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Trajectory Planning of Jumping over 
Obstacles for Hopping Robot 
Trajectory planning strategy is proposed to jump over an obstacle integrated three various 
dynamics in one-legged multi-joint hopping robot. A concept of inertia matching ellipsoid 
and directional manipulability are extended to optimize take-off postures. Optimized 
results have been used to plan hopping trajectory. Aimed at the sensitivity of motion 
trajectory to constraint conditions, a 6th polynomial function is proposed to plan hopping 
motion and it has a better robustness to the parameters change of constraint conditions 
than traditional 5th polynomial function. During flight phase, an iterative method and 
angular momentum theory are used to control posture to a desired configuration. In order 
to lift foot over an obstacle, correction functions are constructed under unchanged 
boundary constraint conditions. During stance phase, robot trajectories are planned based 
on internal motion dynamics and steady-state consecutive hopping motion principle. A 
prototype model is designed, and the effectiveness of the proposed method is confirmed via 
simulations and experiments. 
Keywords: multi-joint hopping robot, trajectory planning, inertia matching ellipsoid, 
iterative method 
 
 
 
 
 

Introduction 
1Legged robots have better versatility, mobility and autonomous 

capability on uneven or discontinuous environment among mobile 
robotics family. One of the motivations to study one-legged robots 
is to gain a good understanding of system dynamics and extend it to 
human and animal locomotion. Multi-legged robot has some gaits, 
namely walking, hopping and running. However one-legged robot 
has only one gait, viz hopping. 

Despite a great potential of hopping machines, their control and 
trajectory planning are still issues. Li and Montgomery (1990) 
proposed a closed-loop strategy that could optimally control body 
orientation of a one-legged robot during flight phase using the 
internal motion of the leg. They didn’t use angular momentum to 
control body attitude in the whole hopping process. Ohashi and 
Ohnishi (2006) proposed a method of controlling the hopping height 
by changing the leg length at bottom taking account of torque limits 
of motors and described a way to estimate the actual thrust force. 
Babic and Omrcen (2006) performed vertical jump simulations 
using three different control algorithms including ZMP constraints. 
Although they described some valid method to control jumping 
height, take-off phase should not be ignored. De Man et al. (1998) 
developed a control algorithm for a one-legged hopping robot with 
an articulated leg. Similarly, Vermeulen (2003) developed a real-
time applicable control algorithm for a planar one-legged robot on 
an irregular terrain based on the choice of objective locomotion 
parameters. Choosing appropriate parameters in real-time is 
complicated. The concept of kinematic manipulability ellipsoids 
was introduced by Yoshikawa (1985a and 1985b) as a measure of 
the capability of a manipulator for executing a specific task in a 
given configuration. A number of interesting extensions and 
applications of manipulability ellipsoids had appeared in robotic 
conceptual design and optimization during the last few years 
(Bowing and Khatib, 2005 and Kurazume and Hasegawa, 2006). 
Although some manipulability ellipsoids have been applied to 
redundant manipulators, there are some unsolved problems of 
trajectory planning in robotics. 

This paper will study a trajectory planning of jumping over 
obstacles for a one-legged multi-jointed active hopping robot. The 
initial constraint conditions are obtained and optimized with inertia 
matching and directional manipulability. A 6th order polynomial 
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function is constructed to track joint angle trajectory, its highest 
power coefficient is obtained with joint workspace constraints, and 
the others are determined with the initial and ultimate constraint 
conditions. This method has a better robustness to the parameters 
change of constraint conditions than the traditional 5th polynomial 
function. In order to control the robot posture to a desired 
configuration, an iterative method and angular momentum theory 
are applied.  

Nomenclature 

ZMP =Zero Moment Point 
COG =Center of Gravity 
IME =Inertia Matching Ellipsoid 
SVD = Singular Value Decomposition 
DOF =Degree of Freedom 
F = flight phase 
F =  foot 
S = stance phase 
To = Take off 
Td  = Touch down 
+ = function evaluated after impact 
- = function evaluated before impact 
so = initial state during stance phase 
sd = ultimate state during stance phase 

Inertia Matching and Take-off Posture Optimization 

The concept of inertia matching (Chen and Tsai, 1991) is widely 
used in the analysis of actuator and gear systems, primarily for 
selection of the optimum gear ratio based on the transmission 
performance between the torque produced at the actuator and the 
torque applied to the load. The proposed inertia matching ellipsoid 
characterizes the dynamic torque/force transmission efficiency 
between joint actuators and a load held by the end-effector of a 
manipulator. Inertia matching for hopping robot will be proposed in 
this paper as a new index of the dynamic performance. 

