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Numerical Investigation of the Three-
Dimensional Secondary Instabilities 
in the Time-developing Compressible 
Mixing Layer 
Mixing layers are present in very different types of physical situations such as atmospheric 
flows, aerodynamics and combustion. It is, therefore, a well researched subject, but there 
are aspects that require further studies. Here the instability of two- and three-dimensional 
perturbations in the compressible mixing layer was investigated by numerical simulations. 
In the numerical code, the derivatives were discretized using high-order compact finite-
difference schemes. A stretching in the normal direction was implemented with both the 
objective of reducing the sound waves generated by the shear region and improving the 
resolution near the center. The compact schemes were modified to work with non-uniform 
grids. Numerical tests started with an analysis of the growth rate in the linear regime to 
verify the code implementation. Tests were also performed in the non-linear regime and it 
was possible to reproduce the vortex roll-up and pairing, both in two- and three-
dimensional situations. Amplification rate analysis was also performed for the secondary 
instability of this flow. It was found that, for essentially incompressible flow, maximum 
growth rates occurred for a spanwise wavelength of approximately 2/3 of the streamwise 
spacing of the vortices. The result demonstrated the applicability of the theory developed 
by Pierrehumbet and Widnall. Compressibility effects were then considered and the 
maximum growth rates obtained for relatively high Mach numbers (typically under 0.8) 
were also presented. 
Keywords: mixing layer, linear stability theory, compact finite-difference scheme, 
stretching grid, linear and non-linear growth rate 
 
 
 

Introduction 
1The mixing layer, a classical phenomenon of hydrodynamic 

instability, comes in numerous practical situations such as 
aerodynamics, propulsion and environmental engineering. As a 
specific example, progress in space research is dependent on 
vehicles capable of carrying higher payloads into orbit and therefore 
requires the development of more efficient propulsion systems. Such 
systems involve combustion and turbulent mixing. In fact, a detailed 
understanding of the physics of mixing layers is essential for the 
development of new turbulence and mixing models. Compressibility 
is a key factor in many scenarios. Owing to these aspects, this field 
has constituted one of the main research themes in turbulence over 
the last thirty years. Nevertheless, there are aspects of the problem 
that need further investigation. The numerical investigations here 
presented are devoted to the regime governed by non-linearity.      

The engineering research and modern design requirements pose 
great challenges in computer simulation to engineers and scientists 
who are called upon to analyze phenomena in continuum 
mechanics. However, the advent of the computational fluid 
dynamics technology has had a profound impact on fluid dynamics 
research. It has enabled careful and detailed investigations that were 
inconceivable a few decades ago. Nowadays, direct numerical 
simulations are generally employed to solve the Navier-Stokes 
equations and to study the physics of hydrodynamic instability.    

The mixing-layer instability, often called Kelvin-Helmholtz 
instability, promotes the formation of spanwise vortex structures. 
Analytical study on this problem began at the end of the nineteenth 
century, when Rayleigh (1980) demonstrated that the profile has to 
have an inflexion point to be inviscidly unstable. Further analytical 
work also revealed the preference for amplification of two-
dimensional disturbances (spanwise wavenumber equals zero) in 
incompressible flows (Squire, 1933). Numerical solution of the 
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equations of Linear Stability Theory (LST) to the incompressible 
mixing layer was presented only much later, by Michalke (1964). 
The effect of compressibility on the mixing layer instability was 
investigated in laboratory experiments by Lessen, Fox and Zien 
(1965, 1966) and Gropengiesser (1970). The experimental work 
published by Birch and Eggers (1973) showed a reduction in the 
growth rate of the two-dimensional disturbances as the Mach 
number increased. Brown and Roshko (1974) found that the effect 
of density ratio alone could not be responsible for this reduction 
implying that the compressibility effect is the mechanism that leads 
to it.  

Renewed interest in compressible mixing layers motivated 
experiments by Papamoschou and Roshko (1988) in which high-
speed mixing layers with various velocity and density ratios were 
investigated. In this work, a parameter called convective Mach 
number is proposed: 
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where U1 and U2 are the free-stream velocities and c1 and c2 are the 
free-stream sound speeds. The subscripts 1 and 2 refer to the 
velocity at upper (y > 0) and lower (y < 0) free stream, respectively. 
Works involving the study of linear stability were presented by 
Sandham and Reynolds (1990) and Fortuné (2000). When the 
disturbances become large the non-linear effects must be taken into 
account. The theory associated with these effects is more 
complicated than its linear counterpart. Reviews about the theory 
can be found in Bayly (1988). Both theory and experiments show 
that these flow disturbances grow and saturate in a limit cycle 
pattern of co-rotating vortices. In turn, the vortices are themselves 
unstable to subharmonic disturbances, meaning that, if a 
subharmonic oscillation exists in the flow it will grow. It eventually 
results in a pairing of the vortices created by the fundamental 
disturbance. This phenomenon is an example of secondary 
instability.   
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Investigation of three-dimensional disturbances (spanwise 
wavenumber different from zero) triggering secondary instability 
was also carried out. In this scenario, large spanwise vortices, called 
rollers, represent the saturated state reached by the mixing layer 
instability. A major work in this field was produced by 
Pierrehumbert and Widnall (1982). They assumed a base flow 
consisting of a hyperbolic tangent profile with superposed Stuart 
vortices (Stuart, 1967). These are steady solutions of the 
incompressible Navier-Stokes equations. Two classes of instability 
were found: fundamental and subharmonic. In the fundamental case, 
two modes were found corresponding to vortex core deformations 
called respectively bulging and translative modes. The phase was 
the parameter that selected the type of mode. The translative mode 
studied by Pierrehumbert and Widnall (1982), and Sandham and 
Reynolds (1990) was the more unstable. In Sandham and Reynolds 
(1990) the wavelength used was roughly equal to the spacing 
between the streamwise vortices, as found in the experiments of 
Bernal and Roshko (1986). Pierrehumbert and Widnall (1982) also 
showed that for the fundamental mode maximum growth rate was 
obtained for a spanwise wavelength approximately 2/3 of the 
streamwise spacing of the vortices.  

  Pierrehumbert and Widnall (1982) considered that the three-
dimensional fundamental mode was responsible for the initial three-
dimensional deformation of the spanwise vortices leading to the 
generation of longitudinal vortex structures called braids. The braids 
appeared only at non-linear stages of the three-dimensional 
development of the rollers and as such were not directly accessible 
by the primary linear stability theory. For the three-dimensional 
subharmonic mode, Pierrehumbert and Widnall (1982) found 
another kind of secondary instability called helical pairing. 
However, the most amplified subharmonic waves were the two-
dimensional ones. This corresponds to the two-dimensional pairing 
process most commonly observed in experiments. Ragab (1989) 
presents theoretical studies on secondary stability for compressible 
mixing layer. In his work, the study of the subharmonic instability 
found that for convective Mach numbers of about 0.4, the helical 
pairing mode was more amplified than the two-dimensional pairing 
mode. This is a further indication that the dominant character at high 
Mc is three-dimensional.  

The main contribution of the current work consists in verifying 
the growth rate of the three-dimensional flow disturbances in the 
secondary instability. This was done for both compressible and 
incompressible flows, and the results were analyzed in the light of 
the theory developed by Pierrehumbert and Widnall (1982). Based 
on the works presented in this review, the current code was 
subjected to numerous tests to assure the correct implementation of 
the numerical methodology. These tests mainly involved the 
reproduction of Linear Stability Theory results. The initial sections 
give the main characteristics of both the code and the simulations. 
Then the results of tests for the time developing mixing layer are 
presented, first in the linear regime and then in the nonlinear regime. 
The conclusions are given in the last section. The introduction 
should contain information intended for all readers of the journal, 
not just specialists in its area. It should describe the problem 
statement, its relevance, significant results and conclusions from 
prior work and objectives of the present work. 

Nomenclature 

xi = Cartesian coordinate in (x,y,z) direction, m 
t = time, s 
c = sound speed, m/s 
M = Mach number, dimensionless 
Mc = convective Mach number, dimensionless 
Re = Reynolds number, dimensionless 

Pr = Prandtl number, dimensionless 
U = free stream velocity, m/s 
T = free stream temperature, K 
ui = velocity component in (x,y,z) direction, m/s 
p = pressure, N/m2 
Et = total energy, J/(Kg K) 
e = internal energy, J/(Kg K) 
qi = heat transfer heat, J/(Kg K) 
cv = specific heat at const. volume, J/(Kg K) 
cp = specific heat at const. pressure, J/(Kg K) 
k = thermal conductivity, J/(Kg K) 
A = amplitude of disturbance, m 
f = generic function 
f’  = derivative of the function 
h = grid spacing 
N = number of grid points 
dx = grid spacing in the streamwise direction, m 
dy = grid spacing in the normalwise direction, m 
dz = grid spacing in the spanwise direction, m 
Lx = wavelength in the streamwise direction, m 
Ly = wavelength in the normalwise direction, m 
Lz = wavelength in the spanwise direction, m 
yc = center of computational domain in the y-direction, m 
H = length of computational domain in the y-direction, m 
LHS = left hand side 
RHS = right hand side 
a,b,c = coefficients used in the numerical methods 
 

Greek Symbols 

µ = dynamic viscosity, kg/(m s) 
ρ = density, kg/m3 
γ = ratio of specific heats, dimensionless 
τ = viscous stress tensor  

0Ωδ  = vorticity thickness of the initial profile 

α = wavenumber of the disturbance in the x- direction, 1/m 
βn = wavenumber of the disturbance in the z-direction where 

n corresponds to the index of spanwise wavenumber, 1/m 
ω = frequency of the disturbance flow, 1/m 
σ = decay rate of the disturbance in the normal direction 
φ = phase between a two-dimensional and an oblique wave 
η = transformation of y coordinate 
κ, λ = coefficients used in the numerical methods 
 

Superscripts 
* = dimensionless variables 
 = base flow variables 
΄ = flow disturbance variables 
^ = filtered function 
 

Subscripts 

mim = minimum value of any variable 
max = maximum value of any variable 
1 = refers to the upper (y > 0) free stream or dominant mode 
2 = refers to the lower (y < 0) free stream or subharmonic mode 

Submission 

In the current study, the governing equations are the 
compressible Navier-Stokes equations. The continuity equation is 
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The momentum equations for the velocity components in the 

streamwise, normal and spanwise directions can be written as 
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and the energy equation is 

 
( )

j

ijj

j

j

j

TjT

x

u

x

q

x

pEu

t

E

∂
τ∂

∂
∂

∂
∂

∂
∂ +−=

+
+  (4)  

 
where xi is the Cartesian coordinates (x,y,z), t is the time, ui is the 
velocity components (u,v,w), ρ is the density and p is the pressure. 
The total energy is given by ( )2/222 wvueET +++= ρ  and the 

primitive variable e is the internal energy. The non-dimensional 
constitutive relations for a Newtonian fluid and Fourier heat 
conduction are 

 















∂
∂−

∂
∂

+
∂
∂= ij

k

k

i

j

j

i
ij

x

u

x

u

x

u

Re
δτ

3

21  (5)  

 
And 
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where the Prandtl number is defined as κµ /Pr pc= ,  γ  is the ratio 

of specific heat, 
pc  is the specific heat at constant pressure and κ  is 

the thermal conductivity. The Reynolds number of the flow is 
defined as 
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The dimensional variables ( µρ ,, 11 U ) are the density, the velocity 

and the dynamic viscosity of the base flow at the upper (y > 0) free 
stream. The parameter 

0Ωδ is the vorticity thickness of the initial 

velocity profile given by 
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where the subscripts 1 and 2 refer to the velocity at the upper (y > 0) 
and lower (y < 0) free stream, respectively. The perfect-gas law for 
non-dimensional pressure and temperature is 
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These conservation equations were presented with the following 

non-dimensionalization scheme:  
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where α  is the streamwise wavenumber and ω  is the radial 

frequency of the imposed disturbance. The superscript  *   indicates 
dimensional parameters. 

In problems of hydrodynamic instability the variables are often 
decomposed into two parts: the base flow and a small disturbance 
flow. This decomposition, adopted in the present work, can be 
written in the following way 
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where (
_

) indicates the base flow and  (' ) refers to the disturbance 

flow. In the current analysis, the base flow is invariant in the 
streamwise direction and the components (v,w) of the base velocity 
are null. Sometimes this decomposition is used in the code 
implementation. However, in the current implementation the total 
variables were used. 

Methodology  

Base Flow 

Many different velocity profiles have been proposed in the 
literature to model a mixing layer. The profile used in the current 
numerical work corresponds to a hyperbolic tangent function 
(Fortuné, 2000), in which the upper part travels to the right and the 
lower to the left. The base velocity profile was defined as 
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For this profile, the vorticity thickness is given by Eq. (8). This 

profile has often been used, partially because it is analytical. 
Consequently, the flow speed can be calculated exactly for each 
value of y. The derivatives of this function are known as well. A 
disadvantage of this profile is that it satisfies the momentum and 
energy equations only approximately. Therefore, the simulations 
exhibit a transient while the profile relaxes to the exact solution. As 
this transient is very short, the use of Eq. (13) does not affect the 
results at the later non-linear stages. Indeed, initial base flows that 
satisfy the conservation equation only approximately are commonly 
used (Sandham and Reynolds, 1990). 

  A uniform pressure was assumed for the initial base flow. The 
initial mean temperature profile was calculated from a solution of 
the compressible boundary layer energy equation assuming unity 
Prandtl number (White, 1974). For the antisymmetric mean velocity 
profile considered here and with equal free stream temperatures, the 
general relation of Crocco-Busemann leads to  
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This expression also involves the assumption that the flow is 

parallel. With a constant density along the velocity profile, the 
convective Mach number (Mc) of this flow is equal to the free 
stream Mach number (M).  
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Initial Condition 

Along with the base flow profiles, the flow disturbances have to 
be defined. Numerical errors engender perturbations which are 
sufficient to trigger the instabilities in the mixing layer, but for very 
accurate codes such as the current one, this process takes a very long 
time. The development of the instability and the formation of vortex 
structures can be largely accelerated and better controlled by the 
introduction of flow disturbances.  

In this work, the flow disturbances were exponential functions 
in the y-direction. These functions are convenient because they 
decrease really quickly and satisfy the boundary conditions of no 
disturbances at ±∞→y . In the x-direction the disturbance was 

periodic. All these issues were used to define v′ . For two-
dimensional disturbances, u′  was calculated from the continuity 
equation for incompressible flow. This is only true for very small 
Mach numbers, but it did not affect the long time solution. The flow 
disturbances could then be written as 
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where A is the amplitude, α  is the streamwise wavenumber and σ  
is the decay rate of the disturbance in the y-direction. The subscripts 
1 and 2 refer to the fundamental and subharmonic modes 
respectively. 

Based on similar hypotheses, the three-dimensional initial flow 
disturbances used were 
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where 

nβ  represents the spanwise wavenumber, the lowest being for 

0=n , and φ  is the phase difference between the two-dimensional 

wave and the pair of three-dimensional, oblique waves.  

Boundary Condition 

Periodic boundary conditions were used in the stream- and span-
wise directions. In the normal direction, an unbounded boundary 
condition would be necessary. Thus boundary conditions were 
adapted to simulate an infinite domain, even though the 
computational domain was finite. In the current simulations, the 
normal component of velocity in the free stream was set to zero. 
This corresponds to the impermeability condition. For the other 
primitive variables the first derivatives in the normal direction were 
set to zero. This boundary condition is often referred to as free-slip. 
For a sufficiently large distance from the mixing layer, this 
boundary condition produces accurate results.    

 
 
 

Numerical Method 

Simulations performed in the current work required high 
accuracy of the numerical solution (Lele, 1992; Souza, 2003). 
Compact finite-difference schemes were then adopted. The compact 
schemes for spatial derivatives are extremely attractive when 
explicit time advancement schemes are used. The most popular 
compact scheme for spatial derivatives, also called Padé scheme, is 
the symmetric sixth order version. In the current implementation 
this approximation was used only for the interior points. This 
scheme is symmetric and does not exhibit dissipative errors. 

For compact schemes, the finite-difference approximations to 
the derivatives of the function are expressed as a linear combination 
of the given function values and derivatives on a set of nodes. First, 
a uniformly spaced mesh was considered where the nodes are 
indexed by i, which varies from 1 to N. In these schemes, the value 
of f ′ is dependent on all the others nodal values. In general, 

compact (also called implicit) schemes are significantly more 
accurate for short length scales than non-compact schemes (Collatz, 
1966; Kopal, 1961). Lele (1992) emphasizes the importance of 
using methods of high-order and shows schemes with 6th order 
approximation for the interior of the mesh. 

Here, the following 6th order compact (implicit) derivatives 
were used  
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In the equation above, h is the grid spacing. This equation 

corresponds to the approximation used in the streamwise and 
spanwise directions, for all points.  

The compact approximations for the second derivative are 
similar to that of the first. These derivatives that correspond to the 
viscous terms in the governing equations may involve the 
evaluation of successive first derivatives. When a spectral method 
is used, there is no loss of accuracy if these derivatives are 
computed in such a way. However, with finite-difference methods 
one finds that two applications of a first derivative give a 
significantly worse representation at high wavenumbers than a 
direct second derivative computation. The spectral analysis carried 
out by Lele (1992) shows that for the first derivative the modified 
wavenumber at high wavenumbers goes to zero. The solution for 
this problem is to calculate the second derivatives directly, 
avoiding these problems and providing more accuracy. This 
approach, however, is non-conservative, but for the case studied 
here, it did not bring any difficulty. The scheme for second 
derivatives adopted in this work was  
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The approximation above was used for the stream and span-wise 

directions, which have periodic boundary conditions.  
In the normal direction, a 2nd order approximation at the 

boundaries was used. Tests were performed with this and other 
schemes. The results showed that the numerical scheme is more 
stable with 2nd order approximations than the high order schemes. It 
is emphasized that, for a sufficiently long distance from the shear 
zone, it is possible to use low order without reducing the overall 
accuracy of the simulations.   
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For the interior points in the y-direction, the same compact 
scheme described above was used for first and second derivatives, 
Eq. (17) and Eq. (18) respectively. At the boundary i = 1, the 
scheme for first derivative can be written as 
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For the points next to the boundary, i = 2 
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The second derivatives, at the boundary i = 1, were discretized as   
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For the points next to the boundary, i = 2   
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For the points at the opposite boundary, i = N and i = N-1, similar 
approximations were used.  

Table 1 shows the stencil size and the truncation error for first 
and second derivatives. 

 
 

Table 1. Stencil size and truncation error for numerical schemes. 

Schemes Max L.H.S. 
Stencil size 

 

Max R.H.S. 
Stencil size 

 

Truncation 
error 

17 3 5 1/28 h6 f7 

18 3 5 -1/2414 h6 f8 
19 1 3 -1/3 h2 f4 
20 1 3 -1/6 h2 f4 
21 1 3 1/2 h f3 
22 1 3 -1/2 h2 f4 

 
 
 
The time-advancement of the computational variables 

( Ti E,u,ρρ ) was obtained by a 4th order Runge-Kutta method. The 

scheme used here works in four steps (Ferziger and Peric, 1997). 
The combination of these steps results in a 4th order accurate 
algorithm in time.  
The non-linear terms in the Navier-Stokes equation can produce 
aliasing errors. In order to remove this error, a high-order compact 
filter was implemented (Lele, 1992). The numerical filter was 
applied after the last step of the Runge-Kutta scheme. This filter 
consists in recalculating the distribution of the primitive variables 
and is of 4th order accuracy as below 
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Implementation of the filtering schemes on domains with non-

periodic boundaries requires the near boundary nodes to be treated 
separately. Therefore, near boundary explicit formulas were needed: 
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The truncation error for these methods is shown in Tab. 2 
 
 

Table 2. Stencil size and truncation error for numerical filter. 

Schemes Max L.H.S. 
Stencil size 

 

Max R.H.S. 
Stencil size 

 

Truncation 
error 

23 5 7 -1/228 h4 f4 

24 1 5 3/48 h4 f4 
25 1 5 11/191 h4 f4 
26 1 5 -3/48 h4 f4 

 
 

Grid Stretching 

The governing equations can be transformed from a Cartesian 
coordinate system to any general orthogonal coordinate system.  
Hence a non-uniformly spaced computational grid in the physical 
plane can be transformed into uniformly spaced grid in the 
computational plane.  

Simple transformations can be used to cluster grid points in 
regions of large gradients, where more resolution is required. Here, 
in the points near the free stream the problem permits less 
resolution, while at the center of the domain greater resolution is 
needed. Therefore, it is possible to stretch the grid and decrease the 
overall number of points used while maintaining the overall 
accuracy. 

In this work, a formula from Anderson, Tannehill and Pletcher 
(1984) giving a constant stretching was adopted. τ is a stretching 
parameter that varies from zero (no stretching) to large values. It 
produces the most refinement near y = yc, which is located at the 
center of the grid   
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In Eq. (27), the parameter H is the size of the computational domain. 
In order to apply this transformation to the governing equations, 
partial derivatives have to be taken. For the first derivatives we have 
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This relation should be used in combination with the compact 
schemes. Applying relation (28) to the derivative approximations, 
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the following tridiagonal compact scheme for the first derivatives 
was obtained 
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according to the compact finite-difference scheme used.  
A similar procedure can be applied for the second derivatives 
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Equation (31) can be rewritten as  
 










∂
∂

′
′′

−
∂
∂

′
=

∂
∂

ηΨ
Ψ

Ψη
f

y

ff
22

2

22

2 1  (33) 

 
Using the relation 
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Therefore, applying relation (34) to the second derivative 
approximation 
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Bogey et al. (2000) recommend that the grid stretching should 

not exceed 1.8% in order to avoid problems with space derivatives. 
One basic assumption of these methods is that the mesh must be 
sufficiently smooth so that η∂∂ /  and 22 / η∂∂  can be calculated 

without appreciable loss in the overall accuracy. 

Computational Tests 

In this section, results from direct numerical simulation of the 
compressible Navier-Stokes equations are used to test and verify the 
current code. Simulations of two- and three-dimensional flow 
disturbances in linear and non-linear regime were performed and the 
results were compared with existing theories.  

Linear Stability 

This section presents results of the evolution of two-dimensional 
sinusoidal disturbances in a mixing layer in the regime governed by 

the linear theory. Simulations were performed and the growth rate 
for uniform and non-uniform grids were compared to theoretical 
ones in order to analyze the code implementation and efficiency of 
the grid stretching. Theoretical results were extracted from Sandham 
and Reynolds (1990). 

An important aspect to be considered in these simulations is the 
treatment of the vertical diffusion. This diffusion increases the width 
of the mixing layer during the simulation, which implies a variation 
of the mean flow over time. The strategy adopted here to avoid this 
diffusion was to cancel the vertical diffusion terms for the base 
flow 022 =∂∂ η/u .     

First the mixing layer problem was simulated with the Euler 
equations and two tests were performed. These tests were carried out 
using a disturbance with only one mode, that is, only one streamwise 
wavenumber. The wavenumbers of the disturbances were close to the 
values of maximum amplification as predicted by linear theory. The 
mesh for both uniform and non-uniform grids had 40 x 80 points in 
the x- and y-directions respectively. The grid spacing used in the 
streamwise direction with a uniform mesh was dx ≈ 0.38 for Mc = 0.4 
and dx ≈ 0.60 for Mc = 0.8. For the uniform mesh, in the normalwise 
direction the grid spacing utilized was dy ≈ 0.30. For the non-uniform 
mesh in the y-direction, the minimum and maximum mesh spacing 
were dymin ≈ 0.0089 and dymax ≈ 1.67. The initial amplitude of the 
disturbance given by Eq. (15) was approximately 10-6. This amplitude 
ensured that the phenomenon started in the regime governed by the 
linear theory. The non-dimensional time step (dt) of these simulations 
was 10-3. 

Figure 1 shows the growth rate of the unstable wave as a function 
of non-dimensional time for Mc = 0.4. The vertical coordinate is in 
logarithm scale. The dashed line shows the result for a non-uniform 
grid with a stretching parameter 12=τ . The growth rate from this 
case was about 0.30 which is very close to the theoretical results (solid 
line) of approximately 0.31. The dashed-dotted line is the numerical 
result for a uniform grid. The amplification rate obtained was about 
0.27. The disagreement might be attributed to the low resolution in the 
interior of the computational domain generated by poor accuracy of 
the uniform grid spacing simulation in the rotational region.  

 
 

 
Figure 1. Amplitude evolution for inviscid at for Mc = 0.4 and α = 0.82. 

 
Figure 2 presents results for Mc = 0.8. Similar to the previous 

results, the dashed-dotted line gives at low accurate amplification 
rate of about 0.11 for uniform grid. The theoretical results for this 
convective Mach number give an amplification rate of about 0.14. 
The solid line represents the simulation with the use of grid 
stretching. The growth rate obtained in this simulation was 0.125. 
This result is closer to the theoretical prediction.  
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Figure 2. Amplitude evolution for inviscid flow at Mc = 0.8 and α = 0.52. 

 
 
Simulations of the Navier-Stokes equations rather than the Euler 

equations were also performed. The grid and the initial amplitude of 
the disturbance adopted were the same as that in the previous 
inviscid simulations. The Reynolds number was 500. Again the 
wavenumbers selected corresponded to maximum amplification 
according to the theory.  

In Fig. 3 the dashed-dotted line shows the time evolution of a 
two-dimensional disturbance at Mc = 0.4. For a grid with constant 
spacing the amplification rate was about 0.26. This is an 
underestimation compared to the theoretical results that give an 
amplification rate of about 0.28 (solid line). The dashed line shows a 
growth rate of approximately 0.27 with the use of grid stretching. 
Although this result still underestimates the theoretical values, it is 
closer to the linear analysis.  

 
 

 
Figure 3. Amplitude evolution for viscous flow at Mc = 0.4, Re = 500 and 
α = 0.82. 

 
 
Figure 4 shows the time evolution for Mc = 0.8. The same 

analysis was made. The growth rate obtained for the uniform mesh 
was approximately 0.07, while for a mesh with grid stretching it was 
about of 0.09. Both simulations were close to the analytical results 
which give a growth rate about 0.11, but once more the grid 
stretching improved the result. 

 
 
 
 

 

 
Figure 4. Amplitude evolution for viscous flow at Mc = 0.8, Re = 500 and 
α = 0.52. 

 
 
According to the results presented above, the stretching used in 

the y coordinate significantly improved the accuracy by clustering 
the points in the region of interest. This improvement is extremely 
necessary for the three-dimensional simulations that require a much 
larger number of points in the mesh. In the next section the code 
verification was extended to the non-linear regime. 

Two-Dimensional Non-Linear Stability 

The full compressible Navier-Stokes equations were used to 
carry out analysis in the non-linear regime. Again the evolution of a 
small two-dimensional disturbance in the mixing layer was 
simulated. The previous simulations confirmed that the judicious 
use of non-uniform grids provides better results and, consequently, 
the simulations here were performed with this numerical technique. 
The idea was to reproduce some classical phenomena in the non-
linear regime. These comparisons were mainly qualitative, but 
provided confidence that the code was correct. 

The theory associated with the non-linear effects is more complex 
than the linear theory. Reviews of the subject can be found in Bayly 
(1988). The mesh for these problems had a dimension of 60 x 100 in 
the x- and y-directions respectively. The computational domain in the 
streamwise direction was Lx = 4π  / 0.82 ≈ 15. In the normal direction 
the computational domain was Ly = 24. The grid spacing used in the 
streamwise direction with a uniform mesh was dx = 0.25. For the non-
uniform mesh in the y-direction the minimum and maximum mesh 
spacing were dymin = 0.07 and dymax = 0.7. The initial amplitude of the 
disturbance was approximately 10-3. This amplitude ensured that the 
phenomenon started in the regime governed by the linear theory. The 
time step dt of these simulations was 10-2. The disturbance was 
composed of only one mode. Both theory and experiments show that 
in a mixing layer the disturbance does not grow to infinite. Instead, 
these disturbances saturate in a limit cycle pattern of co-rotating 
vortices.  

Figure 5 shows the evolution of the two-dimensional 
disturbances in time. Initially, in the linear regime, the disturbances 
are very small and display a sinusoidal pattern. Next, the 
fundamental mode grows and saturated vortices are formed. After 
the vortices reach the limit cycle oscillation, they are dissipated due 
to viscous effects.  
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Figure 5. Contour plots of spanwise vorticity. Linear and non-linear two-
dimensional evolution of a disturbance for Mc = 0.4, Re = 500 and α ≈ 0.82. 
The disturbance here was composed of only a fundamental mode. The 
frames presented correspond to the non-dimensional times 10, 55, 60, 65, 
85 and 160. Relative to the parameter ωit, the frames correspond to 8.2, 
45.1, 49.2, 53.3, 69.7 and 131.2. 

 
 
Figure 6 shows the evolution of the mixing layer with the 

introduction of both a fundamental and a subharmonic mode. In the 
initial stage, the growth of a fundamental wave up to vortex 
saturation was observed. In turn, the vortices are themselves 
unstable to a subharmonic disturbance. The result is a pairing of 
vortices. It is important to emphasize that in the system there is no 
mechanism for the production of subharmonic disturbances, but 
only for amplification. After the fundamental mode saturates, the 
subharmonic mode grows and two of the primary structures begin to 
rotate around each other. Apparently the vortices in each picture 
were perfectly identical, which testify to the accuracy of the code.  
After that, the pairing occurs between these two vortices and one 
large vortex results. 

Results for Mc = 0.6 are shown in Fig. 7. The first frame shows 
the flow structure at a non-dimensional time equals to 55. Here, the 
two-dimensional disturbances excited by the fundamental mode are 
not evident. It can be observed in the sequence for Mc = 0.4 that at 
the same time the flow already presented a sinusoidal pattern. In 
other words, the disturbance at Mc = 0.4 grew faster than the 
disturbance at Mc = 0.6. Proceeding with the analysis for Mc = 0.6, it 
can be observed in the second frame that the fundamental mode 
was visible for a non-dimensional time equals to 73. The next 
frame, at time about 85, presents the structures of co-rotating 
vortices before a merging. The results for Mc = 0.4 show a similar 
phenomenon at an earlier time of 65. The disturbance excited by 
the subharmonic perturbation then becomes evident, leading to the 
pairing which occurs at time around 117. For Mc = 0.4 the same 
phenomenon occurred at a time of about 100. In other words, the 
pairing for Mc = 0.6 took a longer time to occur.  

 

  

  

  
Figure 6. Contour plots of spanwise vorticity. Linear and non-linear two-
dimensional evolution of a disturbance for Mc = 0.4, Re = 500 and α ≈ 0.82. 
The frames presented correspond to the non-dimensional times 60, 65, 80, 
90, 100 and 110. Relative to the parameter ωit, the frames correspond to 
49.2, 53.3, 65.6, 73.8, 82 and 90.2. 

 
 
 

 

  

  
Figure 7. Contour plots of spanwise vorticity. Linear and non-linear two-
dimensional evolution of a disturbance for Mc = 0.6, Re = 500 and α ≈ 0.70. 
The frames presented correspond to the non-dimensional times 55, 73, 85, 
110, 117 and 128. Relative to the parameter ωit, the frames correspond to 
38.5, 51.1, 59.5, 77, 81.9 and 89.6. 

 
 
The fact that the growth rates are not the same makes the 

comparison of the results of Figures 6 and 7 more difficult. Possibly, 
another interesting way of analyzing these results is to use a 
normalized time that would take into account the difference in 
growth rates. This can be defined as the producttiω . Since in both 

simulations the initial disturbance amplitude was identical, they 
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would also have identical amplitudes throughout the linear regime 
for identical values of tiω . The values of tiω  for the frames shown 

were calculated and are also given in the figures. In this normalized 
time frame the figures suggest that the vortex pairing in the process 
is comparatively faster for the higher Mach number case. This may 
be related to the fact that the pairing has a dynamics that is more 
related to the vortices configuration than to the linear regime growth 
rates. 

The tests carried out for two-dimensional flow disturbances in 
the non-linear regime showed that the current code can recover the 
classical secondary instability phenomenon of the time-developing 
mixing layer. 

Three-Dimensional Non-Linear Stability 

The analysis was extended to the three-dimensional simulations. 
Once again the code was tested and the effect of convective Mach 
number in the non-linear evolution of various combinations of 
unstable waves was considered. In particular, the temporal 
development of a combination of a two-dimensional and a pair of 
oblique waves was performed in all simulations reported in this 
section.  

The secondary instability process studied by Pierrehumbert and 
Widnall (1982) presents two different modes known as bulging and 
translative modes. The effect of the phase φ  in Eq. (16) was here 

considered, first with the objective of recovering the secondary 
instabilities phenomenon. In this analysis the initial step of the flow 
disturbance presented a sinusoidal behavior. The initial amplitude 
was A1 = 10-3 for the two-dimensional wave and A2 = 10-4 for the 
pair of oblique waves. Two simulations were run: one for phase 

0=φ  to recover the development of the bulging mode and another 

with 2/πφ = , for the translative mode. The Reynolds number was 

500. The mesh adopted in these simulations was 60 x 100 x 60 that 
corresponded to the number of points in the (x,y,z) directions. The 
computational domain in the streamwise and spanwise direction was 
Lx = Lz = 4π / 0.82 ≈ 15. In the normal direction the computational 
domain was Ly = 24. The grid spacing used in the streamwise and 
spanwise direction with a uniform mesh was dx = dz = 0.25. The 
non-uniform grid in the y-direction ranged from dymin = 0.07 to 
dymax = 0.7. Pressure is a good way to identify large-scale vortical 
structure in the flow and, therefore, all figures show pressure iso-
surfaces. The streamwise wavenumber for all simulations was close 
to that of the largest growth rate from linear stability analysis.  

Figure 8 presents an iso-surface of pressure for Mc = 0.4 
showing the development of the bulging mode. In this mode the 
core of the spanwise vortices has a diameter that varies sinusoidal in 
the spanwise direction. The structure developed from the translative 
mode of the secondary instability is shown in Fig. 9. This mode was 
more amplified and gave a structure composed of a vortex core that 
oscillates in amplitude and locations in the spanwise direction. 

Tests were further extended to simulate the three-dimensional 
subharmonic secondary instability (Fig. 10). Because of the three-
dimensional subharmonic mode, the vortex cores are shifted 
alternately above and below the plane y = 0. One can observe the 
generation of spanwise phase dislocations via localized pairing and 
a coherent three-dimensional structure. The instability is helical in 
the sense that it causes neighboring vortex tubes to twist around one 
another. The helical pairing has been experimentally confirmed by 
Chandrsuda et al. (1978). 

 

 
Figure 8. Disturbance composed of a two-dimensional and a pair of 
oblique waves for Mc = 0.4 and Re = 500 with αααα    = 0. The frame presented 
corresponds to the non-dimensional time 46. 

 
 
 
 

 
Figure 9. Disturbance composed of a two-dimensional and a sub-
harmonic pair of oblique waves for Mc = 0.4 and Re = 500 with αααα = π/2. The 
frame presented corresponds to the non-dimensional time 46. 

 
 
 
 

 
Figure 10. Disturbance composed of a two-dimensional and a pair of 
oblique waves for Mc = 0.4 and Re = 500 with αααα = π/2. The frame presented 
corresponds to the non-dimensional time 42. 
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Figure 11 shows results of a simulation for Mc = 0.8 with the 
evolution of a translative mode. One can found a weakening of the 
spanwise structure, which develops larger amplitude of spanwise 
oscillation. One can also observe the development of oblique 
vortices in the region between two spanwise rollers, where at low 
convective Mach number the streamwise braid vortices were 
formed. Therefore, a change in the developed large-scale structure 
was observed as the convective Mach number was increased, with 
vortical regions oriented in a more oblique manner at the higher 
convective Mach numbers. Based on these results, one can conclude 
that the results of the three-dimensional simulation corresponded to 
the results obtained from the theory. 

 

 

 
Figure 11. Non-linear three-dimensional evolution of disturbances 
composed of a dominant mode at Mc = 0.8 and Re = 500. The frames 
presented correspond to the non-dimensional times 50 and 55. 

 

Numerical Results 

The main goal of the current work was to verify which three-
dimensional mode was the most amplified in the flow-field after the 
two-dimensional structure of vortices saturated. In addition, an 
analysis of the compressibility effects on the amplification rate of 
the oblique waves was also carried out. As discussed in the 
literature, the development of three-dimensionality in a nominally 
two dimensional mixing layer is often attributed to secondary 
instability effects as proposed by Pierrehumbert and Widnall (1982). 
The model proposed by them was concerned with the saturated state 
of the mixing layer, when the fundamental disturbances have 
developed into spanwise rollers. Therefore, in order the check the 
model, the excitation procedure had to be considered with care. The 
approach used here was as follows. First, a two dimensional wave 
was excited and allowed to grow up to saturation. Only at this stage 
the flow was excited with three-dimensional seeds. The procedure is 
illustrated in Fig. 12. 

 

 
Figure 12. Illustration about the introduction of oblique waves in a 
saturated base flow. 

 
 
 
The lowest spanwise wavenumber was defined to 

be 25.0/1 =αβ . Within the nomenclature assumed in this paper, α  

represents the streamwise wavenumber of the two-dimensional 
wave introduced to trigger the fundamental instability. In the test 
presented here, 12 oblique modes were used in total. It means that 
the highest oblique mode αβ /12

 was equal to 3.0. Moreover, the 

oblique mode 5.12/3/6 ==αβ corresponds to that of maximum 

amplification according to the theory given by Pierrehumbert and 
Widnall (1982). The main goal here was to verify this theoretical 
prediction. 

The initial amplitude for all waves was A1 = 10-3. The Reynolds 
number selected was 1000. The mesh adopted in the simulations was 
15 x 65 x 180 that corresponds to number of points in the (x,y,z) 
directions. The grid spacing used in the stream- and span-wise 
direction which had a uniform mesh was dx = 0.54 and dz = 0.17 
respectively. The non-uniform grid in the y-direction ranged from 
dymin = 0.19 to dymax = 1.85. The use of grid stretching in the current 
simulations was essential due the large matrix utilized to solve the 
three-dimensional equations. The stretching provided a good 
resolution at the center of the computational domain.  

Figure 13 presents the growth rate at Mc = 0.1 for various 
spanwise wavenumbers (

nβ ). The streamwise wavenumber of the 

disturbances were close to the values of maximum amplification 
predicted by linear theory for the respective Mach. In this figure, it 
can be seen that the most amplified wavenumber corresponds 
to 5.1/ =αβ . This result confirmed the theory given by Pierrehumbert 

and Widnall (1982). The results in Fig. 14 showed that at Mc = 0.4 the 
most amplified mode corresponds to 1/ =αβ .  
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Figure 13. Growth rates as function of the span- and stream-wise 
wavenumber ratio for Mc = 0.1. 

 
 
 

 
Figure 14. Growth rates as function of the span- and stream-wise 
wavenumber ratio for Mc = 0.4. 

 

Summary and Conclusions 

In this work the numerical simulation of a time-developing 
mixing layer was performed. The governing equations were the 
compressible Navier-Stokes equations. A 6th order compact finite-
difference scheme was used for discretizing the spatial derivatives. 
The scheme adopted was also time accurate, using a 4th order 
Runge-Kutta scheme. In order to remove short length scales, a 4th 
order compact filter was applied. Periodic boundary condition was 
implemented in the x- and z-directions. A free-slip boundary 
condition was used in the normal direction. The simulations were 
run with a grid stretching in the y coordinate. This technique was 
utilized both to improve code performance and to remove sound 
waves produced by both the formation of vortical structures and the 
pairing.  

First computational tests were performed to verify the code. In 
the linear regime, it was possible to obtain growth rates closer to the 
theoretical results with the use of stretching in the y coordinate for 
the same number of points. The testes covered a number of Mc.  

After that, tests involving the two-dimensional secondary instability 
were also performed. In this case, a sub-harmonic disturbance was 
excited to reproduce the vortex pairing. