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An Adaptive Strategy for Elastic-
Plastic Analysis of Structures with 
Cracks 
This work presents a methodology for self-adaptive finite element analysis of two-
dimensional elastic-plastic structures. The self-adaptive process is based on an h-type 
refinement, with a posteriori error estimation. Two types of error estimators are available. 
The first is based on effective stress (Lee and Bathe, 1994) and the second is based on a 
ratio of plastic work (Peric et al., 1994). In the non-linear adaptive process for 
incremental plasticity analysis, a technique for interpolating analysis variables across 
distinct meshes (Lee and Bathe, 1994) is adopted. The von Mises yield criterion, with 
isotropic hardening, is adopted. Fracture problems are used to evaluate the performance 
of the adaptive process. 
Keywords: finite elements, adaptive analysis, plasticity, cracks, error estimator 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1Structural and mechanical components are projected and 

constructed to remain operational during the structure’s lifetime. 
However, preexistent flaws in the material originated from 
manufacture defects or external events can cause the collapse of the 
structure. The material type determines how a crack will propagate: 
if steadily until reaching a critical size (ductile crack growth), or if 
any propagation can mean the total ruin (creep crack growth). 

The numerical method most widely employed in the analysis 
of fracture mechanics problems is the Finite Element Method 
(FEM). However, the quality of the approximate solution obtained 
is mesh dependent, requiring experienced analyst for the choice of 
a suitable mesh. 

In linear fracture problems, for instance, the mesh must be refined 
in regions where high stress gradients occur, i.e., at crack tip. On the 
other hand, in non-linear fracture problems, the mesh must be refined 
in the regions where yielding occurs in order to capture the existing 
high deformation gradients. Adaptive methods are often used to ease 
this hard task for the analyst (Lee and Bathe, 1994; Peric et al., 1994; 
Araújo et al., 1997; Ladevèze et al., 1986; Gallimard et al., 1996; 
Zienkiewicz et al., 1990; Sandhu and Liebowitz, 1995). In a fracture 
problem, this adaptive method includes the following steps: finite 
element analysis, error estimation/indication, fracture/failure analysis, 
and mesh refinement. 

Since adaptive concepts based on error estimators were first 
applied to finite-element models in the pioneer works of Babuska 
(Babuska and Rheinboldt, 1979), much research effort has been 
dedicated to the development of more efficient error estimators, 
which can be applied to complex problems. Most strategies 
developed for linear problems have been generalized for application 
to non linear problems. 

Evaluation of the quality of the mesh is accomplished through a 
posteriori error estimator. Among the existing error estimators, the 
following can be highlighted: error estimator based on the 
constitutive relation of the problem (Ladevèze et al., 1986; 
Gallimard et al., 1996), on the energy dissipation rate (Zienkiewicz 
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et al., 1990), on the plastic work rate (Peric et al., 1994), on the 
effective stress (Lee and Bathe, 1994; Sandhu and Liebowitz, 1995), 
and on the effective plastic strain (Sandhu and Liebowitz, 1995). In 
the present work, two error estimators were implemented: the first 
one is based on the effective stress, which is a modified version of 
the estimator proposed by Lee and Bathe (1994), and the second one 
is based on the plastic work rate, proposed by Peric et al. (1994). 

The adaptive strategy is based on recursive spatial 
enumeration techniques, which consist of a binary tree partition 
for the boundary curves, whereas for mesh generation in the 
domain a quadtree partition is used (Paulino et al., 1999). The 
advantages of the meshing algorithm based on the quadtree 
technique are combined with the advantages of a boundary-
contraction technique, which is based on the properties of the 
Delaunay triangulation (Araújo et al., 1997). Cracks may be 
introduced by the user at any position in the model. For each new 
crack configuration, the mesh is automatically generated. 

The adaptive process begins with an initial finite element model. 
This model is solved incrementally. If the solution error in the 
model exceeds an acceptable level, the incremental analysis is 
interrupted for the current finite element model. The element size is 
derived based on the distribution of errors and the accuracy level to 
be achieved by the solution. A new finite element model is 
generated for the last successfully converged step. The solution 
variables (displacements, deformations, stresses, etc.) are then 
transferred from the previous mesh to the new one. In this work, the 
technique for variable mapping between different meshes presented 
by Lee and Bathe (1994) is adopted. The analysis is restarted for the 
current step with the variables of the previous step taken as initial 
values. The incremental analysis continues until the discretization 
convergence criterion is violated again. This procedure is illustrated 
in the diagram shown in Fig. 1. 