Hopping process can be divided into three phases based on 
constrain conditions, viz stance phase, flight phase, and landing 
impact phase. Figure 1 depicts the hopping robot geometry which is 
a multi-body system in sagittal plane. It consists of four segments, a 
massless foot, a lower leg, an upper leg and body. Each joint (ankle, 
knee and hip) is driven by an actuator. Being a massless foot, it is 
considered as a point during flight.  
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Figure 1. One-legged multi-jointed active hopping robot. 

 
The mass of the i-th rigid body is im , its length is il , and the 

moment of inertia around its center of mass iG is iI . The absolute 
angle between the horizontal axis and the i-th segment is iθ , the 
direction of anticlockwise is positive. The location of the center of 
mass iG of the leg is given by 1 1 1lα=FG , 2 2 2lα=KG  and 3 3 3lα=HG , 

where 0 1iα< < . The coordinates θ  are the absolute angles( )1 2 3, ,
Tθ θ θ , 

which describe the absolute shape of the robot. The robot’s absolute 
position vector of COG GR  is specified by the Cartesian 

coordinates( ),
T

G GX Y . The absolute position vector of foot FR  is 

specified by the Cartesian coordinates( ),
T

F FX Y . During flight phase 

the vector of generalized coordinates fq  can be denoted as 

( )1 2 3, , , ,
T

F FX Yθ θ θ , and during stance phase the vector of generalized 

coordinates sq  can be denoted as ( )1 2 3, ,
Tθ θ θ .  

The concept of inertia matching can be extended to humanoid 
hopping robot as follows. Hopping robot can be considered as a 
redundant manipulator with a load held at the end-effector 
(Kurazume and Hasegawa, 2006). Figure 2 shows the hopping robot 
and inertia matching ellipsoid (IME).  

 

 
Figure 2. Hopping robot model and inertia matching ellipsoid. 

 
The motion and force equation analyzing to the load held at the 

end-effector can be written as 
 

( )l EmeF = R + g&&  (1) 

 

where ER  is the position vector of the end-effector, lm  is the mass 

inertia of load, ( )0,
T

g= −g  is the gravity vector. The end-effector 

posture of manipulator ER  is related to the shape of the robot θ as 
follows: 

[ ]
( )
( ) ( )

E E E E

E

E







T
R = X Y = E (θ)

R = J θ θ

R = J θ θ + J θ θ

&&

&& &&& &

 (2) 

 
where ( )J θ  is Jacobian matrix. 

Hopping performance is affected by any motion control and 
hopping posture. Hopping posture affects not only the attitude 
during flight phase, but the angular momentum with respect to 
COG. Dynamics model can be derived by some methods, such as 
Newton-Euler equations, Lagrange equations, Gauss and Kane 
methods. In this paper, the dynamics model is established by 
applying Lagrange equations. When an external moment/force is 
applied to the hopping robot, dynamics equation during stance phase 
can be written as  

 

( ) ( ) ( ) ( ),s s s e s s

T
D θ q + H θ θ q + G θ + J θ F = B Γ&&& &  (3) 

 
where, ( )sD θ is an inertia matrix, which is symmetric and positive 

define. ( ),sH θ θ&  is a centrifugal matrix which contains the centrifugal 

acceleration and Coriolis terms. ( )sG θ  is a gravitational vector, sB  

is a matrix 
1 1 0

0 1 1

0 0 1

− 
 − 
 − 

, and sΓ  is external torque vector 

Tf f f
F K Hτ τ τ   . 

Substituting Eqs. (1) and (2) into (3), the torque matrix can be 
obtained by 

 

( ) ( ) ( )( ) ( ) ( ) ( )
( )( )

†† ,
T

s s s e l l l s s e

e bias

m m m +
 

Γ = B D θ J θ F - g - J θ q + H θ θ q G θ + J θ F

= Q θ F - F

&& & &

 (4) 

 
Where 
 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

††

††

†
,

T

s s l

T

bias s l

s s s

m

m

  = +
 


= + ×


  

 

Q θ B J θ D θ J θ

F W J θ D θ J θ

D θ J θ g + J θ q - H θ θ q - G θ&& & &

 (5) 

 
Here, biasF  is a bias force matrix of angular velocity and 

acceleration. e bias−F F  is inertia matching for hopping robot. ( )†
J θ  is 

a pseudoinverse of the Jacobian matrix( )J θ . When the Jacobian 

matrix is a regular matrix, then( ) ( )† 1−=J θ J θ . In the case that Jacobian 

matrix is a rectangular matrix, then( ) ( ) ( ) ( )( ) 1† 1 1T T −
− −=J θ W J θ J θ W J θ , 

where W  is a weight matrix. The coefficient matrix ( )Q θ  indicates 

the moment or force transmission efficiency between the torque 
produced at the actuators and the force or moment applied to the 
load by the end-effector. 

