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Timoshenko Beam with Uncertainty 
on the Boundary Conditions 
In mechanical system modeling, uncertainties are present and, to improve the 
predictability of the models, they should be taken into account. This work discusses 
uncertainties present in boundary conditions using the model of a vibrating Timoshenko 
beam, free in one end and pinned with rotation constrained by a linear elastic torsional 
spring in the other end. The Finite Element Method is used to discretize the system and two 
probabilistic approaches are considered to model the uncertainties: (1) the stiffness of the 
torsional spring is taken as uncertain and a random variable is associated to it 
(parametric probabilistic approach); (2) the whole stiffness matrix is considered as 
uncertain and a probabilistic model is constructed for the associated random matrix 
(nonparametric probabilistic approach). In both approaches, the probability density 
functions are deduced from the Maximum Entropy Principle. In the first approach only the 
uncertainty of a parameter is taken into account, and in the second approach, the 
uncertainties of the model are taken into account, globally. Both approaches are compared 
and their capability to improve the predictability of the system response is discussed. 
Keywords: model uncertainty, Timoshenko beam, boundary conditions, stochastic 
mechanics, parametric probabilistic approach, nonparametric probabilistic approach 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1Uncertainties have been studied in order to improve the 

predictability of models. In a general way, uncertainties can be 
classified in two types: data uncertainties and model uncertainties. 

The aim here is to model uncertainties present on the boundary 
conditions of a beam, considering those two types of uncertainties. 

This work has, basically, two main motivations. The first one 
comes from the fact that, in general, natural frequencies measured 
from a cantilever beam do not match the natural frequencies 
predicted from numerical simulation, even if the numerical errors 
are minimized. The second one is to investigate the nonparametric 
stochastic approach (which takes into account model uncertainty) 
for uncertainties on the boundary conditions. 

Probability tools are used to model the uncertain boundary 
conditions, that is, random variables are associated to the uncertain 
parameters or matrices and probability density functions are 
constructed. The strategy used here is the same applied by Soize 
(2001, 2005), Cataldo et al. (2007, 2008, 2009), and Sampaio and 
Soize (2007). 

The process of modeling mechanical systems introduces two 
types of uncertainties: (1) uncertainties related to the parameters of 
the model such as geometrical and constitutive parameters, which 
we call data uncertainties, and (2) uncertainties due to the model 
chosen (beam theory, shell theory, etc.), including boundary 
conditions, which we call model uncertainties. 

To discuss uncertainties present on the boundary conditions of a 
vibrating beam, the model used is a Timoshenko beam free in one 
end and pinned with rotation constrained by a linear elastic torsional 
spring in the other end. This model is the one proposed in Ritto et al. 
(2008) and it shows good agreement with experimental results. The 
uncertainties analyzed are those related to the torsional spring and, 
also, related to the stiffness matrix, in the corresponding discretized 
problem using the Finite Element Method.  

                                                           
Paper accepted September, 2008. Technical Editor: Domingos Alves Rade. 

First, the torsional spring is considered uncertain and a random 
variable is associated to it. This randomization process is called the 
parametric stochastic approach because model uncertainty is not 
considered (a probability density function is constructed for a 
parameter of the model). Afterwards, the whole stiffness matrix is 
considered uncertain. This other randomization process is called the 
nonparametric stochastic approach because model uncertainty is 
taken into account (probability density functions are constructed for 
the matrices used in the model). This second approach was 
developed by Soize (2001, 2005). 

In order to construct a probabilistic model, the necessary 
probability density functions are constructed based on the Maximum 
Entropy Principle (Jaynes, 1957a,b) and this strategy considers only 
the available information to construct the probability density 
functions. Among all of the possible probability density functions, it 
is chosen the one with the maximum entropy (or uncertainty). This 
concept of entropy is the one used by Shannon (1948) and some 
applications of this method can be found in Kapur and Kesavan 
(1992). 

In order to avoid misunderstandings with deterministic and 
random variables, the deterministic stiffness is denoted by kt and the 
corresponding random variable is denoted by Kt. The deterministic 
stiffness matrix is denoted by [K], and the corresponding random 
matrix is denoted by [K ]. The mean value associated with the 
random stiffness matrix is represented by [K]. 

The organization of this article is as follows: Section 2 presents 
the mean model, that is, the corresponding deterministic model. 
Section 3 presents the procedure to build the corresponding 
stochastic problem, i.e., the stochastic modeling. Section 4 presents 
the numerical simulations where a stochastic Monte Carlo solver 
(Rubinstein, 1981) is used to generate the independent realizations 
of the random variables, and, finally, in Section 5 concluding 
remarks are outlined. 