The finite element analysis is carried out in the framework of an 
object-oriented finite-element program – FEMOOP (Finite Element 
Method: Object Oriented Program) – developed in the Civil 
Engineering Department at PUC-Rio (Martha et al., 1996). 
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Figure 1. Diagram of the adaptive scheme for elasti c-plastic analysis. 

 

Nomenclature 

A = area integration 
a = crack size 
C = elastic constituive tensor; contour 
E = elastic modulus 
e = absolute discretization error, equivalent strain 
f = yield criterion 
h’ = plastic modulus 
h = size of element; half height 
J = J integral 
K = stress intensity factor 
N = interpolation functions 
m = number of elements 
n = number of element nodes; unit outward normal 
q = weighting function 
R = radius 
r = parametric coordinate 
s = deviatoric stress, Pa; parametric coordinate 
t = incremental time step; crack face pressure 
u = displacement in x direction 
v = displacement in y direction 
x = horizontal coordinate axe 
y = vertical coordinate axe 
W = strain-energy density; width 

Greek Symbols 

dλ = consistency parameter 
σ = stress, Pa 
σ  = effective stress, Pa 
σY = yielding stress, Pa 
∆t = incremental time step 
ε = strain, dimensionless 

ζ = error ratio of element, dimensionless 
Ω = relative to domain 
η = relative error, (%) 
η  = admissible relative error for each element, (%) 

ν = Poisson coefficient 

Subscripts 

E relative to generic element 
ep relative to elastic-plastic 
i relative to x direction  
j  relative to y direction  
k nodal point; local crack tip axes 
N new 
O old 
Y yielding 

Superscripts 

*  relative to smoothed, relative to preset value 
e relative to elastic 
h relative to discrete value 
p relative to plastic, relative to the polynomial degree of the 

element-interpolation functions 
I relative to symmetric displacement fields 
II  relative to anti-symmetric displacement fields 

Error Estimators 

In linear finite element analysis, the stresses are calculated using 
derivatives of the displacements. In a displacement-based FEM 
implementation, since no inter-element continuity for stresses is 
imposed, if a coarse mesh is used stress values may differ 
substantially between elements. This difference decreases if the 
mesh refinement is carried out in accordance with the order of the 
elements employed in the discretization. Therefore, many error 
estimators are based on stress discontinuities between elements (see 
references Zienkiewicz et al., 1990; Sandhu and Liebowitz, 1995; Li 
and Bettess, 1995; and Baehmann et al., 1987). 

However, in elastic-plastic analysis, the constitutive model is 
strain driven and a better response is obtained if plastic strain 
discontinuity is diminished. This justifies the choice of error 
estimators based on plastic strains for such analysis. 

Effective Stress Error 

This error estimator is based on smoothed stresses, which is a 
global measure of the discretization error contained in a given finite 
element mesh. Generally this error can be expressed locally as 

 
h
ijije σσσ −= ∗  (1) 

 

The smoothed stresses ∗ijσ  at element integration points are 

improved solutions for the discrete value hijσ  and are taken as the 

“exact” solution to the problem. They are obtained at element 
integration points with parametric coordinates, r and s, from 

interpolation of the nodal smoothed values ∗
ijσ̂  at each nodal point k. 

 

( )( )
kij

n

k
kij ˆs,rN ∗

=

∗ ∑= σσ
1

 (2) 

 
where Nk(r,s) are the interpolation functions used for the 
displacements and n is the number of element nodes. Here the nodal 
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smoothed stresses ( )
kijˆ ∗σ  are obtained by the super-convergent 

patch-recovery method (SPR) (Zienkiewicz and Zhu, 1992). 
A scalar variable defined as the effective stress is introduced as 
 

2
1

2

3







= ijij ssσ  (3) 

 
where sij are deviatoric stress components. 