Based on the theory of singular value decomposition (SVD), 
( )Q θ  can be given by 

 

( ) T=Q θ UΣV  (6) 
 

where m n×∈U R and n n×∈V R are orthogonal matrices, 
( )1 2, , , m n

mdiag σ σ σ ×= ∈Σ RL , and iσ  is a nonnegative singular value. 
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The manipulability measure ω  of inertia matching e bias−F F  can 
be expressed as the product ofiσ : 

 

1 1 mω σ σ σ= ⋅ L  
 (7) 
The principal axes are the product between the row vector 

( )1, , mu uL  of U  and the singular value vector( )1, , mσ σL . And 

moreover, the singular value vector ( )1, , mσ σL  shows the motion 

capability of the corresponding principal axis. The manipulability 
measure of inertia matching synthetically evaluates the isotropic 
flexibility of robot, and it measures the manipulability of 
manipulator as a whole. 

Hopping motion includes various hopping forms, such as 
vertical hopping and long hopping. In order to achieve hopping task 
(jump over an obstacle), directional manipulability measure of 
inertia matching is proposed. 

Assuming the moment and force vector applied to the center of 
load at end-effector is given by 

 

e bias IMA=F - F P  (8) 
 

where IMA is the scalar quantity form of inertia matching e biasF - F , P  
is the direction of the force in load at end-effector in Cartesian 
frame, and ( ) 1

1 2cos ,cos , ,cos
T n

nβ β β ×= ∈P RL , iβ  is the angle between 

inertia matching and the positive horizontal axis. 
Substituting Eqs. (8) into (4), the following equation can be 

obtained 
 

( )s IMA=Γ Q θ P  (9) 
 
Generally, the torque limits at each actuator in hopping robot are 

assumed to be symmetrical and constrained, vizmax maxi i iτ τ τ− ≤ ≤ . The 

normalized joint torque Γ% can be obtained using a conversion matrix 
( )1max max, , ndiag τ τ=L L  as 

 
1−

Γ = L Γ%  (10) 
 
Therefore, when a normalized torque with magnitude of 1 is 

produced, the inertia matching ellipsoid can be obtained as 
 

( ) ( )2 2 1
TT

IMA − ≤P Q θ L Q θ P  (11) 
 
The directional manipulability of inertia matching can be given 

by 
 

( ) ( )
1

2 2TT
IM IMDM A

−
− = ≤

 
P Q θ L Q θ P  (12) 

 
The directional manipulability measure of inertia matching 
IMDM  reflects the manipulability in specified direction of robot. 
Analyzed the hopping robot as a whole, hopping height is 

determined by take-off velocity, and the COG trajectory after take-
off is a parabola. During take-off motion, the angle between FG  and 
horizontal axis is defined as jumping anglejumpθ , and it can be regarded 

as a process from the initial posture ( )_ 1 2 3, ,td td td
jump i jumpfθ θ θ θ=  to the ultimate 

posture ( )_ 1 2 3, ,to to to
jump u jumpfθ θ θ θ=  through the harmonious movement of 

joints. Moreover, there is only one constraint function which 
including three variable parameters. So there is a redundant 
parameter 3θ . In this paper, the upper body posture 3θ  is constrained 
to fluctuate around / 2π . The jumping angle is determined by 
hopping task. For example, long jumping has a jumping angle which 

can decide the long distance. Jumping over an obstacle, the jumping 
angle should satisfy a certain function. 

