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This work presents a methodology for self-adapfinite element analysis of two-
dimensional elastic-plastic structures. The selfjatilve process is based on an h-type
refinement, with a posteriori error estimation. Ttypes of error estimators are available.
The first is based on effective stress (Lee anthdBat994) and the second is based on a
ratio of plastic work (Peric et al., 1994). In theon-linear adaptive process for
incremental plasticity analysis, a technique fotempolating analysis variables across
distinct meshes (Lee and Bathe, 1994) is adopthd. vbn Mises vyield criterion, with
isotropic hardening, is adopted. Fracture probleams used to evaluate the performance
of the adaptive process.
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Introduction

Structural and mechanical components are projecad
constructed to remain operational during the stmes lifetime.
However, preexistent flaws in the material origatat from
manufacture defects or external events can caesedllapse of the
structure. The material type determines how a crétkpropagate:
if steadily until reaching a critical size (ductideack growth), or if
any propagation can mean the total ruin (creegkayeamwth).

The numerical method most widely employed in thalgsis
of fracture mechanics problems is the Finite Elemitethod
(FEM). However, the quality of the approximate smn obtained
is mesh dependent, requiring experienced analygh&choice of
a suitable mesh.

In linear fracture problems, for instance, the mmsist be refined
in regions where high stress gradients occur,atecrack tip. On the
other hand, in non-linear fracture problems, thehmaust be refined
in the regions where yielding occurs in order tptaee the existing
high deformation gradients. Adaptive methods atenofised to ease
this hard task for the analyst (Lee and Bathe, 1P@fic et al., 1994;
Aragjo et al., 1997; Ladeveze et al., 1986; Gallimat al., 1996;
Zienkiewicz et al., 1990; Sandhu and Liebowitz, 399n a fracture
problem, this adaptive method includes the follgvsteps: finite
element analysis, error estimation/indication, tireffailure analysis,
and mesh refinement.

Since adaptive concepts based on error estimatere f¥irst
applied to finite-element models in the pioneer kgoof Babuska
(Babuska and Rheinboldt, 1979), much research teffas been
dedicated to the development of more efficient reestimators,
which can be applied to complex problems. Most tetjias
developed for linear problems have been generafedpplication
to non linear problems.

Evaluation of the quality of the mesh is accomm@isithrough a
posteriori error estimator. Among the existing erestimators, the
following can be highlighted: error estimator based the
constitutive relation of the problem (Ladeveze dt, d4986;
Gallimard et al., 1996), on the energy dissipatiate (Zienkiewicz
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et al., 1990), on the plastic work rate (Peric let #994), on the
effective stress (Lee and Bathe, 1994; Sandhu @tublvitz, 1995),

and on the effective plastic strain (Sandhu anthdwatz, 1995). In

the present work, two error estimators were implaed: the first

one is based on the effective stress, which is difired version of

the estimator proposed by Lee and Bathe (1994)tf@decond one
is based on the plastic work rate, proposed bycrerl. (1994).

The adaptive strategy is based on
enumeration techniques, which consist of a binagg tpartition
for the boundary curves, whereas for mesh generaitio the
domain a quadtree partition is used (Paulino et1899). The
advantages of the meshing algorithm based on thedtee
technique are combined with the advantages of andbany-
contraction technique, which is based on the prigeerof the
Delaunay triangulation (Aradjo et al., 1997). Crackay be
introduced by the user at any position in the moBel each new
crack configuration, the mesh is automatically gates.

The adaptive process begins with an initial firiklement model.
This model is solved incrementally. If the solutiemror in the
model exceeds an acceptable level, the incremartalysis is
interrupted for the current finite element moddieTelement size is
derived based on the distribution of errors andatt®uracy level to
be achieved by the solution. A new finite elemenodsi is
generated for the last successfully converged stée. solution
variables (displacements, deformations, stress&s) are then
transferred from the previous mesh to the new bmthis work, the
technique for variable mapping between differensines presented
by Lee and Bathe (1994) is adopted. The analysesimrted for the
current step with the variables of the previoup séken as initial
values. The incremental analysis continues unél discretization
convergence criterion is violated again. This pduce is illustrated
in the diagram shown in Fig. 1.

