (probability density functiome aonstructed for
the matrices used in the model). This second approaas
developed by Soize (2001, 2005).

In order to construct a probabilistic model, thecessary
probability density functions are constructed basedhe Maximum
Entropy Principle (Jaynes, 1957a,b) and this sisat®nsiders only
the available information to construct the prohiapildensity
functions. Among all of the possible probabilityndéy functions, it
is chosen the one with the maximum entropy (or ttaggy). This
concept of entropy is the one used by Shannon (1848 some
applications of this method can be found in Kapnd &esavan
(1992).

In order to avoid misunderstandings with deterntinignd
random variables, the deterministic stiffness isaded byk; and the
corresponding random variable is denotedKpyThe deterministic
stiffness matrix is denoted bK], and the corresponding random
matrix is denoted byK]. The mean value associated with the

we call data uncertaintiesand (2) uncertainties due to the moderandom stiffness matrix is represented K [

chosen (beam theory, shell theory, etc.), includingundary
conditions, which we cathodel uncertainties

To discuss uncertainties present on the boundanrgitons of a
vibrating beam, the model used is a Timoshenko bieaenin one
end and pinned with rotation constrained by a liredastic torsional
spring in the other end. This model is the one psep in Ritto et al.
(2008) and it shows good agreement with experinheasalts. The
uncertainties analyzed are those related to thsotwal spring and,
also, related to the stiffness matrix, in the cgpanding discretized
problem using the Finite Element Method.
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The organization of this article is as follows: @&t 2 presents
the mean model, that is, the corresponding detéstiinmodel.
Section 3 presents the procedure to build the spomding
stochastic problem, i.e., the stochastic model8egtion 4 presents
the numerical simulations where a stochastic Mdbéelo solver
(Rubinstein, 1981) is used to generate the indegr@nickalizations
of the random variables, and, finally, in Sectioncéncluding
remarks are outlined.

Nomenclature

A = cross section area, m?2
conv = convergence function
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det = determinant of a matrix

E = elasticity modulus, Pa

f = excitation force vector

f = force vector in the frequency domain

G = shear modulus, Pa

h = Frequency Response Function

H  =random Frequency Response Function

I =moment of inertia, th

ks = shear correction factor

k. = torsional stiffness, N/m

I = element size, m

L = beam length, m

ns = number of Monte Carlo simulations

px = probability density function of random variab¥e
T  =Kkinetic energy, N.m

tr  =trace of a matrix

u = displacement vector

U  =random displacement vector

a = displacement vector in the frequency domain
U  =random displacement vector in the frequency domai
U = potential energy of deformation, N.m

[C®)] = element damping matrix
[K®)] = element stiffness matrix
[M®)] = element mass matrix

[C] = damping matrix

[K] = stiffness matix.

[K] =random stiffness matrix
[M] = mass matrix

Greek Symbols

o0 =dispersion parameter of a probability distrilori, or
symbol of variation (depending on the context)

p  =density, kg/mh

1g(X) assumes value one if x belongs to B and zéreretse

Subscripts
a axial
r rotation
v vertical
1 node 1
2 node 2

K; torsional stiffness
[K] stiffness matrix
Mean Model

Figure 1 sketches the beam geometry as well tlite falement
used for the discretization.

In Fig. 1k is the torsional stiffness, is the length of the beam,

h andb are the dimensions of the rectangular cross settiarea,

andu® = [ug, Upy Uyr Upa Upy Uy] T is the displacement of an element.

Thiago G. Ritto et al.

Each finite element of the Timoshenko beam modsl theee
degrees of freedom (axial, vertical (or transveraajl rotational) at
each node. This model takes shearing into accamt,the cross
sections remain plane (but not necessarily perpetati to the
neutral axis), as shown in Fig. 2.