The manipulability measure of inertia matching is a function of 
postureθ , and it reflects the moment/force transmission efficiency 
between the torque produced at the actuators and the force or 
moment applied to the load by the end-effector. The take-off posture 
is a main factor which affects hopping performance. When the force 
transmission efficiency of interior joints is maximal, the time 
integral of ground reaction force will reach the maximization, so the 
hopping height is maximal. Applied the inertia matching and 
directional manipulability, the posture optimization of hopping 
motion can be denoted by 

 

( ) ( )
( )

1
2

1 2 3

max

s. t , ,

TT

jump jumpfθ θ θ θ

−
− 

 

=

P Q θ L Q θ P
 (13) 

 
where, constraint function ( )1 2 3, ,jumpf θ θ θ  is determined by an 

obstacle, and in order to avoid redundancy, the take-off posture of 
upper body is constrained to fluctuate around / 2π .  

Trajectory Planning for Jumping over Obstacles  

The take-off postures, viz 1toθ , 2
toθ and 3

toθ , is established by the 
optimization results with inertia matching and directional 
manipulability. The touch-down postures, viz 1

tdθ , 2
tdθ and 3

tdθ , are 
given by desired parameters. The trajectory planning satisfies 
dynamics constraints and boundary conditions. The motion of body 
is established by internal motion dynamics and steady-state 
consecutive hopping motion principle 

Based on the kinematics of the robot, the relationship between 
the COG position and the foot F position can be expressed as 

 
( )G F G

G F

G F

    
    
    
        

R R E θ

R - R = Jθ

R R Jθ + Jθ

&& &

& &&&& && &

 (14) 

 

where [ ],
T

G G GR = X Y , [ ],
T

F F FR = X Y . 

The parameters of obstacles are described by height oH  and 
length oL . In order to lift foot over the obstacle, jumping height can 
be evaluated as follows: 

 
( )

( )
,

, ,

jump H o

td to
jump F F L o o

H H

L X X H L

 =


= − =

E θ

E θ

 (15) 

 
Suppose that at take-off the foot does not slip. The velocity of 

the foot F at touch-down is given by input parameterik , it reflects 
the amount of kinetic energy loss during impact. If trajectory is a 
soft landing, ik  is zero. The acceleration of the foot at touch-down 
has an influence on the amplitude of the ground reaction force 
immediately after impact. The velocity and acceleration of the foot 
at touch-down will be defined here proportional to the velocity of 
the COG. So yields 

 

1

2

3

4

0

0

0

0

to td td
F F G

to td td
F F G

to td td
F F G

to td td
F F G

X X k X

Y Y k Y

X X k X

Y Y k Y

 = =


= =


= =
 = =

& & &

& & &

&& && &&

&& && &&

 (16) 

 
During the ballistic flight phase the COG tracks a parabolic 

trajectory. The flight time can be expressed as following by the 
initial conditions 
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( )
( )
( )

,

, , ,

fl tj
T H jump G

to
G Y H jump

td tj tj
G R HL jump jump G

T H

Y H

L H

−

−

−

 =

 =


=

E R

E

R E R θ

&

&

, ( ),tj to td=  (17) 

 
The angular momentum with respect to COG can be calculated 

with the following general formula: 
 

( )
3 3

1 1

f
G i i i i i i i i

i i

GG m GG I fµµ θ θ θ
= =

 ′= × + = 
 

∑ ∑& &  (18) 

 
When the angular momentum is denoted by absolute angleθ , 

( )i ifµ θ  is a function of parameters1θ , 2θ and 3θ . Defined two relative 

angles 1 2 1q θ θ= − and 2 3 2q θ θ= − . The vector q  is the relative 

angle( )1 2 3, ,
T

q q q . The angular momentum with respect to COG can be 

expressed as 
 

( )
3

1

f
G i i

i

f qµµ
=

=∑ q &  (19) 

 
where ( )ifµ q is a function of parameters only1q and 2q .  

During the flight phase, the leg will swing forward in order to 
position the foot on a chosen foothold. Because of the angular 
momentum constraint the body will rotate too. At touch-down the 
body will have orientation 3tdθ  and an angular velocity3tdθ&  . The 
take-off conditions will have to be chosen in such a way that the 
orientation and velocity of the body at touch-down equalize these 
desired values. Given a value ,03

tdθ& at random, and based on COG 
parabolic trajectory during flight phase, velocity and acceleration 
can be written as 

 

( ) ( )
tjtj tj
G

q q q R tjtj tj
G

− −

    
= +     

     

Rq q
E q E q

Rq q

&

&&& &
, ( ),tj to td=  (20) 

 
Since now boundary conditions at take-off as well as at touch-

down are known for both the angles ( )1,2iq i = and their first and 

second derivatives. Normally, a 5th order polynomial tracking 
function can be established foriq  under their position, velocity, and 
acceleration constraints of both initial point and ultimate point. It is 
the traditional point-to-point motion planning. 