The finite element analysis is carried out in trerfework of an
object-oriented finite-element program — FEMOOR(t€i Element
Method: Object Oriented Program) — developed in il
Engineering Department at PUC-Rio (Martha et &96).
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Figure 1. Diagram of the adaptive scheme for elasti  c-plastic analysis.

Nomenclature

= area integration

= crack size

= elastic constituive tensor; contour

= elastic modulus

= absolute discretization error, equivalent strain
= yield criterion

= plastic modulus

= size of element; half height

= Jintegral

= stress intensity factor

= interpolation functions

= number of elements

= number of element nodes; unit outward normal
= weighting function

= radius

= parametric coordinate

= deviatoric stress, Pa; parametric coordinate
= incremental time step; crack face pressure
= displacement in x direction

= displacement in y direction

= horizontal coordinate axe

= vertical coordinate axe

K XIc~"wITPpOaSIZRXCTTTTOoOMOL >

W = strain-energy density; width
Greek Symbols

dA = consistency parameter

o  =stress, Pa

o = effective stress, Pa

oy =Yyielding stress, Pa

At =incremental time step

£ = strain, dimensionless

342/ Vol. XXX, No. 4, October-December 2008

Tereza Denyse de Araujo et al.

error ratio of element, dimensionless

relative to domain

relative error, (%)

admissible relative error for each element, (%)

= Poisson coefficient
Subscripts

relative to generic element

relative to elastic-plastic

relative tox direction

relative toy direction

nodal point; local crack tip axes

new

old

yielding

Super scripts

relative to smoothed, relative to preset value
relative to elastic

relative to discrete value

relative to plastic, relative to the polynomiabdee of the
element-interpolation functions

| relative to symmetric displacement fields

Il relative to anti-symmetric displacement fields
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Error Estimators

In linear finite element analysis, the stressesateulated using
derivatives of the displacements. In a displaceresed FEM
implementation, since no inter-element continuity Btresses is
imposed, if a coarse mesh is used stress values difésr
substantially between elements. This differenceradses if the
mesh refinement is carried out in accordance withdrder of the
elements employed in the discretization. Thereforany error
estimators are based on stress discontinuitiesgegetwlements (see
references Zienkiewicz et al., 1990; Sandhu antdwetz, 1995; Li
and Bettess, 1995; and Baehmann et al., 1987).

However, in elastic-plastic analysis, the constiitmodel is
strain driven and a better response is obtainedldaétic strain
discontinuity is diminished. This justifies the do® of error
estimators based on plastic strains for such aisalys

Effective Stress Error

This error estimator is based on smoothed stresdgsh is a
global measure of the discretization error conthimea given finite
element mesh. Generally this error can be exprdesatly as

€ :‘UijD_Ui” @

The smoothed stresses’

j at element integration points are

improved solutions for the discrete valqu‘ and are taken as the

“exact” solution to the problem. They are obtainad element
integration points with parametric coordinates, and s, from

interpolation of the nodal smoothed valuigg at each nodal poitt

oy = Z&Nk (r :S)(&ijm)k 2

where Ng(r,s) are the interpolation functions used for the
displacements analis the number of element nodes. Here the nodal
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smoothed stresse&f iiD)k are obtained by the super-convergenfyhere (gijp )D and (aijp)h are respectively the smoothed and non-
patch-recovery method (SPR) (Zienkiewicz and Zt992). smoothed plastic strains from the finite-elementlysis. The
A scalar variable defined as the effective stresstroduced as  gmgothed plastic strain is obtained through the esamocedure

described for the stresses, Eq. (2).