The degrees of freedom are: the axial displacerqg)t the
vertical displacementu(); and the rotationu). The shear angle is
given by

_ou, ..
T

The variational form of strain energy is given hy.@&):

= J: [dJ;(EAU;)+ a, (Elu'r )+ J(ur - u’V)GAIg(ur - u’v) X+
+ku, (0,t)ay, (0,t)

@

We denote the derivative with respecktby a prime;, E is the
elasticity modulusG is the shear moduluks is the shear correction
factor, | is the moment of inertid, is the beam length, aridis the
cross section area. The last term in Eq. (1) etedlto the torsional
spring in the boundary= 0.

The virtual work done by inertial forces are giiBnEq. (2):

or = J‘OL ou, (pAd, )+ ou, (pAd, )+ du, (pld, )dx @

To give more flexibility in applications, damping taken into
account as a Rayleigh damping proportional to tlesan(C] =
a[M], wherea is a positive constant. Note thataif= 0 there is no
damping. It is a standard procedure to construet ¢fement
matrices, see for instance Sampaio and Ritto (2068)an (2007);
Reddy (2005) and the shape functions used for adtenko beam
can be found in Nelson (1980); Bazoune and Khi{#602).

(140 0 0 70 O 0
0 15622 0 54 -13
© 110 22 42 0 13 -3?
M@= pa :
4201 70 O 0 140 O 0
0 54 13 0 156 -22
| 0 -13 -3°% 0 -22 47|
[c]=a[m] (3)

g I?T"‘” u,
| Ot» g
b

Figure 1. Beam sketch (left) and beam element (right).
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Timoshenko Beam with Uncertainty on the Boundary Conditions

0(e) = (- arm] +iafC]+ [K]) ()

- ()
>\ A u, Let va be the Fourier transform of the force compongnt
| }\ //f,/—'/";> applied ax = L, and@,, be the Fourier transform af,, which is the
o T~ N ,.;",/ vertical component of the displacement vectoxat L. For the
o | T e e T cantilever beam, the point= L is the most appropriate to observe
: \Eg_/// /// \\v/;ry the response, so we are mostly concerned with &fe () defined
w, ST i i by Eq. (8):
|00
Ui i U, (@
g —— - h(w) = (@) ®)
A P @)
| %10 | %24
! An example is performed considering a homogenecatenal
Figure 2. Timoshenko beam model. and uniform geometry with E =e21N/m2,a = 2.5,k = 10 N/m, p
= 7850 kg/m3,v = 0.3,L = 0.5m,b = 1cm, andh = 5cm. The
convergence is checked using the Rayleigh coefiigiésen by Eq.
[AQ+m)l 0 0 - A1+ m)i (9):
0 121713 6l /17 0 T
_.2_9%IKlg
" E 0 61 /12 41(1+m/4)/I 0 Ray =af -# ©)
[K =p 4 [M ]W
1+m|-Al+m)I 0 0 AL+m)/
0 121713 -61 /12 0 wherew; is thei-th natural frequency ang; is the associatedth
0 61 /12 21(1+m/2)/1 0 Normal Mode. For a precision of 99% in the fourtirmal mode, it
was necessary to construct a mesh of sixteen fel@ments. The
0 0 - corresponding FRF is shown in Fig. 3.
121718 6l /12 FRF - Mean model
4 ;
-61/12 21[L+m/2)/1 @ "
0 0 ’
121 /13 -61 /12 107
-61 /12 41(1+m/4) | z
E
where ="
L
12\ El 5
(=}
m=|— | — g
(I 2 j{GAKJ 2 10
andl is the size of the element. ol
The essential boundary conditions xat= 0 are given by ok

ua‘x:o =pand UV‘X:O = 0and after assembling the matrices, from the

system discretized using the Finite Element Methgd, (5) is
obtained:

[MTu() +[Clu() +[K]u(t) =f(t), (5)
where M], [C], and K] are the mass, damping,
matrices, which are real and positive-definite. Exéernal force is
represented by the vectd(t)” = (1, f1y fir f2a fov far ... for ) @nd the

displacements (15 Uy, Uy, Uy Ugy Uy ... Uy, ) are the components of
the vectou(t)" .