 
5

0

f j
i i

j

q a t
=

=∑% , ( )1,2i =  (21) 

 
There is a problem: since the operational time is determined by 

initial and ultimate conditions such as flight, the polynomial is 
sensitive to the initial point or ultimate constraint conditions by 
using a 5th order polynomial to track trajectory. If one condition 
changes among the six constraint conditions, the trajectory would 
change very large. Moreover, the trajectory would not satisfy the 
angular work space. Figure 3 shows the trajectory which is planned 
by using a 5th order polynomial after changed initial condition have 
exceeded maximum work space2π . 
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Figure 3. Trajectory using a 5th order polynomial under before-change 
initial condition and after-change initial condition. 

 
Aimed at this problem, and in order to enhance the trajectory 

generation efficiency and improve the trajectory robustness to 
constraint conditions, a 6th polynomial is proposed to track 
trajectory 

 
6

0

f j
i i

j

q a t
=

=∑% , ( )1,2i =  (22) 

 
The highest power coefficient 6a  is obtained by joint motion 

constraints, the other power coefficients are determined by the 
initial and ultimate constraint conditions. The trajectory can be 
ensured to satisfy the joint workspace through the optimization of 
the 6th power coefficient because the highest power polynomial 
coefficient is most sensitive and influencing to the shape of a 
polynomial. If the highest power coefficient is ascertained, the 
trajectory polynomial will have a little influence with the change of 
the other lower power coefficients. Thus, this polynomial has a good 
robustness for the constraint conditions. Figure 4 shows the 
trajectory which is planned by using a 6th order polynomial after 
changed initial condition is also under maximum work space 2π . 
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Figure 4. Trajectory using a 6th order polynomial under before-change 
initial condition and after-change initial condition. 
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After obtaining the trajectory 1fq% and 2
fq% , the posture of upper 

body can be obtained based on angular momentum theory 
 

( ) ( ) ( )3 1 1 2 2 3

3, 3 3

3, 3 3

to

to

f
G

tto
real t

tdtd to
real t

f q f q f

dt

dt

µ µ µθ µ

θ θ θ

θ θ θ

  = − − 
 = +

 = +


∫

∫

q q q& & &

&

&

 (23) 

 
The angle 3,

td
realθ  differs from the desired value 3

tdθ  because of the 

initial value ,0
3
tdθ& . In order to control the upper body posture to the 

desired value, 3tdθ& can be adjusted by an iterative method 
 

( ), 1 ,
3 3 3 3,
td n td n td td fl

real Tθ θ θ θ+ = + −& &  (24) 

 
The polynomial function θ  is completely determined by the 

boundary points only. In order to lift foot over the obstacle, a 
correction on the polynomial function is introduced. An 
intermediate point is added to the polynomial function to make sure 
that the foot reaches the height of obstacle at t t∗= , where t∗  is the 
time step where G and foot reach their maximum height at the same 
time. 

 

( )
( )

0

0

G

F

Y t

Y t

∗

∗

 =


=

&

&
 (25) 

 
This strategy is chosen here, since it results in an analytical 

solution for the correction functions. A correction function 
( )( )1,2ib t i = will be added, which does not change the boundary 

conditions of the polynomial functions fiq% . 
 

( ) ( )

( ) ( )
( ) ( )

33

3 3

i i co

fl

co
fl

b t K f t

t T t
f t

t T t∗ ∗

=
 −

=
−

 (26) 

 
Based on parabolic motion of COG of the robot, iK  can be 

solved as the following set: 
 

( ) ( ) ( )

( )

2

2

0

toto to
G G G to

G

g t t
Y t Y Y t t

Y t

∗
∗ ∗

∗

 −
 = + − −

 =

&

&

 (27) 

 
Thus, the angular value fiq  can be devoted by the polynomial 

function f
iq%  and correction function ( )ib t  as follows: 

 

( )f f
i i iq q b t= +% , ( )1,2i =  (28) 

 
Using Eq. (23), the upper body trajectory after considering 

correction functions can be obtained. The absolute angle trajectory 
θ  can be found through the relation between absolute angles and 
relative angles. 