(3 % The relative error of the element is defined as
g= [5 Sij Sij j ®3)
_ el
o Ng =——1~ )
wheres; are deviatoric stress components. p]}/z

The absolute stress error in a generic elenten$ a direct
gxglrléztslgg g;the error inside this element atgnaéion points. Itis \here\WP s the plastic work of the whole model calculateith the

h
unsmoothed stressas»,? , and non-smoothed plastic strai(@j? ) , by
€ = maﬁ&h —EE‘ (4)

h
WP = | o—i?(gijp) de (10)
h 2

where g" is the non-smoothed effective stress from thetéfini

element analysis and@” is the smoothed effective stress calculated
according to Eg. (2). The absolute error in thédirlement mesh
corresponds to the maximum error value in the dopia.,

The global error valudd| is given by

2 2
e = X[l (11)
e = majeg| (5) E
The relative error in an element is then given Hiy following Finally, the global relative error of the mesf)is obtained by:
equation:
M -

ne = = }% © )

[(‘_’ rr711ax)20 - (5 in )iz

where (c_f,'gax)g and (5#“”)9 are the overall maximum and

Refinement Strategy

The mesh-refinement procedure is performed indepethd of
the type of error estimator chosen. The adaptiniefielement

minimum values ofz" over the domaiwhere the error is to be analysis is associated with a “reasonably optima#sh, defined as

evaluated. So, the value gt indicates the point-wise estimated® mesh in which the specific error is uniformlytdizuted over the
relative error in effective stress. whole domain (Li and Bettess, 1995). This conditiomeached by

Adaptive methods aim to achieve a uniform errotriistion  limiting the global relative error by a preset vafif | i.e.,
over the whole mesh, bringing closer the local reared the global

(average) error in an iterative way during thenefiient process. n g,;D (13)
Then the global relative error was introduced im strategy adopted
here, which is obtained by the following expression For a uniform discretization error distribution, admissible

relative errorr; for each element must be established. It is assume
n= (7) that this error is the same for all mesh elemelntghis case, the
(_h )2 (_h )2 }é global relative error is given by
Imax)o ~ \Pmin o

n=ymp? <n" (14)
The above error estimator differs from the one gmé=d in the
work by Lee and Bathe (1994), since the latter dussconsider a where m is the number of elements. From this relation, the
relative error of the mesh, as expressed in Eqb(#)instead a local admissible relative element error follows:
relative error for each element.

e

Plastic Work Error = (15)

In the presence of plastic deformations the erstimator based . . . .
on the plastic work (Periet al, 1994) can be expressed for an 1€ new size of the element is established accgréinthe

st

elementE as convergence rate qf the error (Li and Bet@ess, 138mkiewicz and
Zhu, 1992), which is related to element dizash— 0, by
= fbp-et] e -kl
feel” = [ -t ) lep) - lep) e ® e =ofe) )
e
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where p is the polynomial degree of the element-interpoiat
functions being used. With the element error gibgrEq. (16) the
error ratio of the element is defined by

Ce =5 (17)

7

for the error estimator chosen, Eq. (6) or Eq. ™) element size
ratio relates to it by

he

18
hE (18)

:(Ep
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Figure 2. A standard uniform rosette.

The indexes\ andO correspond to the new and to the old size

of elementE, respectively.

The refinement of the mesh is guided by the charatic size
of each element, which is set according to thereatio and to the
degree of the element-interpolation function. Thane regions are

refined wherever necessargk (> 1), and unrefined where a coarser 5

discretization is advisable/{ < 1). However, wher(z = 0 in the
adaptive plastic analysis, it means that the effecitress from the
finite-element analysis is equal to the smoothdecéfe stress. In
this case, the element size is preserved.

M esh Adaptation

In the adaptive mesh strategy, boundary refineriseahforced
independently from domain refinement. In fact, gigorithm used
to refine each boundary curve is a one-dimensigasadion of the
algorithm used to refine the domain, which is baseda quadtree
technique. Each curve is decomposed by means dfaybtree
technique. The idea consists of recursively subitig the curve
into segments, whereby the segment sizes are ddfiased on the
characteristic sizes of the finite elements adjaterthe curve. At
the end of this phase, after all curves of the blaoyn have been
refined, the boundary conditions are reappliedh® model in a
consistent way.