Nomenclature 

A = cross section area, m² 
conv = convergence function 
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det = determinant of a matrix 
E = elasticity modulus, Pa 
f = excitation force vector 

f̂  = force vector in the frequency domain 
G = shear modulus, Pa 
h = Frequency Response Function 
H = random Frequency Response Function 
I = moment of inertia, m4 
ks = shear correction factor 
kt = torsional stiffness, N/m 
l = element size, m 
L = beam length, m 
ns = number of Monte Carlo simulations 
pX = probability density function of random variable X 
T = kinetic energy, N.m 
tr = trace of a matrix 
u = displacement vector 
U = random displacement vector 
û = displacement vector in the frequency domain 
Û = random displacement vector in the frequency domain 
U = potential energy of deformation, N.m 
[C(e)] = element damping matrix 
[K(e)] = element stiffness matrix 
[M(e)] = element mass matrix 
[C] = damping matrix 
[K] = stiffness matix. 
[K ] = random stiffness matrix 
[M] = mass matrix 

Greek Symbols 

 δ  = dispersion parameter of a probability distribution, or 
symbol of variation (depending on the context) 

ρ  = density, kg/m3 
11B(x) assumes value one if x belongs to B and zero otherwise 

Subscripts 

a axial 
r rotation 
v vertical 
1 node 1 
2 node 2 
Kt torsional stiffness 
[K ] stiffness matrix 

Mean Model 

Figure 1 sketches the beam geometry as well the finite element 
used for the discretization. 

In Fig. 1 kt is the torsional stiffness, L is the length of the beam, 
h and b are the dimensions of the rectangular cross sectional area, 
and u(e) = [u1a u1v u1r u2a u2v u2r]

T is the displacement of an element. 

Each finite element of the Timoshenko beam model has three 
degrees of freedom (axial, vertical (or transverse), and rotational) at 
each node. This model takes shearing into account, and the cross 
sections remain plane (but not necessarily perpendicular to the 
neutral axis), as shown in Fig. 2. 

The degrees of freedom are: the axial displacement (ua); the 
vertical displacement (uv); and the rotation (ur). The shear angle is 
given by  

 

r
x

v u
u

u −
∂
∂=γ . 

 
The variational form of strain energy is given by Eq.(1): 
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We denote the derivative with respect to x by a prime, ’ , E is the 

elasticity modulus, G is the shear modulus, ks is the shear correction 
factor, I is the moment of inertia, L is the beam length, and A is the 
cross section area. The last term in Eq. (1) is related to the torsional 
spring in the boundary x = 0. 

The virtual work done by inertial forces are given by Eq. (2): 
 

( ) ( ) ( )dxuρIδuuρAδuuρAδuT rrvv

L

aa &&&&&& ++= ∫0δ  (2) 

 
To give more flexibility in applications, damping is taken into 

account as a Rayleigh damping proportional to the mass, [C] = 
a[M], where a is a positive constant. Note that if a = 0 there is no 
damping. It is a standard procedure to construct the element 
matrices, see for instance Sampaio and Ritto (2008); Inman (2007); 
Reddy (2005) and the shape functions used for a Timoshenko beam 
can be found in Nelson (1980); Bazoune and Khulief (2002). 
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Figure 1. Beam sketch (left) and beam element (right). 
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Figure 2. Timoshenko beam model. 
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where  
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and l is the size of the element. 

The essential boundary conditions at x = 0 are given by 
0

0
=

=xau and 0
0

=
=xvu and after assembling the matrices, from the 

system discretized using the Finite Element Method, Eq. (5) is 
obtained: 

 

(t)tK(t)C(t)M fuuu =++ )(][][][ &&& ,  (5) 
 

where [M], [C], and [K] are the mass, damping, and stiffness 
matrices, which are real and positive-definite. The external force is 
represented by the vector  f(t)T = ( f1a f1v f1r f2a f2v f2r … fnr ) and the 
displacements ( u1a u1v u1r u2a u2v u2r … unr ) are the components of 
the vector u(t)T . 