Because of the constraints on the leg during stance demanding 
that the foot should stay at a fixed position, the polynomial 
functions during stance phase can be constructed by using the 
results of impact phase and take-off posture. As a steady-state 
consecutive hopping, the final conditions during stance phase are 
equal to the initial conditions at take-off during flight phase. The 
initial conditions during stance phase are equal to the conditions 
after impact, and the conditions before impact are equal to the final 
conditions during flight phase respectively. 

 

so sd to td

so sd to td

so sd to td

+ −

+ −

+ −

 = = =
 = = =
 = = =

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

& & & & & &

&& && && && && &&

 (29) 

 
where the superscript sd denotes ultimate state configuration during 
stance phase, the superscript + denotes the state configuration after 
impact, and the superscript  denotes the state configuration before 
impact. 

At the landing, the foot of the hopper hits the ground. Let’s 
assume the foot doesn’t bounce back and doesn’t slip, which means 
that it stays in contact with the ground. These are the assumptions 
corresponding to an inelastic impulsive impact. During this impact 
phase, although discontinuities in the velocity and acceleration state 
variables will occur, the configuration of the robot is assumed to 
stay unchanged, 

 
+ −=θ θ  (30) 

 
According to Zheng and Hemami (1985) the discrete variation 

of the generalized velocities due to the inelastic impulsive impact 
with the ground can be calculated as follows: 

 

( ) ( )( ) 11 1T T
f f

−− −∆ = ∆q D θ J JD θ J OF
�

&  (31) 

 

with ( )3, , ,
T

F FX Yθ∆ = ∆ ∆ ∆ ∆q θ& & & && and ( )= ,
T

F FX Y∆ ∆ ∆OF
�

& & .  

From the Eq. (31), the velocity after impact can be expressed as 
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To calculate the angular accelerations +

θ&&  after impact, the 
equation of motion for the stance phase can be used. The joint 
torques is considered to remain unchanged during the infinitesimal 
short time interval of the impact. Their values are those measured at 
the instance of landing impact 

 
so td
F F

so td
K K

so td
H H

τ τ
τ τ
τ τ

 =
 =
 =

 (33) 

 
From the Eq. (33), the angular accelerations after impact can be 

expressed as 
 

( ) ( )1so td td td td td so so so
s s f f f s s

−+ = + + − −θ D D q H q G H q G&& && & &  (34) 

 
During flight phase, the angular momentum with respect to 

COG f
Gµ  is conserved without external forces acting on the robot, 

and the angular momentum with respect to foot f
Fµ  can be obtained 

by f
Gµ . During stance phase, there are the external ground reaction 

forces on the foot, and the angular momentum with respect to foot 
s
Fµ  can be obtained by integration over the stance time 

 

( )
so

f ff f
F G

ts td
F F G Ft

M

Mg X X dt

µ µ

µ µ

 ′= + ×


= + −
 ∫

FG FG
 (35) 

 
The stance timestT can be calculated by Eq. (35) as follows: 
 

td
st

to
st

t to to td td

Gt
Mg X dt M M′ ′= × − ×∫ FG FG FG FG  (36) 
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After obtained six boundary conditions and stance time, in an 
analogue way as during flight, 6th order polynomials can be 
calculated, which are the reference trajectories st

iθ  for lower leg, 
upper leg and upper body respectively during stance phase.  

Simulations and Experiments 

A hopping robot which has 3-DOF rotary joints and four rigid 
bodies (foot, lower leg, upper leg, upper body) is designed. Figure 5 
shows the one-legged model, and its inertia parameters are given in 
Table 1. The ankle, knee and hip joints are independently driven by 
servo motors. The type of servo motors is GWS S777, which is 
made in Taiwan, China. Its rated velocity is 0.12 s/60° (6.0V), viz 
8.72 rad/s, and its rated torque is 42 kgcm. In this robot model, there 
are not any assistant elastic components, such as spring, damp, 
hydraulic or pneumatic actuators. The controller is an AVR system, 
and main control chip is Atmega128 from ATMEL company. The 
ATmega128 is a low-power CMOS 8-bit microcontroller based on 
the AVR enhanced RISC architecture. It provides four flexible 
Timer/Counters with compare modes and PWM, and PWM can 
directly drive servo motor.  

 
 

 
Figure 5. One-legged hopping robot prototype. 

 
 

Table1. Inertial parameters of the hopping robot. 