After the curves have been discretized, the newhmss
generated using the algorithm developed by Pauktoal.
(1999). Details on the mesh generation scheme eafodnd in
Araujo et al. (1997).

In the case of fracture simulation, a crack is tealiy
introduced in the model at any phase of the armly8i new
geometry is generated and the previous mesh igedelé& new
mesh is accordingly generated keeping the same daoyn
discretization of the previous mesh. The same phaeecarries on
by crack propagation simulation. In this work exdespof fixed
crack configurations are described.

In a crack, both crack surfaces are considered gemally
coincident. The crack line is treated as any otimetry curve
and, before the generation of the new mesh, theeda discretized.
To ensure the generation of well-shaped elementsaak tip, a
standard arrangement of uniform rosette (Fig. 2hserted around
each tip.

For elastic-plastic fracture, the rosette is comgosither by
quadratic triangular elements (T6) or by a specé¢ment
(Barsoum, 1977) composed by a quadratic quadratelement
degenerated into a triangle (Q8 collapsed — Q86)the Q8C
elements the crack-tip nodes are untied and thaitot of the mid-
side nodes is unchanged (Fig. 3). The advantati@soélement is to
represent the blunted plastic deformation at ctackt also allows
crack-tip opening displacements (CTOD) to be comgudtom the
deformed mesh.
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Figure 3. Q8 collapsed element: (a) Underformed ele ment; (b) Deformed
element.

Plastic State Update

Incremental description of body motion with nonelan
behavior requires the establishment of the disphecds and state
variables at each incremental stedn an adaptive analysis with
automatic mesh generation, once a new mesh is gederthese
variables must be transferred from the old mesheémew one.

The updating process consists basically in ideintfyn the old
mesh the element in which a nokieof the new mesh is located,
computing the parametric coordinates of node khi e¢lement of
the old mesh, and computing the values of the staiables at that
point from element nodal values by means of intifen using
element shape functions.

To identify the element of the old meshgjBhat contains a
node or an integration point of the new mesh, amdational-
geometry algorithm (Preparata and Shamos, 1988jnjgloyed. A
straight horizontal semi-infinite line beginning #te point of
interest is drawn for each element of the old médime number of
intersections of the line with the element is evhr, point is outside
the considered element; otherwise, the point isléi.

For crack-line curves, the search procedure destribove
may erroneously identify an element on an oppofite of the
crack as the target element, since both faces hades with the
same coordinates. Such nodes may belong to diffexkements,
such as nodes at opposite crack faces, or to tine séement, as
happens with nodes at the crack tip for the Q8@ete. Therefore,
after the element is identified, an additional fiegition is
necessary. The elements of the new and the old arestested to
see if they are located at the same side of thekaarve. This test
is performed using an auxiliary semi-infinite cattine that goes
from target nodd to the interior of the element®Bf the new mesh.

The incremental variables at the integration powitgshe old
mesh are transferred to nodal values before praogedith the
mapping. This procedure can be applied to updaligesaat both
node and integration points of the new mesh.
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In the present work, elastic-plastic material bétravis
considered. For this material model,
deformations, the constitutive relations are basedthe additive
decomposition of the deformation tensor in its tidaand plastic
components, respectively.

dgij = dfije + dfijp
(19)
In this model, the incremental stresss are related to the
incremental elastic straini®through the elastic constitutive ten€br
dojj =Cjq degg (20)

The incremental plastic strains are defined by ssoaiated
flow rule,

def =dA a

o (1)

considers a balance of mechanical energy for akgoagpagating

considering alsm along axisx.

C

@)

Figure 4. (a) Arbitrary contour surrounding the cra
employed to calculate the J-integral.