The absolute stress error in a generic element E is a direct 
evaluation of the error inside this element at integration points. It is 
expressed as 

 
∗−= σσ h

E maxe  (4) 

 

where hσ  is the non-smoothed effective stress from the finite-

element analysis and ∗σ  is the smoothed effective stress calculated 
according to Eq. (2). The absolute error in the finite element mesh 
corresponds to the maximum error value in the domain, i.e., 

 

Eemaxe =  (5) 

 
The relative error in an element is then given by the following 

equation: 
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where ( )Ωσ h
max  and ( )Ωσ h

min  are the overall maximum and 

minimum values of hσ  over the domain where the error is to be 
evaluated. So, the value of ηE indicates the point-wise estimated 
relative error in effective stress. 

Adaptive methods aim to achieve a uniform error distribution 
over the whole mesh, bringing closer the local error and the global 
(average) error in an iterative way during the refinement process. 
Then the global relative error was introduced in the strategy adopted 
here, which is obtained by the following expression: 
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The above error estimator differs from the one presented in the 

work by Lee and Bathe (1994), since the latter does not consider a 
relative error of the mesh, as expressed in Eq. (7), but instead a local 
relative error for each element. 

Plastic Work Error 

In the presence of plastic deformations the error estimator based 
on the plastic work (Peric et al., 1994) can be expressed for an 
element E as 

 

( ) ( ) ( ) E

E

hp
ij

p
ij

h
ijijE de Ωεεσσ

Ω
∫ 




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

 −−=
∗∗2

 (8) 

 

where ( )∗p
ijε  and ( )hp

ijε  are respectively the smoothed and non-

smoothed plastic strains from the finite-element analysis. The 
smoothed plastic strain is obtained through the same procedure 
described for the stresses, Eq. (2). 

The relative error of the element is defined as 
 

[ ] 2
1

p

E
E

W

e
=η  (9) 

 
where Wp is the plastic work of the whole model calculated with the 

unsmoothed stresses, hijσ , and non-smoothed plastic strains, ( )hp
ijε , by 

 

( )∫=
Ω

Ωεσ dW
hp

ij
h
ij

p  (10) 

 

The global error value e  is given by 

 

∑=
E

Eee
22

 (11) 

 
Finally, the global relative error of the mesh, η, is obtained by: 
 

( ) 2
1

pW

e
=η  (12) 

Refinement Strategy 

The mesh-refinement procedure is performed independently of 
the type of error estimator chosen. The adaptive finite element 
analysis is associated with a “reasonably optimal” mesh, defined as 
a mesh in which the specific error is uniformly distributed over the 
whole domain (Li and Bettess, 1995). This condition is reached by 
limiting the global relative error by a preset value *η , i.e., 

 
∗≤ ηη  (13) 

 
For a uniform discretization error distribution, an admissible 

relative error η  for each element must be established. It is assumed 
that this error is the same for all mesh elements. In this case, the 
global relative error is given by 

 

∗≤= ηηη 2m  (14) 
 

where m is the number of elements. From this relation, the 
admissible relative element error follows: 

 

m

∗
= ηη  (15) 

 
The new size of the element is established according to the 

convergence rate of the error (Li and Bettess, 1995; Zienkiewicz and 
Zhu, 1992), which is related to element size h, as h→ 0, by 

 

( )p
E hOe =  (16) 
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where p is the polynomial degree of the element-interpolation 
functions being used. With the element error given by Eq. (16) the 
error ratio of the element is defined by 

 

η
ηζ E

E =  (17) 

 
for the error estimator chosen, Eq. (6) or Eq. (9). The element size 
ratio relates to it by 

 

p
EE

N

E
O

h

h 1
ζ=  (18) 

 
The indexes N and O correspond to the new and to the old size 

of element E, respectively.  
The refinement of the mesh is guided by the characteristic size 

of each element, which is set according to the error ratio and to the 
degree of the element-interpolation function. Therefore regions are 
refined wherever necessary (ζE > 1), and unrefined where a coarser 
discretization is advisable (ζE < 1). However, when ζE = 0 in the 
adaptive plastic analysis, it means that the effective stress from the 
finite-element analysis is equal to the smoothed effective stress. In 
this case, the element size is preserved. 