Frequency Response Function (FRF) – Mean Model 

The resulting linear dynamical system written in the frequency 
domain is given by Eq. (6) (Ewins, 1984): 

 

[ ] [ ] [ ]( ) ( ) ( )ωωωω fu ˆˆ² =++− KCiM  (6) 
 
So, the response in the frequency domain is given by Eq. (7): 
 

( ) [ ] [ ] [ ]( ) ( )ωωωω fu ˆ²ˆ 1−++−= KCiM  

 (7) 
Let 

Lvf̂ be the Fourier transform of the force component fLv 

applied at x = L, and ûLv be the Fourier transform of uLv, which is the 
vertical component of the displacement vector at x = L. For the 
cantilever beam, the point x = L is the most appropriate to observe 
the response, so we are mostly concerned with the FRF (h) defined 
by Eq. (8): 
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An example is performed considering a homogeneous material 

and uniform geometry with E = 2e11N/m², a = 2.5, kt = 107 N/m, ρ 
= 7850 kg/m³, ν = 0.3, L = 0.5m, b = 1cm, and h = 5cm. The 
convergence is checked using the Rayleigh coefficient given by Eq. 
(9): 
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where ωi is the i-th natural frequency and φi is the associated i-th 
Normal Mode. For a precision of 99% in the fourth normal mode, it 
was necessary to construct a mesh of sixteen finite elements. The 
corresponding FRF is shown in Fig. 3. 

 

 
Figure 3. Frequency Response Function. 

 
 
The finite element approximation of the displacement is 

computed on frequency band B = [0; 1000] Hz, and the first four 
natural frequencies are 18 Hz, 113 Hz, 314 Hz and 609 Hz. 

Stochastic Model 

The corresponding stochastic model is constructed choosing 
parameters and matrices as uncertain and associating random 
variables to them. 

The problem is, then, divided in two cases: (1) a parametric 
stochastic approach, in which only the stiffness of the torsional 
spring is chosen as uncertain and a random variable is associated to 
it, and (2) a nonparametric stochastic approach, in which the whole 
stiffness matrix is chosen as uncertain and a random matrix is 
associated to it. 
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The construction of the probability distributions is crucial in a 
stochastic analysis and a strategy should be adopted to their 
construction. Here, it is used some information about the random 
variables we are sure about. Then, the Maximum Entropy Principle 
is applied to obtain the distribution that maximizes the uncertainty, 
given the information we know about the variables. This is a good 
strategy to be adopted when there are not many experimental data 
available because we assure the coherence between the realizations 
of the random variables and the physics of the problem. More 
examples can be found in Soize (2001), Cataldo et al. (2008). 

In both approaches, the deterministic stiffness matrix [K] is 
substituted by a random matrix [K ], in Eq. (5). However, the 
construction of the probability density function will change, 
depending on the approach used. So, we can rewrite Eq. (10) as:  

 
 

)()(][)(][][ ttKtC(t)M fUUU =++ &&&  (10) 

 
where U is the stochastic process associated with the response of the 
corresponding stochastic system. Writing Eq. (10) in the frequency 
domain, we obtain Eq.(11):  

 

( -ω2 [M] + iω [C] + [K ]) Û (ω) = ( )ωf̂   (11) 

Probabilistic Model of the Torsional Spring Stiffness 

The first probabilistic approach to be used is the so called 
parametric stochastic approach, in which the uncertain torsional 
spring stiffness kt is modeled by the random variable Kt, and an 
appropriate probabilistic model is constructed. We take for granted 
that the values of the parameters one wants to randomize are 
constrained by the physics of the problem. A probabilistic 
distribution has to be assigned to these possible values. The 
probability of values that are not admitted is, of course, zero. For 
example, supposing that the parameter is the rigidity, its values are 
no positive real number. To assign a normal distribution to the 
rigidity is, of course, wrong, since this assignment means that the 
rigidity might be negative. Unfortunately, this is a common mistake. 

The strategy used here is based on the Maximum Entropy 
Principle and the usable information about Kt are: (1) it is a positive 
random variable, so its support is ]0, +∞[; (2) its expected value is 
known and it is given by E{ Kt} =  Kt ; and (3) E{1/Kt

2} < +∞, 
because the displacement of a spring with random stiffness should 
be a second order random variable. To understand this last 
constraint, consider a simple mechanical system model, f = ku. If 
the stiffness is random, the displacement is random: f = KU. 
Physically, U must have finite dispersion (must be a second order 
random variable), i.e., E{ U2} < +∞, then E{ U2} = E{( f/K)2}  =  f2 
E{(1/K)2} < +∞. So E{1/K2} < +∞. 