(b)

ck tip; (b) Area to be

The Equivalent Domain Integral Method (Shih et 41986;
Nikishkov and Atluri, 1987) replaces the integratialong the
contour with one over a finite-size domain on haofl the
divergence theorem. This domain integration is nuamevenient for

in whichf is the yield criterion andA is a positive scalar parameter finite-element analyses. For two-dimensional protsethe contour

defined as the consistency parameter (Simo and é4,dt998). In

integral is replaced by an area integral (Fig. Axuation (24) is

the case that = 0, the behavior is plastic and the increment ofewritten as invariant integrals, usually as defifty Knowles and

plastic straindz;"ijp can be computed from Eq. (20), Wheile/o"crij

defines the direction of the flow artl defines the magnitude. In

the case off < 0 the increment of plastic strain is zero. Thesé« :—£{W

relations can be also written in the form of thdlweaown Kuhn-
Tucker complementary conditions

dA=0, f<0and fdi=0 (22)
Isotropic hardening is considered whereby the uaiayield

function is described through a scalar parametentified here as
the equivalent plastic straéf, defined for the von Mises yield as

oy =0y (ep); deP = [%dgijpdgijp]}é (23)

As it can be seen from the above relations, coramlescription
of an incremental elastic-plastic state requireklitionally to the
incremental nodal displacements, the solutionstterincremental
stresses, elastic and plastic deformations ancdlévalent plastic
strain. Due to the inter-relation of such variablas expressed by
equations (19), (20) and (23), all state varialdas be obtained
from the displacements at tinh@nd the state variables at timgt
through numerical integration (Simo and Hughes98)9 The
plastic variables are extrapolated from the intégnapoint to nodal
points and smoothed as previously described.

J-Integral

The J-integral was introduced by Rice (1968) to studyr-no
linear material behavior under small scale yielditigis a path-
independent contour integral defined as:

A;
J=lim [|Wn -oyn; =1 dC 24
Claoi{ n -0 n; } (24)

where W is strain-energy densityg; are stressesy; are the
displacements corresponding to lodahxis, andn; is the unit
outward normal to the conto®, which is any path of vanishing
radius surrounding the crack tip (Fig. 4a). Thimtegral definition
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Sternberg (1972):

u, (25)
-0,

x/dx
k

il
dxk

A A~ M—%i X Vg - 11, 2 qas
o | x| o o \ox s o

wherek is an index for local crack tip axes ¥), q is an arbitrarily
chosen continuous weighting function defined over integration
domain. A linear function was chosen fgarwhich assumes a unit
value at crack tip and null value along the contdnirEq. (25); is
the crack face pressure. For the especial cadagifcematerials, the
second term in this equation vanishes. These ialtegwere
introduced initially for small deformations (Ric&968) and were
extended by Atluri (1982) for finite deformations.

The J value is computed using the modal decomposition
technique (Bui, 1983), where the displacement drets fields are
decomposed into symmetric and anti-symmetric fielith respect
to the crack. The displacement field may be writisn

u=u' +u" =1(u+u')+l(u—u’)
2 2 (26)

poon 1 o, 1 ,
V=V +Vv =—(V+V)+—(V-V
2( ) 2( )

whereu andv are displacements kandy directions, respectively;
andu'(x, y) = u(x,-y) ando'(x, y) = v(x,-y) . The superscripts | and Il
correspond to symmetric and anti-symmetric dispteg fields,
respectively.

The stress field may be decomposed as:

_ 1 ' 1 )
Oxx =0xx +0xx ‘E(Jxx"'axx)"'z(axx_axx)

ow=on o =Lio vl )t (o —0)
y =0y *0y =S5Oy oy )+ S {0y — oy

@7)

-5 . _1 g
07227022 Ozz2 _E(Jzz Uzz)

_ | n_1 , 1 ,
Oyy =0y +0yy —E(ny—axy)*'z(axy"'axy)
whered(x,y)= gj(x,-y), and g3, =0.

October-December 2008, Vol. XXX, No. 4 / 345



The new integralg, andJ, have now the following properties:

J= J| + J“ (28)
where J, is associated to symmetric fields (Mode 1) add is
associated to anti-symmetric fields (Mode II).