Mesh Adaptation 

In the adaptive mesh strategy, boundary refinement is enforced 
independently from domain refinement. In fact, the algorithm used 
to refine each boundary curve is a one-dimensional version of the 
algorithm used to refine the domain, which is based on a quadtree 
technique. Each curve is decomposed by means of a binary tree 
technique. The idea consists of recursively subdividing the curve 
into segments, whereby the segment sizes are defined based on the 
characteristic sizes of the finite elements adjacent to the curve. At 
the end of this phase, after all curves of the boundary have been 
refined, the boundary conditions are reapplied to the model in a 
consistent way. 

After the curves have been discretized, the new mesh is 
generated using the algorithm developed by Paulino et al. 
(1999). Details on the mesh generation scheme can be found in 
Araújo et al. (1997). 

In the case of fracture simulation, a crack is arbitrarily 
introduced in the model at any phase of the analysis. A new 
geometry is generated and the previous mesh is deleted. A new 
mesh is accordingly generated keeping the same boundary 
discretization of the previous mesh. The same procedure carries on 
by crack propagation simulation. In this work examples of fixed 
crack configurations are described. 

In a crack, both crack surfaces are considered geometrically 
coincident. The crack line is treated as any other geometry curve 
and, before the generation of  the new mesh, the curve is discretized. 
To ensure the generation of well-shaped elements at crack tip, a 
standard arrangement of uniform rosette (Fig. 2) is inserted around 
each tip. 

For elastic-plastic fracture, the rosette is composed either by 
quadratic triangular elements (T6) or by a special element 
(Barsoum, 1977) composed by a quadratic quadrilateral element 
degenerated into a triangle (Q8 collapsed – Q8C). In the Q8C 
elements the crack-tip nodes are untied and the location of the mid-
side nodes is unchanged (Fig. 3). The advantage of this element is to 
represent the blunted plastic deformation at crack tip. It also allows 
crack-tip opening displacements (CTOD) to be computed from the 
deformed mesh. 

 

 

Figure 2. A standard uniform rosette. 

 
 

 
Figure 3. Q8 collapsed element: (a) Underformed ele ment; (b) Deformed 
element. 

 

Plastic State Update 

Incremental description of body motion with non-linear 
behavior requires the establishment of the displacements and state 
variables at each incremental step t. In an adaptive analysis with 
automatic mesh generation, once a new mesh is generated, these 
variables must be transferred from the old mesh to the new one. 

The updating process consists basically in identifying in the old 
mesh the element in which a node k of the new mesh is located, 
computing the parametric coordinates of node k in the element of 
the old mesh, and computing the values of the state variables at that 
point from element nodal values by means of interpolation using 
element shape functions.  

To identify the element of the old mesh (EO) that contains a 
node or an integration point of the new mesh, a computational-
geometry algorithm (Preparata and Shamos, 1985) is employed. A 
straight horizontal semi-infinite line beginning at the point of 
interest is drawn for each element of the old mesh. If the number of 
intersections of the line with the element is even, the point is outside 
the considered element; otherwise, the point is inside it. 

For crack-line curves, the search procedure described above 
may erroneously identify an element on an opposite face of the 
crack as the target element, since both faces have nodes with the 
same coordinates. Such nodes may belong to different elements, 
such as nodes at opposite crack faces, or to the same element, as 
happens with nodes at the crack tip for the Q8C element. Therefore, 
after the element is identified, an additional verification is 
necessary. The elements of the new and the old mesh are tested to 
see if they are located at the same side of the crack curve. This test 
is performed using an auxiliary semi-infinite control line that goes 
from target node k to the interior of the element EN of the new mesh. 