The probability density function of Kt, using the Maximum 
Entropy Principle, yields (Soize, 2008): 
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where δKt is the dispersion parameter and Γ(z) is the gamma 
function defined for z > 0,  
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−
∫=Γ
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1 .  

 
There are limits for the dispersion parameter:  

 

3/10 <<
tkδ ,  

 
because the random variable Kt must be a second order random 
variable, i.e., E{ Kt

2} < +∞. 
To generate realizations of the random variable Kt, following the 

probability density function given by Eq. (12), the Matlab function 
GAMRND(α,β) is used, where α = 1/δKt

2 and β = ktδKt
2 are its 

corresponding parameters. 

Probabilistic Model for the Stiffness Matrix 

Now, the stiffness matrix, as a whole, is taken as uncertain. The 
goal is to discuss globally the uncertainties related to the modeling 
of the stiffness from the discretized system. A probability density 
function is constructed directly for the corresponding random matrix 
[K ]. This is done following the ideas described in Soize (2001, 
2005). 

As the goal here is to investigate the limits of the stochastic 
model, the matrix randomized is the one obtained by means of the 
FE discretization (instead of the reduced matrix). Matrix [K] is a 
positive-definite matrix and can be decomposed (Cholesky 
Decomposition) as in Eq.(13): 

 
[K] = [LK]T [LK] (13) 
 
where [LK] is an upper triangular matrix. 
 
Consequently, the random matrix [K ] can be written as in Eq. (14): 
 
[K ] = [LK]T [G] [LK] (14) 
 
where [G] is a random matrix such that: (1) it is positive-definite; 
(2) its expected value is the identity matrix, so E{[ G]} = [ I]; and (3) 
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E G , because writing Eq. (10) in the frequency 

domain, the corresponding stochastic equation has a unique second-
order random solution if and only if [ ] +∞<
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 − 21

F
E K , where ‖.‖F  is 

the Frobenius norm, ‖[A]‖F  = (tr([A][A]  T)) 1/2. 
The probability density function of [G] is constructed using the 

Maximum Entropy Principle and it is given by Eq. (15) (Soize, 
2001):  
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where n is the dimension of the matrix [G] and CG is given by Eq. 
(16): 
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The dispersion parameter δ is given by Eq. (17): 
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The matrix [G] is built, for each realization of matrix [K ], 

decomposing (Cholesky decomposition) [G] : [G] = [L ]T [L ], where 
[L ] is an upper triangular real positive-definite random matrix such 
that: 

• The random variables {[L ] jj’ , j ≤ j’ } are independent. 
•  For j <  j’ the real-valued random variable [L ] jj’  = σVjj’  , in 

which σ = δ(n+1)-1/2 and Vjj’  is a real-valued Gaussian random 
variable with zero mean and unit variance. 

•  For j=j’  the real-valued random variable [L ] jj’  = σ(2Vj)
1/2, in 

which Vj is a real-valued gamma random variable with probability 
density function: 
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It can be noted that the random variables are generated by a 

normal distribution (Vjj’  j ≠ j’ ) or by a gamma distribution (Vjj’  j = 
j’ ). Both of them are generated by Monte Carlo simulations using 
the Matlab, functions NORMRND(0,1) and GAMRND(α,β), with 


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δ
α and β=1. 

Convergence of the Stochastic Solution 

Let [U(θ,ω)] be the response of the stochastic system calculated 
for a realization θ, generated by the Monte Carlo method 
(Rubinstein, 1981). The mean-square convergence analysis with 
respect to independent realizations of the random variable Û, 
denoted by [Ûj(θ,ω)], is carried out studying the function nSa conv 
(nS) defined by 

 

( ) ( ) ωθ d
n
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sn
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j
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For each realization θ, the FRF H(θ,ω), according to Eq. (8), is 

given by Eq. (20): 
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As the goal is to compare the parametric and nonparametric 

probabilistic approaches, it is important to know the value of nS (Eq. 
19) beyond which the prescribed approximation is reached, that is, 
convergence is assured. This convergence analysis was performed 
for different values of the dispersion parameter and it was verified 
that the solution always converges for nS = 500. Figure 4 shows an 
example for the function conv, considering the nonparametric-
approach, with δ[K ] = 0.1. 

 

 
Figure 4. Convergence in the mean square sense. 

Numerical Simulations 

In order to better examine the results, fifty realizations of the 
random FRF H are shown in Fig. 5, using nonparametric approach, 
with δ[K ] = 0.1. 