In elastic-plastic analysis, the strain-energy dgns divided
into elastic and plastic components:

wW=we+wP (29)
The elastic component is given by the followingatiein:

e _ e _ 1 e
W —J.O'ij dgij —Eaij fij (30)

and the elastic-plastic component is given by EQ).(

The area integration in Eq. (25) is performed oserarbitrary
region involving the crack tip. In this work, tiisgion is the rosette
of finite elements at crack tip. Gaussian quadeataremployed to

integrate Eq. (25). SincaP and £ijp must be available at the nodal

points, extrapolation from Gauss point values talaiovalues is
employed. This extrapolation is performed usingast-square fit of
the Gauss point values (Hinton and Campbell, 1974).

Examples

Two examples of fracture mechanisms will now belyzeal:
single-edge crack tension (Fig. 5a) and two crackanating from a
circular hole (Fig. 5b). In these problems, theiorg around the
crack tips need mesh refinement because thesbamdaces where

Tereza Denyse de Araujo et al.

The first example presented here is analyzed udioth
estimators (ES and PW errors) and the second erasginalyzed
using the PW error estimator. The incremental aislywas carried
out with the Newton-Raphson method under load cbotinditions.

Single-Edge Tension Crack

A plate withh/W = 2.5 and an edge crack afw = 0.25 is
subjected to remote tensile stres@-ig. 5a). The following material
properties are adoptel: = 5000, plastic modulu$’ = 0.05€, and
v = 0.3 in the isotropic hardening model under plsimain
conditions.

This problem was analyzed by Nikishkov and Atld994) with
the finite-element method and the elastic-pladteriaating method.
The finite-element model with the equivalent domairiegral
technique was chosen to compute JHategral values. The results
are normalized with respect to an elastic-plastiess intensity

factor K¢, given by

Keop = Kep (31)
e
" oyJm
where K¢, is the elastic-plastic stress intensity factor
JE
Kep = (32)
e 1-v?

In this work, this example was analyzed using bethor
estimators: effective stress (ES) and plastic w@l/). The two
processes were carried out for both rosette typisam initial load

material yielding occurs. Thus, the capability feé daptive process jncrement of 0.1.

to capture these regions is evaluated.

M10e 109104840400
- |5 O s
B | 2R|aI

w oW
T ST

@

Figure 5. Elastic-plastic problem: (a) Single-edge
cracks emanating from a circular hole.

(b)

tension crack; (b) Two

In a previous work written by Aradjo et al. (2008)study is
presented on the performance of the error estimatceffective
stress (ES) and the error estimator in the plastik rate (PW) by
the elastic-plastic analysis of structures withaeracks. The
conclusions presented in that work point to thd taat the first
estimator refines not only the yielded areas bsb ghe areas that
are still in elastic regime.
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ESError Estimator

A coarse initial mesh for both rosette types isegivn Fig. 6a;
252 nodes were generated by the T6 rosette anch@6&s by the
Q8C rosette. The specified relative error in thieative stress;”
was set to 40% for both types of rosettes. FOrQBE rosette, the
error in the initial mesh was 40.79% and occurredhe first load
step @ oy = 0.1). The incremental analysis was restarteth wie
new mesh (Fig. 6b), which presented a relativeresfal5.34% in
the third load stepd{, = 0.3). The analysis with the second refined
mesh (Fig. 6¢) was restarted. Nevertheless, tloe grithe effective
stress did not converge to the specified relativereAdaptation of
the load step did not help convergence.

When the T6 rosette was used, the relative errtrarfirst mesh
(Fig. 6a) was 43.57% for the first load step. Hogrewvhen the
second mesh (Fig. 7a) was analyzed, the erroreirettective stress
increased to 44.81% in the same step and to 58i87&e next
mesh (Fig. 7b). If a new mesh was generated forea toad
increment, the error still did not converge, evesr tmaller
increments.