The incremental variables at the integration points of the old 
mesh are transferred to nodal values before proceeding with the 
mapping. This procedure can be applied to update values at both 
node and integration points of the new mesh.  
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In the present work, elastic-plastic material behavior is 
considered. For this material model, considering small 
deformations, the constitutive relations are based on the additive 
decomposition of the deformation tensor in its elastic and plastic 
components, respectively. 

 
p
ij

e
ijij ddd εεε +=  

 (19) 
In this model, the incremental stresses dσ are related to the 

incremental elastic strains dεe through the elastic constitutive tensor C: 
 

e
klijklij dCd εσ =  (20) 

 
The incremental plastic strains are defined by an associated 

flow rule, 
 

ij

p
ij

f
dd

∂σ
∂λε =  (21) 

 
in which f is the yield criterion and dλ is a positive scalar parameter 
defined as the consistency parameter (Simo and Hughes, 1998). In 
the case that f = 0, the behavior is plastic and the increment of 

plastic strain p
ijdε  can be computed from Eq. (20), where ijf ∂σ∂  

defines the direction of the flow and dλ defines the magnitude. In 
the case of f < 0 the increment of plastic strain is zero. These 
relations can be also written in the form of the well known Kuhn-
Tucker complementary conditions 

 
0≥λd , 0≤f  and 0=λfd  (22) 

 
Isotropic hardening is considered whereby the uniaxial yield 

function is described through a scalar parameter identified here as 
the equivalent plastic strain ep, defined for the von Mises yield as 

 

( )p
YY eσσ = ; [ ] 2

1

3
2 p

ij
p
ij

p ddde εε=  (23) 

 
As it can be seen from the above relations, complete description 

of an incremental elastic-plastic state requires, additionally to the 
incremental nodal displacements, the solutions for the incremental 
stresses, elastic and plastic deformations and the equivalent plastic 
strain. Due to the inter-relation of such variables, as expressed by 
equations (19), (20) and (23), all state variables can be obtained 
from the displacements at time t and the state variables at time t-∆t 
through numerical integration  (Simo and Hughes, 1998). The 
plastic variables are extrapolated from the integration point to nodal 
points and smoothed as previously described. 

J-Integral 

The J-integral was introduced by Rice (1968) to study non-
linear material behavior under small scale yielding. It is a path-
independent contour integral defined as: 

 

dC
x

u
nWnlimJ

C

i
jij
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∫ 




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


−=

→ ∂
∂

σ1
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 (24) 

 
where W is strain-energy density, σij are stresses, ui are the 
displacements corresponding to local i-axis, and nj is the unit 
outward normal to the contour C, which is any path of vanishing 
radius surrounding the crack tip (Fig. 4a). The J-integral definition 

considers a balance of mechanical energy for a crack propagating 
along axis x. 

 
 

 
(a) (b) 

Figure 4. (a) Arbitrary contour surrounding the cra ck tip; (b) Area to be 
employed to calculate the J-integral. 

 
 
The Equivalent Domain Integral Method (Shih et al., 1986; 

Nikishkov and Atluri, 1987) replaces the integration along the 
contour with one over a finite-size domain on hand of the 
divergence theorem. This domain integration is more convenient for 
finite-element analyses. For two-dimensional problems, the contour 
integral is replaced by an area integral (Fig. 4b). Equation (24) is 
rewritten as invariant integrals, usually as defined by Knowles and 
Sternberg (1972): 
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where k is an index for local crack tip axes (x, y), q is an arbitrarily 
chosen continuous weighting function defined over the integration 
domain. A linear function was chosen for q, which assumes a unit 
value at crack tip and null value along the contour. In Eq. (25), ti is 
the crack face pressure. For the especial case of elastic materials, the 
second term in this equation vanishes. These integrals were 
introduced initially for small deformations (Rice, 1968) and were 
extended by Atluri (1982) for finite deformations. 

The J value is computed using the modal decomposition 
technique (Bui, 1983), where the displacement and stress fields are 
decomposed into symmetric and anti-symmetric fields with respect 
to the crack. The displacement field may be written as: 
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where u and v are displacements in x and y directions, respectively; 
and u′(x, y) = u(x,-y) and v′(x, y) = v(x,-y) . The superscripts I and II 
correspond to symmetric and anti-symmetric displacement fields, 
respectively. 

The stress field may be decomposed as: 
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where σ′ij(x,y)= σij(x,-y), and 0=II
ZZσ . 
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The new integrals JI and JII have now the following properties: 
 

III JJJ +=  (28) 
 

where JI is associated to symmetric fields (Mode I) and JII is 
associated to anti-symmetric fields (Mode II). 

In elastic-plastic analysis, the strain-energy density is divided 
into elastic and plastic components: 

 
pe WWW +=  (29) 

 
The elastic component is given by the following relation: 
 

e
ijij

e
ijij

e dW εσεσ∫ ==
2

1
 (30) 

 
and the elastic-plastic component is given by Eq. (10). 

The area integration in Eq. (25) is performed over an arbitrary 
region involving the crack tip. In this work, this region is the rosette 
of finite elements at crack tip. Gaussian quadrature is employed to 

integrate Eq. (25). Since Wp and p
ijε  must be available at the nodal 

points, extrapolation from Gauss point values to nodal values is 
employed. This extrapolation is performed using a least-square fit of 
the Gauss point values (Hinton and Campbell, 1974). 

Examples 

Two examples of fracture mechanisms will now be analyzed: 
single-edge crack tension (Fig. 5a) and two cracks emanating from a 
circular hole (Fig. 5b). In these problems, the regions around the 
crack tips need mesh refinement because these are the places where 
material yielding occurs. Thus, the capability of the adaptive process 
to capture these regions is evaluated. 

 
 

 
(a) (b) 

Figure 5. Elastic-plastic problem: (a) Single-edge tension crack; (b) Two 
cracks emanating from a circular hole. 

 
 
In a previous work written by Araújo et al. (2000) a study is 

presented on the performance of the error estimator in effective 
stress (ES) and the error estimator in the plastic work rate (PW) by 
the elastic-plastic analysis of structures without cracks. The 
conclusions presented in that work point to the fact that the first 
estimator refines not only the yielded areas but also the areas that 
are still in elastic regime. 

The first example presented here is analyzed using both 
estimators (ES and PW errors) and the second example is analyzed 
using the PW error estimator. The incremental analysis was carried 
out with the Newton-Raphson method under load control conditions. 

Single-Edge Tension Crack 

A plate with h/W = 2.5 and an edge crack of a/W = 0.25 is 
subjected to remote tensile stress σ (Fig. 5a). The following material 
properties are adopted: E = 500σY, plastic modulus h’ = 0.05E, and 
ν = 0.3 in the isotropic hardening model under plane-strain 
conditions. 

This problem was analyzed by Nikishkov and Atluri (1994) with 
the finite-element method and the elastic-plastic alternating method. 
The finite-element model with the equivalent domain integral 
technique was chosen to compute the J-integral values. The results 
are normalized with respect to an elastic-plastic stress intensity 

factor epK  given by 

 

a

K
K

Y

ep
ep

πσ
=  (31) 

 
where epK  is the elastic-plastic stress intensity factor 

 

21 ν−
= JE

Kep  (32) 

 
In this work, this example was analyzed using both error 

estimators: effective stress (ES) and plastic work (PW). The two 
processes were carried out for both rosette types with an initial load 
increment of 0.1. 

ES Error Estimator 

A coarse initial mesh for both rosette types is given in Fig. 6a; 
252 nodes were generated by the T6 rosette and 268 nodes by the 
Q8C rosette. The specified relative error in the effective stress η∗ 
was set to 40% for both types of rosettes. For the Q8C rosette, the 
error in the initial mesh was 40.79% and occurred in the first load 
step (σ/σY = 0.1). The incremental analysis was restarted with the 
new mesh (Fig. 6b), which presented a relative error of 45.34% in 
the third load step (σ/σY = 0.3). The analysis with the second refined 
mesh (Fig. 6c) was restarted. Nevertheless, the error in the effective 
stress did not converge to the specified relative error. Adaptation of 
the load step did not help convergence. 

When the T6 rosette was used, the relative error in the first mesh 
(Fig. 6a) was 43.57% for the first load step. However, when the 
second mesh (Fig. 7a) was analyzed, the error in the effective stress 
increased to 44.81% in the same step and to 58.97% in the next 
mesh (Fig. 7b). If a new mesh was generated for a new load 
increment, the error still did not converge, even for smaller 
increments. 
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Figure 6. Adaptive process for single edge crack – ES error estimator – 
Q8C rosette ( ηηηη∗∗∗∗ = 40%): (a) Initial mesh – 115 elements – ηηηη = 40.79%; (b) 
Refined mesh 1 – 854 nodes and 401 elements – ηηηη = 45.34%; (c) Refined 
mesh 2 – 1625 nodes and 774 elements. 

 
 

 
Figure 7. Adaptive process for single edge crack – ES error estimator – 
T6 rosette ( ηηηη∗∗∗∗ = 40%): (a) Refined mesh 1 – 1053 nodes and 506 
elements – ηηηη = 44.81%; (b) Refined mesh 2 – 1604 nodes and 771 
elements – ηηηη = 58.97%. 

 
 
These results show that the elements around the crack tip 

become smaller at each adaptive step. This may be explained by the 
fact that these elements capture the plastic zone (Banthia, 1985). 
The maximum and minimum stresses inside these elements were 
almost the same, producing high global relative errors in effective 
stress – see Eq. (8). Figure 8 shows the effective stress distribution 
in the crack tip region. In the Q8C rosette (Fig. 8a) the stresses are 
non-symmetric and out of the expected range, indicating a problem 
in the analysis. However, in the T6 rosette (Fig. 8b) the stress 
distribution corresponds to small scale yielding as expected. 

 

 
(a) 

 

 
(b) 

Figure 8. Effective stress distribution in the crac k tip region: (a) Q8C 
rosette – refined mesh 2; (b) T6 rosette – refined mesh 1. 

 

PW Error Estimator 

In this case, the initial mesh was the same of Fig. 6a. The error 
tolerance η∗ was set to 20% for T6 rosette and 45% for the Q8C 
rosette. 

In the first case (T6 rosette), the adaptive process started by a 
relative error in the plastic work rate of 53.28% in the fourth load 
step. The incremental analysis was restarted with the new mesh of 
Fig. 9a. A new load increment of 0.2 was set, resulting in two steps 
to the end of the analysis. The error in this mesh was 2.62%. The 
normalized elastic-plastic stress intensity factor is shown in Figure 
9b, compared to the values obtained with the initial mesh without 
adaptation (Araújo et al., 2000) and to those presented by Nikishkov 
and Atluri (1994). 

For the Q8C rosette, the relative error in the plastic work in the 
initial mesh was 68.96%. It occurred in the second load increment. 
The incremental analysis continued with the new mesh (Fig. 10a) 
and with a load increment of 0.2. Five steps were necessary to 
accomplish the analysis. The final error was 7.71%. The results are 
presented in Fig. 10b. 
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Figure 9. Adaptive process for single edge crack – PW error estimator – 
T6 rosette ( ηηηη∗∗∗∗ = 20%): (a) Refined mesh – 1233 nodes and 590 elem ents 
– ηηηη = 2.62%; (b) Normalized elastic-plastic stress int ensity factor. 

 

 
Figure 10. Adaptive process for single edge crack –  PW error estimator – 
Q8C rosette ( ηηηη∗∗∗∗ = 45%): (a) Refined mesh – 945 nodes and 442 eleme nts – 
ηηηη = 7.71%; (b) Normalized elastic-plastic stress int ensity factor. 

 
 
It can be noticed that, for both analyses, the results converge to 

the solutions presented by Nikishkov and Atluri (1994). However, 
the results of the initial mesh without adaptation did not converge 
for the T6 rosette. It may be observed that both estimators lead to 
reasonable meshes. The PW error estimator leads to more uniform 
meshes than the ES error estimator, and both refined only the region 
adjacent to the crack tip, as expected. 

The equivalent plastic strain distributions are shown in Fig. 11. 
It can be noticed that, for both analysis, the distributions represent 
small scale yielding where the region next to crack presents plastic 
deformation. 

Two Cracks Emanating From a Circular Hole 

The second example is a plate with two symmetrical cracks 
emanating from a central circular hole presenting the following 
aspect ratios: R/W = 0.25, h/W = 2, a/R = 0.75. The material 
properties are the same as in the previous example. Plane-strain 
conditions are assumed. 

This example was also analyzed by Nikishkov and Atluri (1994) 
considering the finite-element method. The normalized elastic-
plastic stress intensity factor is given by 
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(a) 

 

 
(b) 

Figure 11. Equivalent plastic strain distributions in the crack tip (refined 
meshes): (a) T6 rosette; (b) Q8C rosette. 