1 0.34 0.85 0.178 42

2 0.31 0.55 0.137 42

3 0.37 0.15 0.851 42

i ( )iL m iα ( )im kg ( )2
iI kg m⋅ ( )i kg cmτ ⋅

31.38 10−×
32.18 10−×
37.98 10−×

 
 
The parameters of obstacle and postures at touch-down are the 

following: 
 

0.01oH m= , 0.01oL m= , 1 1.35td radθ = , 2 2.15td radθ = , 3 1.40td radθ =  
 
Figure 6 shows a stick diagram for steady-state consecutive 

hopping motion. The solid line denotes a sequence of hopping 
movement including flight phase and stance phase. The dashed line 
is a steady-state consecutive hopping performance. 
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Figure 6. Stick diagram for steady-state consecutive hopping. 

 
 
Figure 7 shows inertia matching under different take-off 

postures by simulation, and Figure 8 is hopping height under 
different take-off postures by experiments. Inertia matching and 
hopping height both reach a maximization when 1θ  is equal to 
1.01rad. Here, 2θ  which can be obtained with jumping angle is 
1.74rad based on the size of the obstacle.  
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Figure 7. Inertia matching under different take-off postures by simulation. 

 
In view of force transmission efficiency and the time integral of 

ground reaction force, hopping height is in direct proportion to the 
time integral of ground reaction force. Figure 9 shows ground 
reaction force under different postures by simulation. When take-off 
posture is in the optimization, the time integral of ground reaction 
force and hopping height are maximal. When the angular angle of 
ankle increases from 0.52rad to 1.01rad, inertia matching gradually 
increases to the maximal 0.9N, the hopping height gradually 
increases to the maximal 0.014m, and the ground reaction force also 
gradually increases to the maximum 17.8N. When the angular angle 
of ankle is on the increase, inertia matching rapidly reduces to zero, 
the hopping height rapidly reduces to zero, and the ground reaction 
force also rapidly reduces. Thus inertia matching is in direct 
proportion to hopping height/hopping performance, and it can be 
applied to analyze the hopping motion. 
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Figure 8. Hopping height under different take-off postures by experiments. 
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Figure 9. Distributing of ground reaction force under different postures 
by simulation. 

 
The trajectories tracked by the actuators of the leg during the 

stance phase, which guarantee that the desired values for jumping 
over the obstacle are attained, cause a clockwise natural rotation of 
upper body. Therefore a counterclockwise rotation of upper body 
during the fight phase is suitable, since these both rotations can 
compensate each other. Figure 10 shows the angular momentum 
with respect to COG is 0.012 kgm2/s during the flight phase.  

Figure 11 shows that using proposed 6th polynomial functions, 
the joint angle trajectory is all under the joint workspace. From 
Figure 12, the peak values among those three angular torques are 
smaller than the rate torque value 4.1Nm of servomotor. The peak 
value of the knee torque is significantly higher than others, being 
approximately 4Nm during the stance phase. The torque at ankle is 
very small, it indicates the dynamic stability under planning 
trajectories is satisfactory to actual motor performance.  
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Figure 10. Angular momentum trajectory with respect to COG. 
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Figure 11. Joint angle trajectory of lower leg, upper leg and body. 
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Figure 12. Torque trajectory at knee and hip. 
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Figure 13 shows the vertical position of the foot using 
with/without correction function. It shows that the foot can over the 
designed obstacle after using correction function. 
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Figure 13. Vertical position of foot. 

Conclusions 

Trajectory planning strategy for a one-legged multi-jointed 
hopping robot is developed. The take-off postures which are 
optimized by inertia matching and directional manipulability are 
used to plan hopping trajectory. Moreover, aimed at point-to-point 
motion, 6th order polynomials are proposed to track the joint 
trajectory. They have a better robustness to the changed constraint 
conditions than traditional 5th polynomial. This method improves 
the efficiency of trajectory generation. Furthermore, the angular 
momentum is decoupled using relative joints, and the upper body 
trajectory is solved with angular momentum theory and iterative 
method during flight phase. In order to lift the foot to jump over the 
designed obstacles, a correction function is constructed under 
unchanged boundary constraint conditions. Finally, the robot 
postures are planned with internal motion dynamics and steady-state 
consecutive hopping motion. 

Hopping robot is a hybrid system including holonomic and non-
holonomic constraints, the contents of dynamics and control are 

very wide. In this paper, trajectory planning control is only in view 
of boundary constraint conditions and internal motion dynamics. In 
the future, postural stability, softy landing and natural passive 
dynamics will be focused. 
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