ABCM
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(a) (b) (c)
Figure 6. Adaptive process for single edge crack — ES error estimator —
Q8C rosette (77 = 40%): (a) Initial mesh — 115 elements — f = 40.79%; (b)

Refined mesh 1 — 854 nodes and 401 elements — 5 = 45.34%; (c) Refined
mesh 2 — 1625 nodes and 774 elements.

(a) (b)
Figure 7. Adaptive process for single edge crack — ES error estimator —
T6 rosette (4”7 = 40%): (a) Refined mesh 1 — 1053 nodes and 506

elements — n = 44.81%; (b) Refined mesh 2 — 1604 nodes and 771
elements — 5 =58.97%.

These results show that the elements around thek dip
become smaller at each adaptive step. This maxlaieed by the
fact that these elements capture the plastic zBaathia, 1985).
The maximum and minimum stresses inside these abksmeere
almost the same, producing high global relativererin effective
stress — see Eq. (8). Figure 8 shows the effestiass distribution
in the crack tip region. In the Q8C rosette (Fig) 8e stresses are
non-symmetric and out of the expected range, inidigaa problem
in the analysis. However, in the T6 rosette (Fi§) &he stress
distribution corresponds to small scale yieldingagected.
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Figure 8. Effective stress distribution in the crac
rosette — refined mesh 2; (b) T6 rosette — refined

k tip region: (a) Q8C
mesh 1.

PW Error Estimator

In this case, the initial mesh was the same of &&g.The error
tolerancer” was set to 20% for T6 rosette and 45% for the Q8C
rosette.

In the first case (T6 rosette), the adaptive procstarted by a
relative error in the plastic work rate of 53.28#6the fourth load
step. The incremental analysis was restarted uighnew mesh of
Fig. 9a. A new load increment of 0.2 was set, tegylin two steps
to the end of the analysis. The error in this mesk 2.62%. The
normalized elastic-plastic stress intensity fadgsoshown in Figure
9b, compared to the values obtained with the initiash without
adaptation (Aradjet al, 2000) and to those presented by Nikishkov
and Atluri (1994).

For the Q8C rosette, the relative error in thetpasork in the
initial mesh was 68.96%. It occurred in the sectmadi increment.
The incremental analysis continued with the newhm@sg. 10a)
and with a load increment of 0.2. Five steps weeeessary to
accomplish the analysis. The final error was 7.7I%e results are
presented in Fig. 10b.
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Figure 9. Adaptive process for single edge crack — PW error estimator —
T6 rosette ( 7= 20%): (a) Refined mesh — 1233 nodes and 590 elem ents
— = 2.62%; (b) Normalized elastic-plastic stress int  ensity factor.
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Figure 10. Adaptive process for single edge crack — PW error estimator —
Q8C rosette ( 77 = 45%): (a) Refined mesh — 945 nodes and 442 eleme nts —
n = 7.71%,; (b) Normalized elastic-plastic stress int  ensity factor.

It can be noticed that, for both analyses, theltesonverge to
the solutions presented by Nikishkov and Atluri 449 However,
the results of the initial mesh without adaptatdid not converge
for the T6 rosette. It may be observed that bothmasors lead to
reasonable meshes. The PW error estimator lead®te uniform
meshes than the ES error estimator, and both tefinly the region
adjacent to the crack tip, as expected.

The equivalent plastic strain distributions arevehdn Fig. 11.
It can be noticed that, for both analysis, theritigtions represent
small scale yielding where the region next to cramsents plastic
deformation.

Two Cracks Emanating From a Circular Hole

The second example is a plate with two symmetraratks
emanating from a central circular hole presentihg following
aspect ratiosR'W = 0.25,h/\W = 2, a/R = 0.75. The material
properties are the same as in the previous exarmbéme-strain
conditions are assumed.

This example was also analyzed by Nikishkov andiA{lL994)
considering the finite-element method. The nornealizelastic-
plastic stress intensity factor is given by

(33)
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Figure 11. Equivalent plastic strain distributions
meshes): (a) T6 rosette; (b) Q8C rosette.

in the crack tip (refined

The two types of rosettes are also considered Aére.initial
mesh (Fig. 12a) presents 570 nodes by the T6 eoartt 602 nodes
by the Q8C rosette, for a total of 266 elementshedthe
convergence criterion adopted /S = 30% for the first rosette and
n” = 50% for the second rosette. The initial loadéntent is set to
aoy=0.1.