 

 
 

 

Figure 5. Fifty realizations of the FRF of using the nonparametric 
approach δδδδ[K] = 0.1 (top). Zoom image (bottom). 
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Figure 6. FRF of the mean model (dotted line), 98% confidence limits 
(solid lines) and the mean FRF using the nonparametric approach (dashed 
line), δδδδ[K] = 0.1 (top). Zoom image (bottom). 

 
 
Figure 6 shows the response of the mean model and the mean 

response of the stochastic model. It should be noted that these two 
curves do not coincide. The thick lines represent the confidence 
region (Serfling, 1980) of 98% and it means that the response is 
inside the black envelope with probability 98%. 

Some values of the coefficients of dispersion are chosen and 
confidence regions are constructed for the corresponding frequency 
response functions. Figure 7 shows confidence limits for both the 
parametric and nonparametric approaches, taking δKt = δ[K ] = 0.1. 
Note that the confidence region is larger for the nonparametric 
approach and it includes the limits for the parametric approach. Also 
observe that, as the frequency increases, the confidence region 
becomes larger, showing the increase of the influence of 
uncertainties at high frequencies. 

The coefficient of dispersion is then increased: δKt = δ[K ] = 0.2. 
Figure 8 shows the confidence region of the FRFs obtained and also 
the corresponding FRF obtained for the mean model. It is also 
shown the corresponding FRF at x=L/2. Note that, in this case, the 
confidence region is larger. The limits for the nonparametric 
approach includes the limits for the parametric approach, and, as the 
frequency increases, the confidence region gets larger, as it was 
already pointed out in the previous case. 

Figure 9 shows the results when the values of the coefficients of 
dispersion are taken at their greatest values, that is,  

 

58.0
3
1

2/1 ≈=
tKδ  and  

 

[ ]
( )
( ) 96.0

549

149
2/1

2/1

≈
+
+=Kδ  

 
In the top of Fig. 9, it is shown the confidence region for both 
parametric and nonparametric approaches, corresponding to the 
FRF. At the bottom of Fig. 9, the mean values for both probabilistic 
approaches are plotted. For the parametric approach, the behavior of 
the limits does not change much from what was seen in Figs. 7 and 
8. However, for the nonparametric approach, we can note a different 
behavior. It happens because the sample space for the nonparametric 
approach is much larger than the sample space for the parametric 
approach, and the nonparametric approach is able to take into 
account model uncertainties, see Sampaio et al. (2007). 

 
 
 

 
 

 
Figure 7. Envelope for a probability level of 98%, for both parametric and 
nonparametric probabilistic approaches, taking δδδδKt = δδδδ[K] = 0.1 (top). Zoom 
image (bottom). 
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Figure 8. Confidence region for both parametric and nonparametric 
probabilistic approaches, taking δδδδKt = δδδδ[K] = 0.2: response at x=L (top) and 
response at x=L/2 (bottom). 

 

 

Model Uncertainties 

The nonparametric approach can be used to take into account 
model uncertainties (Soize, 2001, 2005; Sampaio et al., 2007), 
including boundary conditions uncertainties. To show how the 
methodology works, three different (deterministic) boundary 
conditions are considered and their results compared with those 
previously obtained with the stochastic system discussed. 

Clearly, the idea is to discuss uncertainties present in a model, 
and it is not to change completely the model. However, it is 
important to investigate the limits of the nonparametric approach in 
predicting possible responses of a system. 

The three cases considered are (Fig. 10): 
1. Essential boundary conditions at x = 0 : uax=0 = 0 and 

uvx=0 = 0; 
2. Essential boundary conditions at x = 0 : uax=0 = 0,  

uvx=0 = 0 and urx=0 = 0; 
3. Essential boundary conditions at x = L : uax=L = 0 and 

urx=L = 0; 
 
 

 
 

 
Figure 9. Confidence region for both parametric and nonparametric 
probabilistic approach with maximum values of the coefficients of 
dispersion: δδδδKt = 0.58 and δδδδ[K] = 0.96 (top) and expected values for the 
FRFs, with maxima values of the coefficients of dispersion:  δδδδKt = 0.58 and 
δδδδ[K] = 0.96 (bottom). 

 
 

 
Figure 10. Boundary conditions for cases (1), (2) and (3). 

 
 
It should be noted that matrix [K] will have different dimensions 

for each case because of the restricted degrees of freedom, but the 
dimension does not affect the analysis. 

There is no uncertainty in cases (1), (2), and (3); and they have 
clearly different responses, as shown in Fig. 11. 
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Figure 11. FRFs for three deterministic cases: (1) kt = 0, (2) clamped-free 
and (3) clamped-locked. 

 
 
Figure 12 shows the FRFs for the three cases of boundary 

conditions together with the confidence limits of the probabilistic 
parametric and nonparametric approaches previously discussed. On 
the top of Fig. 12, the values of the coefficient of dispersion are 
taken as 0.4, in both parametric and nonparametric approaches, and 
at the bottom of Fig. 12, the values of the coefficient of dispersion 
are taken as their greatest values. 

In both plots (top and bottom) we note that the limits for the 
parametric approach are far away from the response perceived. 
However, this does not happen when the nonparametric approach is 
considered. For a coefficient of dispersion of 0.4, the confidence 
region almost includes the three responses of the deterministic 
problems simulated. It does not mean that the result is satisfactory, 
indeed it is not. When the value of the coefficient of dispersion is 
greatest, the limits are so wide that all possible responses may occur. 

The confidence region for the parametric approach is very thin 
and therefore this methodology is very efficient if the source of 
uncertainty is concentrated in the clamped boundary condition. We 
should understand our system so that we can estimate where the 
biggest sources of uncertainties are located. If we have a good 
model and we know where the sources of uncertainties are 
concentrated, the parametric stochastic approach is the best one. 
However, there are cases where: (1) the model used is simplified 
because to use a more detailed model is very time consuming, (2) 
the equations to the problem are not well established so we are not 
sure about the best model, (3) the system changes with the 
production process that changes with time, (4) system responses 
have large dispersions etc. In these situations the best we can do is 
to use the nonparametric probabilistic approach to allow for cases 
that our model cannot predict. But note that the value of δ[K ] can not 
be adjusted a priori so that the experimental results fit in the 
confidence region. The dispersion parameter δ[K ] has to be 
determined experimentally. 

 
 

 
 

 
Figure 12. FRFs for three deterministic cases: (1) kt = 0, (2) clamped-free and 
(3) clamped-locked, together with the  confidence limits for parametric and 
nonparametric approaches with probability level of 99:8%. δδδδKt = δδδδ[K] = 0.4 
(top) and maximum values δδδδKt = 0.58 and δδδδ[K] = 0.96 (bottom). 

Concluding Remarks 

A Timoshenko beam with uncertain boundary conditions was 
analyzed in order to discuss uncertainties on the boundary 
conditions. First, the stiffness of a torsional spring inserted in one 
end of the beam was modeled as uncertain. Then, the stiffness 
matrix was modeled as uncertain. Each one of the approaches led 
to different results. Considering the same coefficients of 
dispersion, the confidence region of the response for the 
nonparametric approach was larger than the confidence region for 
the parametric approach. As an application, different boundary 
conditions were considered for the same beam and the resulting 
systems were analyzed. 

Concerning the differences between the two approaches used, 
some points should be remarked: 

• The numerical simulations showed that, for the problem 
analyzed and using a 98% confidence limit, the nonparametric 
approach includes the parametric approach. Indeed, the 
possible outcomes of the nonparametric approach lies in a 
larger sample space than the possible outcomes of the 
parametric approach. 

• In the parametric approach only one entry of matrix [K ] is 
random while in the nonparametric approach the whole matrix 
[K ] is random. 

• The sample space is one-dimensional manifold for the 
parametric approach while for the nonparametric approach the 
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sample space is multi-dimensional (the dimension depends on 
the size of [K ]). 

• It is possible to take into account model uncertainties with the 
nonparametric approach, but with the parametric approach it is 
not possible. 

• The dispersion parameter of matrix [K ], δ[K ], has to be 
determined experimentally or else it can be adjusted to include 
any response, diminishing the predictability of the model. 

• For both approaches, as the frequency increases, the 
predictability decreases. So, we must be careful when 
analyzing high frequency problems. 

If we have information about the source of uncertainty, this 
information should be used to improve the predictability of the 
system. We are dealing with a case where the uncertainty is in the 
model, more precisely, in the boundary conditions. This information 
allowed us to create a model to the clamped boundary condition so 
that the parametric probabilistic approach could be used. The 
nonparametric probabilistic approach should be used for generalized 
uncertainties, because if the uncertainty is localized (as in boundary 
conditions), the realizations of the model may lead to cases that do 
not correspond to the physics of the problem studied. 
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