Frequency Response Function (FRF) — Mean Model

The resulting linear dynamical system written ie frequency
domain is given by Eq. (6) (Ewins, 1984):

(-eM]+iadc]+[K])i(e) =F(w) ()

and St'ﬁnesscomputed on frequency bargi= [0; 1000] Hz, and the first four

natural frequencies are 18 Hz, 113 Hz, 314 Hz &8iHz.

-
100 200 300 400 500 &OO 700 800 900

Frequency (Hz)

Figure 3. Frequency Response Function.

The finite element approximation of the displacetmeas

Stochastic Model

The corresponding stochastic model is constructedosing

parameters and matrices as uncertain and assgciaindom
variables to them.

The problem is, then, divided in two cases: (1)amametric

stochastic approach, in which only the stiffnesstlaf torsional
spring is chosen as uncertain and a random varigfassociated to
it, and (2) a nonparametric stochastic approackhich the whole

stiffness matrix is chosen as uncertain and a manduatrix is

So, the response in the frequency domain is giyeedo (7):

J. of the Braz. Soc. of Mech. Sci. & Eng.
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The construction of the probability distributiorssdrucial in a
stochastic analysis and a strategy should be adlofie their
construction. Here, it is used some informationuktbe random
variables we are sure about. Then, the MaximumapgtPrinciple
is applied to obtain the distribution that maxinsizBe uncertainty,
given the information we know about the variablBsis is a good
strategy to be adopted when there are not manyriexgetal data
available because we assure the coherence bethveenalizations
of the random variables and the physics of the Ipmb More
examples can be found in Soize (2001), Cataldd €2@08).

In both approaches, the deterministic stiffnessrimdK] is
substituted by a random matriX], in Eqg. (5). However, the
construction of the probability density function llwichange,
depending on the approach used. So, we can relqit€l0) as:

[M]U() +[CTU() +[K]U(t) =f (1) (10)
whereU is the stochastic process associated with thensspof the
corresponding stochastic system. Writing Eq. (bO)hie frequency
domain, we obtain Eq.(11):

(-a# [M] +iw[C] + [K]) 0 (e = f (w) (11)

Probabilistic Model of the Torsional Spring Stiffness

The first probabilistic approach to be used is #ue called
parametric stochastic approach, in which the uatertorsional
spring stiffnessk, is modeled by the random variatfg, and an
appropriate probabilistic model is constructed. e for granted
that the values of the parameters one wants tooraizé are
constrained by the physics of the problem. A prdlsiic
distribution has to be assigned to these possilaleies. The
probability of values that are not admitted is,cofurse, zero. For
example, supposing that the parameter is the tygids values are
no positive real number. To assign a normal distiiim to the
rigidity is, of course, wrong, since this assignimereans that the
rigidity might be negative. Unfortunately, thiss£ommon mistake.

The strategy used here is based on the Maximumogntr
Principle and the usable information ab&uytre: (1) it is a positive
random variable, so its support is ]®[+ (2) its expected value is
known and it is given b¥E{K} = K ; and (3)E{1/KZ < +oo,
because the displacement of a spring with randdémess should
be a second order random variable. To understaisl I&st
constraint, consider a simple mechanical systememéd= ku. If
the stiffness is random, the displacement is randbm KU.

Thiago G. Ritto et al.

0<5K <4/1/3.

because the random varialte must be a second order random
variable, i.e. E{ K} < +oo.

To generate realizations of the random vari&b|dollowing the
probability density function given by Eq. (12), theatlab function
GAMRND(a,p) is used, wherer = 1/d and 8 = k. are its
corresponding parameters.

Probabilistic Model for the Stiffness Matrix

Now, the stiffness matrix, as a whole, is takemmsertain. The
goal is to discuss globally the uncertainties eglaib the modeling
of the stiffness from the discretized system. Abadaulity density
function is constructed directly for the correspimgdrandom matrix
[K]. This is done following the ideas described iniz6o(2001,
2005).

As the goal here is to investigate the limits oé ttochastic
model, the matrix randomized is the one obtainednkegns of the
FE discretization (instead of the reduced matMatrix [K] is a
positive-definite matrix and can be decomposed [(&fky
Decomposition) as in Eq.(13):

[K] = [Ld" [Ld]

where L] is an upper triangular matrix.

(13)

Consequently, the random matrik][can be written as in Eq. (14):

[K]=[Ld"[G] [Ld]

where [G] is a random matrix such that: (1) it is positidefinite;
(2) its expected value is the identity matrix,pG]} = []; and (3)

E{H[G]-lui}<+oo, because writing Eg. (10) in the frequency

(14)

domain, the corresponding stochastic equation hascue second-
order random solution if and only E{H[K]_luz }<+w, wherell.llf is
F

the Frobenius normi[A]llr = tr((Al[A] D) V2

The probability density function off] is constructed using the
Maximum Entropy Principle and it is given by Eq.5)1(Soize,
2001):

mo6] =1, (6] Codelle]) ™5 expl -

0 D]} @9

wheren is the dimension of the matrixg] and Cg is given by Eq.

Physically,U must have finite dispersion (must be a secondrordé¢l16):

random variable), i.eE{U% < +o, thenE{U?%} = E{(fIK)?} =
E{(1/K)? < +o0. SOE{1/K?} < +0o,

The probability density function oK; using the Maximum
Entropy Principle, yields (Soize, 2008):

1(1)% 1 o ok )2
pKl(K):llo,m[(kr)K‘[a;J W(Ej ex‘{oﬁﬁ‘j( )

where &, is the dispersion parameter amdz) is the gamma
function defined foz > 0,

r(z)= [tedt
0
There are limits for the dispersion parameter:

298/ Vol. XXX, No. 4, October-December 2008

(Zﬂ)‘n(n—l)m( n+ 1)”("”)(2‘52)1

.. P2 16)
c L (n+1 1-j
{n"“r[zaz )
The dispersion parametéiis given by Eq. (17):
1
1 2
6:{; E{n[G]—[I]ui}} ' )
and
1/2
0< 5< [Lﬂj .
n+5

ABCM



Timoshenko Beam with Uncertainty on the Boundary Conditions

The matrix [B] is built, for each realization of matrixK[,
decomposing (Cholesky decompositio®)] [ [G] = [L]T [L], where
[L] is an upper triangular real positive-definite dam matrix such
that:

» The random variables{[];,j <j'} are independent

* Forj < j the real-valued random variable]f;, = aVj; , in

which o = &n+1)*? and V; is a real-valued Gaussian random

variable with zero mean and unit variance.

* Forj=j’ the real-valued random variable]f; = o(2V,)
which V; is a real-valued gamma random variable with prdhry&lb
density function:

1/2

n+l 1+

v2® 2 exp(-v)

1 (18)

n+l 1-j
+

r( 20° 2 ]

It can be noted that the random variables are gearby a
normal distribution \f; j #j') or by a gamma distributionVf j =
j’). Both of them are generated by Monte Carlo situis using
the Matlab, functions NORMRND(0,1) and GAMRN®/), with

[n+1 1- Jjandﬂzl.

20° 2
Convergence of the Stochastic Solution

Let [U(6.c)] be the response of the stochastic system casmila

for a realization 8§ generated by the Monte Carlo method

(Rubinstein, 1981). The mean-square convergencéysisawith
respect to independent realizations of the randariable O,
denoted blej(H,a)], is carried out studying the functiog}— conv
(ng) defined by

cony{n,) 6)|fde- (19)

)= 310,
n ji=1B

For each realizatio®, the FRF Hf,«), according to Eq. (8), is
given by Eqg. (20):

U (6.0),
f ()

As the goal is to compare the parametric and nampeiric
probabilistic approaches, it is important to kndw talue ofs (Eg.
19) beyond which the prescribed approximation &ched, that is,
convergence is assured. This convergence analyssparformed
for different values of the dispersion parameted @nwas verified
that the solution always converges fgr= 500. Figure 4 shows an
example for the functiorcony considering the nonparametric-
approach, withgy; = 0.1

(6? a)) (20)

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright O 2008

o w*Convergence (Nonparametric), §=0.1

[
=]
T
L

oul
=1}
I
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w
1
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=3}
1

mean square value (rﬁ)

M
2
|
T
1

276 .
1] a0

1 1 1 1 1 1 1
150 200 250 300 350 400 450

Number of simulations

1
100 500

Figure 4. Convergence in the mean square sense.

Numerical Simulations

In order to better examine the results, fifty reaions of the

random FRFH are shown in Fig. 5, using nonparametric approach,

with g = 0.1

FRF, x=L, 8=0.1 (Nonparametnc)

logth{®)) (m/N)

i I 1 i
400 500 BOO 700

Frequency (Hz)

i i i
o 100 200 300

Zoom image

log(h(w)) (m/N)

N i i
BED 680 700

i I )
B00 620 640

Frequency (Hz)

Figure 5. Fifty realizations of the FRF of using the nonparametric
approach ;= 0.1 (top). Zoom image (bottom).
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FRF, x=L, 3=0.1 (Nonparametric) _ 1 and
104 : : . : : : JK‘ B 058
] Mean model
== =fylean of the probabilistic rmodel
A . —ijparametric - 98% confidence limits |- + 1/2
10 i : . 9] =(4971)1/2= 096
(49+5)

In the top of Fig. 9, it is shown the confidencgiom for both
parametric and nonparametric approaches, corregppno the
Y ‘ FRF. At the bottom of Fig. 9, the mean values fothbprobabilistic
L approaches are plotted. For the parametric apprelaetbehavior of

E the limits does not change much from what was $eétigs. 7 and
8. However, for the nonparametric approach, weraste a different

log(h(®)) (m/N)

(ISP : behavior. It happens because the sample spadesf@roinparametric
SRS 4 & approach is much larger than the sample spaceh@®oparametric
L SDDFr;DDueErDIDc (BF_';Z)m” 800 =00 approach, and the nonparametric approach is ableake into

q i account model uncertainties, see Sampaio et a@.7(20
Zoom image
i
| ====tdean of the probabilistic madel i FRF, X=L, §=0.1
= Maonparametric - 38% confidence limits | | ot T T TS T T T T T

T
Parametric - 98% confidence limits
Monparametric - 98% confidence limits

logih{e)) (m/N)

=)

[T URRRRE. VE -
N

=70 580 550 =) B10 620 630 G40 G50 107 E
Frequency (Hz)

0 100 200 300 400 500 GO0 OO0 BOD 500
Figure 6. FRF of the mean model (dotted line), 98% confidence limits Frequency (Hz)
(solid lines) and the mean FRF using the nonparametric approach (dashed

line), & = 0.1 (top). Zoom image (bottom). Zoom image

T T T T T
Parametric - 98% caonfidence limits
Monpararnetric - 88% confidence limits

Figure 6 shows the response of the mean modell@dnean ... FRNR S S TR TR R B fd
response of the stochastic model. It should bedntitat these two : T ; P
curves do not coincide. The thick lines represérm tonfidence
region (Serfling, 1980) of 98% and it means tha thsponse is
inside the black envelope with probability 98%.

Some values of the coefficients of dispersion dresen and
confidence regions are constructed for the cornedipg frequency
response functions. Figure 7 shows confidence dirfut both the
parametric and nonparametric approaches, takng dx; = 0.1.
Note that the confidence region is larger for trenparametric
approach and it includes the limits for the paraimetpproach. Also ; j
observe that, as the frequency increases, the deonde region =0 osn s
becomes larger, showing the increase of the infeerof
uncertainties at high frequencies. Figure 7. Envelope for a probability level of 98%, for both parametric and

The coefficient of dispersion is then increaség:= CXK] =0.2. ponpar?)metnc probabilistic approaches, taking &: = dk; = 0.1 (top). Zoom
Figure 8 shows the confidence region of the FRRainbd and also image (bottomn).
the corresponding FRF obtained for the mean moldek also
shown the corresponding FRF>atL/2. Note that, in this case, the
confidence region is larger. The limits for the parametric
approach includes the limits for the parametricrapph, and, as the
frequency increases, the confidence region getgelaras it was
already pointed out in the previous case.

Figure 9 shows the results when the values of tleéficients of
dispersion are taken at their greatest valuesjshat

log(h{w)) (m/N)

=)
&
T
L

i i ; i i :
580 600 B10 B20 B30 B40  BSD

Frequency (Hz)
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Timoshenko Beam with Uncertainty on the Boundary Conditions

FRF, x=L, 8=0.2

Pararnetric - 98% confidence limits :
Monparametric - 98% confidence limits

logth{e)) (m/N)

400 500 BOO  FOD BOO 900

Frequency (Hz)

1} 00 200 300

FRF, x=L/2, $=0.2
Farametric - 58% confidence limits
Monparametric - 99% confidence limits

G O i RRTINeS i G
100 300 400 &S00 8OO FOO 800 900

Frequency (Hz)

Figure 8. Confidence region for both parametric and nonparametric
probabilistic approaches, taking &: = dk; = 0.2: response at x=L (top) and
response at x=L/2 (bottom).

Model Uncertainties

The nonparametric approach can be used to takeairttount
model uncertainties (Soize, 2001, 2005; Sampaialet 2007),
including boundary conditions uncertainties. To whbow the
methodology works, three different (deterministiddoundary
conditions are considered and their results congpavith those
previously obtained with the stochastic systemudised.

Clearly, the idea is to discuss uncertainties presea model,
and it is not to change completely the model. Hawevt is
important to investigate the limits of the nonpae#re approach in
predicting possible responses of a system.

The three cases considered are (Fig. 10):

1. Essential boundary conditions »at= 0 : u,00 = 0 and
uva=0: O;

2. Essential boundary conditionsxat O : u,[},-o= 0,
uva=O: 0 anduer=O: O;

3. Essential boundary conditions xat= L : u[-. = 0 and

uer=L: O;

J. of the Braz. Soc. of Mech. Sci. & Eng.
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FRF, x=L, 3=5
it

[=Ee

T T T T T T T T
108 Parametric - 95% confidence limits
MNonparametric -
1ot
=
T
Eq
—
_
32
=
£ 10
=
(=]
e’
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10°
0 100 200 30 400 500 BOO 700
Frequency (Hz)
FRF, x=L, 3=5
Max
P R S XXX O
Mean Parametric
" Mean Monparamettic [
10
—_
£ i
E
=
—_
=,
E
e
=
on
Re)
107
10°

200 300 400 sS00  BOO YOO 800 500

Frequency (Hz)

0 100

Figure 9. Confidence region for both parametric and nonparametric
probabilistic approach with maximum values of the coefficients of
dispersion: &: = 0.58 and gk; = 0.96 (top) and expected values for the
FRFs, with maxima values of the coefficients of dispersion: &: = 0.58 and
Jdk = 0.96 (bottom).

1) 2) 3

]{‘

Figure 10. Boundary conditions for cases (1), (2) and (3).

It should be noted that matrik] will have different dimensions
for each case because of the restricted degrefsasfom, but the
dimension does not affect the analysis.

There is no uncertainty in cases (1), (2), and 48 they have
clearly different responses, as shown in Fig. 11.
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—=—=case (1)

log(h(w)) (m/N)

i 1 I i i i |
400 800 BOO YOO 800 800 1000

Frequency (Hz)

I L i
100 200 300

Figure 11. FRFs for three deterministic cases: (1) kt = 0, (2) clamped-free
and (3) clamped-locked.

Figure 12 shows the FRFs for the three cases ohday
conditions together with the confidence limits b&tprobabilistic
parametric and nonparametric approaches previalistussed. On
the top of Fig. 12, the values of the coefficiefitdspersion are
taken as 0.4, in both parametric and nonparamapgcoaches, and
at the bottom of Fig. 12, the values of the coédfit of dispersion
are taken as their greatest values.

In both plots (top and bottom) we note that theitBnfor the
parametric approach are far away from the respgreseeived.
However, this does not happen when the nonparasregtproach is
considered. For a coefficient of dispersion of Gl confidence
region almost includes the three responses of #termhinistic
problems simulated. It does not mean that the trésdatisfactory,
indeed it is not. When the value of the coefficieftdispersion is
greatest, the limits are so wide that all possib&ponses may occur.

The confidence region for the parametric approachery thin
and therefore this methodology is very efficienttlie source of
uncertainty is concentrated in the clamped boundandition. We
should understand our system so that we can estimbhere the
biggest sources of uncertainties are located. Ifhage a good
model and we know where the sources of uncertaintee
concentrated, the parametric stochastic approadheisbest one.
However, there are cases where: (1) the model isss@mplified
because to use a more detailed model is very tionsuming, (2)
the equations to the problem are not well estabtisto we are not
sure about the best model, (3) the system changds tive
production process that changes with time, (4)esystesponses
have large dispersions etc. In these situationdést we can do is
to use the nonparametric probabilistic approachlkow for cases
that our model cannot predict. But note that tHee/af gx; can not
be adjusted a priori so that the experimental tesfit in the
confidence region. The dispersion paramet®; has to be
determined experimentally.
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Figure 12. FRFs for three deterministic cases: (1) k; = 0, (2) clamped-free and

(3) clamped-locked, together with the confidence limits for parametric and

nonparametric approaches with probability level of 99:8%. &: = d« = 0.4
(top) and maximum values &: = 0.58 and gx; = 0.96 (bottom).

Concluding Remarks

A Timoshenko beam with uncertain boundary condgiovas
analyzed in order to discuss uncertainties on tlendary
conditions. First, the stiffness of a torsionalisgrinserted in one
end of the beam was modeled as uncertain. Thenstiffaess
matrix was modeled as uncertain. Each one of tipecegehes led
to different results. Considering the same coddffits of
dispersion, the confidence region of the responese the
nonparametric approach was larger than the condieleagion for
the parametric approach. As an application, differeoundary
conditions were considered for the same beam aaddhulting
systems were analyzed.

Concerning the differences between the two appemased,
some points should be remarked:

e The numerical simulations showed that, for the pmab
analyzed and using a 98% confidence limit, the aoametric
approach includes the parametric approach. Indebd,
possible outcomes of the nonparametric approach itiea
larger sample space than the possible outcomeshef
parametric approach.

¢ In the parametric approach only one entry of mafky is
random while in the nonparametric approach the e/nwhtrix
[K]is random.

e The sample space is one-dimensional manifold fog th
parametric approach while for the nonparametricaggh the
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sample space is multi-dimensional (the dimensigredds on
the size ofK]).

It is possible to take into account model uncetitawith the
nonparametric approach, but with the parametriccggh it is
not possible.

The dispersion parameter of matriK][ Jk;, has to be
determined experimentally or else it can be adgustenclude
any response, diminishing the predictability of thedel.

e For both approaches, as the frequency increases,

predictability decreases. So, we must be carefulerwh

analyzing high frequency problems.

If we have information about the source of uncettai this
information should be used to improve the predititgbof the
system. We are dealing with a case where the wingrtis in the
model, more precisely, in the boundary conditiortgs information
allowed us to create a model to the clamped boyncamdition so
that the parametric probabilistic approach could used. The
nonparametric probabilistic approach should be dsedeneralized
uncertainties, because if the uncertainty is laeali(as in boundary
conditions), the realizations of the model may leéadases that do
not correspond to the physics of the problem studie
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