For the T6 rosette, the incremental analysis wesrnmpted at
the third load stepd{ oy = 0.3) with a relative error in plastic work
rate of 56.5%. The new refined mesh (Fig. 12b) waalyzed
considering a new load incremerd/§, = 0.2), resulting in four
steps to the end of the analysis. The initial valfar the analysis
with the new mesh were updated from the valuesimddain the
second load step for the old mesh. The final esfahis mesh was
4.73%. It can be seen that the refinement occuwrdy around the
crack tip. For the Q8C rosette, the analysis offitst mesh (Fig.
12a) was interrupted in the second load stafr(= 0.2) with a
relative error of 60.53%. The analysis continuethwthe second
mesh (Fig. 12¢) without changing the load increméntotal of 10
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steps were necessary to accomplish the analysis tlaadfinal
relative error was 5.50%.

(b)
Figure 12. Adaptive process for cracks emanating fr om a hole: (a) Initial
mesh — 266 elements; (b) Refined mesh — T6 rosette (7= 30%) — 2004 nodes
and 966 elements — 7 = 4.73%; (c) Refined mesh — Q8C rosette ( 7" = 50%) —
1656 nodes and 778 elements — 7= 5.50%.

(c)

The J-integral values were compared with the solutiopisimed
by Nikishkov and Atluri (1994) and with the oneg fine initial
mesh without adaptation (Aradjo et al., 2000). Taeg shown in
Fig. 13. It is verified that all curves are coired, i.e., the initial
mesh already provides good results for the fracipaeameters.
However, in order to obtain the required accuramythe plastic
variables the adaptation was necessary and theicplasrk
estimator identified correctly the high gradiergioms.

12

o/oy

—— Q8C - No Adaptation
-0-Q8C - Adaptation
—#-Nikishkov & Atluri (FEM)

-0 T6 - No Adaptation
—<T6 - Adaptation

Figure 13. Normalized elastic-plastic stress intens
emanating from hole.

ity factor for cracks

Conclusions

The main advantage of an adaptive process is thabddy of
starting the analysis of a model with a coarse nash along the
adaptive steps, automatically obtain a better fimash, which
generates results close to the ‘exact values’. §ba was achieved
with the proposed adaptive strategy for elastistptaanalysis of
cracked structures. The examples presented inwbik show the
efficiency of the proposed adaptive strategy byhbeafining and
unrefining the model. The adaptive process effityelocated the
yielding areas that are not identifiagbriori.

It is also worth pointing out that the techniqueedisto
interpolate the solution variables between theioaigmesh and the
refined mesh has proven adequate for an elastitipléracture
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analysis. From the presented examples, some cametusan be
drawn.

It is not advisable to use the error estimator fiective stress
for the adaptive process of cracked structuresthin examples
shown, when this estimator was adopted, the adaptiecess at the
crack tip region did not converge, independentbnirthe type of
rosette chosen. The meshes obtained with this astimare as
smoothly graded as the ones obtained with the iplasbrk
estimators.

The value of the convergence tolerance interferalseé adaptive
process mainly for the rosette composed of colipgeadratic
quadrilateral elements (Q8C rosette). When ther doierance is
low, around 5%, these elements become excessivelgll.s
However, for relatively large tolerance values,usaw 20%, the final
discretization error after refinement reduces to Malues after a
small number of adaptive steps.

The J-integral values can diverge from the referenceitsmis
when the Q8C rosette is used, mainly if the inteégnadomain falls
inside the plastic zone. Thus, the adaptive prodesscrack
problems depends on the degree of mesh refinemahistspecified
by the convergence criterion, on the type of prablend on the
initial mesh. In the examples, the T6 rosette abvagnds to
converge to the reference solutions and should-dfenped.
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