 
 
The two types of rosettes are also considered here. The initial 

mesh (Fig. 12a) presents 570 nodes by the T6 rosette and 602 nodes 
by the Q8C rosette, for a total of 266 elements each. The 
convergence criterion adopted is η∗ = 30% for the first rosette and 
η∗ = 50% for the second rosette. The initial load increment is set to 
σ/σY = 0.1. 

For the T6 rosette, the incremental analysis was interrupted at 
the third load step (σ/σY = 0.3) with a relative error in plastic work 
rate of 56.5%. The new refined mesh (Fig. 12b) was analyzed 
considering a new load increment (σ/σY = 0.2), resulting in four 
steps to the end of the analysis. The initial values for the analysis 
with the new mesh were updated from the values obtained in the 
second load step for the old mesh. The final error of this mesh was 
4.73%. It can be seen that the refinement occurred only around the 
crack tip. For the Q8C rosette, the analysis of the first mesh (Fig. 
12a) was interrupted in the second load step (σ/σY = 0.2) with a 
relative error of 60.53%. The analysis continued with the second 
mesh (Fig. 12c) without changing the load increment. A total of 10 
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steps were necessary to accomplish the analysis and the final 
relative error was 5.50%. 

 

 
Figure 12. Adaptive process for cracks emanating fr om a hole: (a) Initial 
mesh – 266 elements; (b) Refined mesh – T6 rosette (ηηηη∗∗∗∗ = 30%) – 2004 nodes 
and 966 elements – ηηηη = 4.73%; (c) Refined mesh – Q8C rosette ( ηηηη∗∗∗∗ = 50%) – 
1656 nodes and 778 elements – ηηηη = 5.50%. 

 
 
The J-integral values were compared with the solutions obtained 

by Nikishkov and Atluri (1994) and with the ones for the initial 
mesh without adaptation (Araújo et al., 2000). They are shown in 
Fig. 13. It is verified that all curves are coincident, i.e., the initial 
mesh already provides good results for the fracture parameters. 
However, in order to obtain the required accuracy for the plastic 
variables the adaptation was necessary and the plastic work 
estimator identified correctly the high gradient regions. 

 

 
Figure 13. Normalized elastic-plastic stress intens ity factor for cracks 
emanating from hole. 

 

Conclusions 

The main advantage of an adaptive process is the capability of 
starting the analysis of a model with a coarse mesh and, along the 
adaptive steps, automatically obtain a better final mesh, which 
generates results close to the ‘exact values’. This goal was achieved 
with the proposed adaptive strategy for elastic-plastic analysis of 
cracked structures. The examples presented in this work show the 
efficiency of the proposed adaptive strategy by both refining and 
unrefining the model. The adaptive process efficiently located the 
yielding areas that are not identified a priori . 

It is also worth pointing out that the technique used to 
interpolate the solution variables between the original mesh and the 
refined mesh has proven adequate for an elastic-plastic fracture 

analysis. From the presented examples, some conclusions can be 
drawn. 

It is not advisable to use the error estimator in effective stress 
for the adaptive process of cracked structures. In the examples 
shown, when this estimator was adopted, the adaptive process at the 
crack tip region did not converge, independently from the type of 
rosette chosen. The meshes obtained with this estimator are as 
smoothly graded as the ones obtained with the plastic work 
estimators. 

The value of the convergence tolerance interferes in the adaptive 
process mainly for the rosette composed of collapsed quadratic 
quadrilateral elements (Q8C rosette). When the error tolerance is 
low, around 5%, these elements become excessively small. 
However, for relatively large tolerance values, around 20%, the final 
discretization error after refinement reduces to low values after a 
small number of adaptive steps. 

The J-integral values can diverge from the reference solutions 
when the Q8C rosette is used, mainly if the integration domain falls 
inside the plastic zone. Thus, the adaptive process for crack 
problems depends on the degree of mesh refinement that is specified 
by the convergence criterion, on the type of problem and on the 
initial mesh. In the examples, the T6 rosette always tends to 
converge to the reference solutions and should be preferred. 
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