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Optimal Configurations of Composite 
Multiple Mass Dampers in Tall 
Buildings 
The effectiveness of multiple tuned mass dampers (MTMD) for suppressing harmonically 
forced oscillations is studied in the paper. In particular the influence of possible 
connections between the masses of the damper on the main system performance is 
investigated using four different configurations of a double mass damper. For this, a 
minimax procedure, which considers all dampers parameters and variables, is used to 
optimize each configuration and compare their influence on the minimum value of the 
maximum magnification factor of the main system. A parametric study shows that small 
variations in the MTMD parameters and the way in which the masses are connected have 
a marked influence on the main system response. This sensitivity gives the designer more 
freedom in choosing the proper damper configuration in a practical situation.  
Keywords: tuned mass damper, multiple tuned mass damper, vibration control, structural 
dynamics, damper optimization 
 
 
 
 

Introduction 
1A tuned mass damper (TMD) is a passive vibration control 

device that has been used in some engineering structures and 
machines. Usually it consists of a single mass-spring-dashpot 
system connected to the main structure. In particular, TMDs have 
been used in recent years in several tall buildings and towers to 
reduce the energy dissipation demand of these structures under the 
action of wind loads (Holmes, 1995). In these applications the TMD 
is placed on the top of the building to maximize its efficiency. The 
basic concepts for the design of a damped TMD for an undamped 
structure were presented by Den Hartog (1956). He showed that 
under a simple harmonic load the main structure could be kept 
completely stationary when the attached absorber is chosen to be 
tuned to the excitation frequency. As a result, the vibrational 
structural energy of the building is transferred to the TMD. 

One of the drawbacks when a single TMD is used is its 
sensitivity to small variations in system parameters, in particular the 
natural frequency of the structure and/or the TMD damping 
considered in the design. Uncertainties in the damper and 
particularly in the system are inherent to engineering constructions. 
To improve the reliability and effectiveness of the damper, 
experimental measurements have to be made to determine the 
dynamic properties of one structure. Alternatively the use of more 
than one damper has been proposed (Xu & Igusa, 1992; Park & 
Reed, 2001; Abé & Fujino, 1994; Igusa & Xu, 1994; Jangid, 1999; 
Jangid & Datta, 1997; Yamaguchi & Harnpornchai, 1993; Kareem 
& Kline, 1995; Gu et al., 2001; Poovarodom, 2003; Yau & Yang, 
2004). In particular, previous studies by Abé & Fujino (1994), Igusa 
& Xu (1994) and Jangid (1999), among others, have shown that 
multiple tuned mass damper (MTMDs) can be more effective and 
robust than a single TMD and that, in this case, the response of the 
main system is not much influenced by relatively small changes or 
errors in the values of system parameters used in the TMD design. 
According to Janjid & Datta (1997) there is a region around the 
optimum frequency of the damper where the optimized MTMD 
exhibit an almost constant effectiveness. 

Some practical restraints, however, must be observed in the 
design of a TMD (Abé & Fujino, 1994; Soong & Dargush, 1997). 
The amount of added mass placed on the top story of a building, the 
TMD excursion travel relative to the floor, the friction between the 
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sliding mass and the bearing surface, the amount of spring force on 
the building and also the enclosure of space occupied by the TMD 
are some of the issues to be addressed in its design. Now the use of 
a conception of a system of MTMD can give the designer more 
freedom in choosing the properties and the best configuration of the 
multiple dampers. 

There are several propositions for the selection of the dampers 
parameters: one can vary the mass or stiffness of the damper (or 
both) to cover a certain frequency range encompassing the main 
tuning frequency. According to Xu & Igusa (1992), it is easier in 
practice to fix the stiffness of each spring and vary the mass of each 
damper to cover the desired frequency range. 

To improve the MTMD effectiveness, several optimization 
procedures are found in literature (Jangid, 1999; Tsai & Lin, 1993; 
Hoang & Warnitchai, 2005; Magluta et al., 2003; Carneiro, 2004; Li 
& Qu, 2006). According to Jangid (1999), the optimal parameters of 
a MTMD cannot be obtained by a procedure similar to that 
employed by Warburton (1982) for a single damped TMD. He 
determines the optimal parameters by the minimax procedure 
proposed by Tsai & Lin (1993) for a single damped TMD. An 
optimization procedure for a MTMD was proposed by Li (2000) for 
a structure submitted to a base excitation. Hoang & Warnitchai 
(2005) developed a new method to design MTMD using a numerical 
optimizer. 

In some practical applications the masses of the damper are 
connected in different ways (Soong & Dargush, 1997), on the other 
hand the majority of the investigations on MTMDs consider no 
connection between the dampers. In this paper the influence of 
possible connections between the masses of the dampers is studied 
in detail. For this, four different configurations of a double mass 
damper are compared. In each case the damper parameters are 
optimized using a minimax procedure that considers mass, tuning 
frequency and damping ratio of each damper as free variables. 

Nomenclature 

C  = damping matrix 
c  = TMD damping 
C1

*  = modal damping 
di  = total displacement 
D  = location vector 
K  = stiffness matrix 
k  = TMD stiffness 
K1

*  = modal stiffness 
F  = external load vector 
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f(t)  = modal dynamic excitation force 
g(t)  = external load acting on the structure 
M  = mass matrix 
m  = TMD mass 
M1

*  = modal mass 
p(t)  = interaction force between the TMD and the structure 
qi  = relative displacement 
Rd  =  magnitude of the first element of the complex-frequency 

response transfer matrix 
y  = displacement vector 
yi (t)  = the absolute lateral displacement of the i=th floor where 

the TMD is installed relative to the building base. 
Y(ω)  = transfer function matrix 
z(t)  = relative displacement 
Greek Symbols 
α  = natural frequency ratio  
β  = forced frequency ratio 
φ1 = first mode shape 
ωs = structure natural frequency 
ωe  = excitation force frequency 
ωTMD = TMD frequency  
ξ = damping ratio 
µ  = mass ratio 

System Description and Equations of Motion 

System with TMD 

The equation of motion of a building-TMD system can be 
expressed in matrix form as  

 

)()()()()(
...

tptttt DFKyyCyM +=++  (1) 
 

)()()()()(
.....

tgtymtkztzctzm N +−=++  (2) 
 

where M, C and K are, respectively, the mass, damping and stiffness 
matrixes of the NDOF structural system while m, c and k are the 
mass damper parameters; F(t) and g(t) are the external loads acting 
on the structure and TMD, respectively; p(t) = cż (t)+kz(t); yi(t) is 
the absolute lateral displacement of the i-th floor of the building 
relative to its base; z(t) is the relative displacement of the TMD with 
respect to the floor where it is installed; D is a localization vector 
whose components dj are given by 
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where k is the floor where the damper is installed. 

Let us consider a tall building where the natural frequencies are 
well spaced so that the structure oscillates around a predominant 
mode. In this case, response vector of the structure can be 
approximately represented by a single coordinate yN and a mode 
shape �1  

 
y = φ1 yN.                (4) 
 
Substituting Eq. (4) into Eq. (2) and pre-multiplying Eq. (2) by 

φ1
T, one obtains the following reduced system 
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where 11

*
1 MφφTM =  is the modal mass; 11

*
1

*
1 2 ωξMC = , 

2
1

*
1

*
1 ωMK =  and f(t) is the modal dynamic excitation force. Here, ξ1 

and ω1 are respectively the damping ratio and natural frequency of 
the structure. 

 

System with MTMD 

Consider now the simplified SDOF system with n tuned mass 
dampers with different dynamic characteristics attached to the top 
floor, as shown in Fig. 1. The main system is characterized by *

1K , 
*
1M  and *

1C , while the j-th TMD is characterized by a mass mj, 
damping cj and stiffness kj. So, the (n+1) equations of the composite 
system are given by 

 

)()()()(
...

tttt FKyyCyM =++                              (6) 
 

where M, C, and K are the mass, damping, and stiffness structural 
matrices, respectively; y(t) is an (n+1) vector which represents the 
main system and masses displacements relative to the main system; 
F(t) = [f1(t), f2(t), ..., fn(t)]T is the external excitation. 

For analysis, the frequency domain approach will be adopted 
since the dynamic behavior of the structure can often be described 
more simply by a transfer function in the frequency domain, and the 
excitations, such as wind loads, are often modeled as stochastic 
processes characterized by their spectral density functions in the 
frequency domain. Adopting this approach, fi(t) = fie-iωt and y(t) = 
Y(ω)e-iωt. Substituting these expressions in Eq. (6), one obtains 

 
Y(ω) = (ω2M-iωC+K)-1F               (7) 
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Figure 1. Structural model: multiple tuned mass damper (MTMD) attached 
to the main structure. 

 
 
Rd is defined in this work as the magnitude of the first element 

of the complex-frequency response transfer matrix (ω2M-iωC+K)-1 
in Eq. (7). The ij element of this matrix represents the permanent 
response of coordinate i due to a harmonic load applied to 
coordinate j. The variation of the absolute value of the matrix first 
element is observed because it represents the permanent response of 
the main system due to a harmonic load applied to it. 

To demonstrate the effectiveness of a MTMD, consider a tall 
building modeled as a SDOF system with modal parameters, relative to 
the first lateral bending mode, M*

1 = 1.8 x 104 t; K* 1 = 1.82 x 104 kN/m; 
ξS = 0.01 and ωS = 1.01 rad/s. Consider also a TMD with m = 3.6 x 102 
t; k = 3.03 x 102 kN/m; ξ = 0.036; ωTMD = 0.917 rad/s and α = 0.908. 
These dynamic characteristics are related to the 274 m tall Citicorp 
Center in New York (Soong & Dargush, 1997).The wind load is 
approximately described by the periodic force: 
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where P is the magnitude of the excitation and ωe is the excitation 
frequency. Figure 2(a) shows the time response of the building 
displacement with and without a TMD for P = 40 kN and ωe = 1.0 
rad/s. This shows clearly the advantages of using a TMD in a practical 
case. If the frequency of the periodic force in Eq. (8) is increased to ωe 
= 1.035 rad/s, slightly higher than the lowest natural frequency of the 
building, one can observe in Fig. 2(b) that the control system looses its 
efficiency and the amplitude of steady-state response of the controlled 
system is much higher than the uncontrolled one. In fact, as shown in 
Fig. 3, where the magnitude of Rd is given as a function of the 
frequency parameter se ωωβ /= , the response of the building attains 
its maximum value at ωe = 1.035 rad/s. This confirms the limitations 
of a single damper when the excitation frequency is slightly different 
of that considered in design. 
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Figure 2. Controlled and uncontrolled time response of the main system 
varying excitation frequency: (a) ωe = 1.0 rad/s; (b) ωe = 1.035 rad/s. 

 
 
To study the efficiency of the MTMD concept, let us consider a 

MTMD with two equal masses (m1 = m2 = 180 t), each half of that of 
the original TMD, with the following dynamic characteristics: ω1 = 
0.9 rad/s; ω2 = 0.9 rad/s; ξ1 = 0.1; ξ2 = 0.05. The response of the 
structure in the frequency domain with a single and two independent 
dampers is shown in Fig. 3. It is clear that the MTMD is less 
sensitive to variations in the excitation frequency and is more 
efficient in the vicinity of the natural frequency of the structure.  
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Figure 3. Frequency response of the structure. 

 
 
The efficiency of the MTMD can be even better by optimizing 

its parameters and/or by connecting the two masses in different 
ways as shown in Fig. 4. It is also shown in Fig. 4, for each of the 
four possible configurations studied in this paper, the total and 
relative displacement of each mass, respectively di, and qi. 

The normalized mass, stiffness and damping matrices in Eq. (6) 
for each configuration are: 
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Configuration 4 

Figure 4. Configurations of the composite damper analyzed here. 
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where sω and sξ are, respectively, the natural frequency and damping 
ratio of the main system, 

sω
ω

α 1
1 =  (13) 

 

sω
ω

α 2
2 =  (14) 

 
where 1ω  and 2ω  are the frequencies of the two masses of the 
damper, and 

 

*
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1 M

m
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The minimax procedure as employed by Tsai & Lin (1993) 

consists in searching numerically for the design parameters that 
yield the lowest peak of Rd. The present work is based on this 
procedure, but here the maximum value of the response is obtained 
from the following equation 

 

0=
∂
∂

β
dR  (17) 
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which defines the maximum of Rd. Here β is the ratio of frequency 
ω to the excitation frequency. Since Eq. (17) is highly non-linear, 
the Newton-Raphson method is employed to obtain the system 
parameters. 

Numerical Example 

Consider the ten-story building analyzed previously by 
Villaverde & Koyama (1993). The modal characteristics of the 
reduced SDOF system associated with the fundamental mode are: 
M1

* = 589.1 t; K1
* = 5.94 x 103 kN/m and C1

* = 74.8 kNs/m. 
Initially the ratio of the damper’s mass to the structural mass is 

taken as: µ1 = 0.061 and µ2 = 0.042 and the frequency ratios α1 e α2 
and damping ratios ξ1 and ξ2 are obtained by the minimax 
procedure. The optimal parameters for each configuration are 
presented in Tab. 1. The corresponding optimum Rd values are 
compared with that obtained for a single TMD with an equivalent 
total mass µ = 0.103, using Den Hartog’s procedure (α = 0.906;       
ξ = 0.104) and with the optimal value for a MTMD designed 
according to Jangid’s equations (Jangid, 1999), also in Tab. 1. The 
optimization procedure as implemented here leads to more efficient 
dampers, with configurations 2 and 3 leading to the better results. 
The harmonic response of the main oscillator is plotted as a function  
of the frequency parameter β in Fig. 5. 
 
 

Table 1. MTMD optimum parameters and Rd maximum values. 

 α1 α2 ξ1 ξ2 Rd máx 

Config. 01 0.8500 1.000 0.1378 0.1600 0.368
Config. 02 1.3375 0.9625 0.0400 0.5330 0.365
Config. 03 1.6250 1.1750 0.0050 0.0050 0.365
Config. 04 0.8500 0.8750 0.3389 0.0050 0.372

Jangid (1999)     0.392
TMD     0.409
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Figure 5.  Frequency response for harmonic load. 

 
 

Two important issues in a TMD design are its travel relative to 
the floor and the enclosure of space occupied by the TMD. To 
understand the influence of the damper configuration on these 
issues, the response of each damper is computed considering a 
harmonic force F(t) = 103 sin (ωt) N with ω = 2.8566 rad/s (β = 
0.9). Figure 6 shows the maximum displacements for each mass of 

the double damper (d1max and d2max) for each configuration. The best 
configuration in terms of travel space is configuration 3, but 
configuration 2 could lead to less enclosure space. 
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Figure 6. Maximum displacement for each mass of the damper obtained 
from the time response. 

 
 

In the previous example the mass ratios µi were kept constant in 
the optimization procedure. Now the procedure is repeated 
considering also the parameters µ1 and µ2 as design variables. The 
optimum parameters are shown is Tab. 2 together with the 
corresponding minimum value for the maximum magnification 
factor Rd. In each case the total mass ratio is kept constant and equal 
to µ = 0.1. Again configurations 2 and 3 are more efficient. In this 
optimization process the response of configuration 1 is independent 
from the ratios µi. The inclusion of the mass ratios in the 
optimization process leads to even better results for Rd máx . 

 
 

Table 2. Optimum parameters for µ = 0.1. 

 α1 α2 ξ1 ξ2 µ1 µ2 Rd máx 

Config. 01 0.9 0.9 0.2 0.2 - - 0.3977
Config. 02 1.1 0.9 0.05 0.35 0.08 0.02 0.3560
Config. 03 1.1 0.9 0.05 0.35 0.08 0.02 0.3560
Config. 04 1.1 0.8 0.05 0.25 0.03 0.07 0.3942

 
 
Again, the equations of motion of each optimized system 

considering F(t) = 103 sin (ωt) N with ω = 3.174 rad/s (β = 1.0) 
were integrated numerically. The maximums displacements for each 
mass of the damper are presented in Fig. 7. The response for the 
mass m1 is practically the same, independent of the type of 
connection between the masses. For m2 as configurations 1 and 4 
leads to the best results, but is less efficient in terms of the main 
system results, while configurations 2 and 3 are more effective in 
reducing the displacements of the main systems, but exhibit higher 
displacements relative to the main system. 
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Figure 7. Maximum displacement. 

 
 

Now consider a MTMD with total mass ratio µ = 0.05. The 
optimized parameters are presented in Tab. 3. Figure 8 shows the 
frequency response for this case. Here for the mass ratio is more 
evident than the results for a MTMD, which are less sensitive and 
more effective than the results obtained for a single TMD. 
 
 

Table 3. Optimum parameters for µ = 0.05. 

 α1 α2 ξ1 ξ2 µ1 µ2 Rd máx 

Config. 01 0.9 1.0 0.1 0.1 0.025 0.025 0.5041
Config. 02 1.0 0.8 0.05 0.35 0.045 0.005 0.5042
Config. 03 1.0 0.8 0.05 0.35 0.045 0.005 0.5042
Config. 04 1.0 0.8 0.05 0.30 0.03 0.02 0.5171
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Figure 8. Frequency response for harmonic excitation with passive 
element (µ = 0.05) 

 
 

The influence of the ratio between the mass of the two dampers 
21 / µµ  on the value of Rd máx is shown in Fig. 9 for a total mass µ = 

0.05. To obtain the optimal value for Rd, for configuration 1, the 
best option is to adopt 21 µµ = ; for configurations 2 and 3 m1 must 
be larger than m2, while for configuration 4 one mass must be 
approximately 50% higher than the other. 
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Figure 9. Influence of the dampers mass ratio (µ1/µ2) on the minimum 
value of the maximum magnification factor Rd max. 
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The use of multiple tuned mass dampers to control the global 

response of a structure has been investigated in this paper. In the 
present study four different configurations of a double damper 
system are studied and their optimal properties are numerically 
obtained for minimum displacement of the main structure. The 
minimax procedure as implemented here considers as design 
variables the mass ratios, the damping ratios and tuning frequencies 
of the dampers. The performance of each control system is assessed 
by detailed parametric studies. These results show that, independent 
from the damper configuration, MTMDs can enhance the 
effectiveness of the control system when compared with the 
performance of a single optimized TMD. Results also show that the 
system response is sensitive to small variations in the mass, stiffness 
and damping parameters. The consideration of all these parameters 
as design variables leads to the smallest peaks possible of the 
response in the frequency domain. 

The connection between the masses of the dampers has a 
measurable influence on the performance of the composite damper 
giving the designer a certain flexibility in important design issues, 
such as the amount of added mass placed on the top story of a 
building, TMD travel relative to the floor, the amount of spring 
force on the building and enclosure of space occupied by the TMD. 
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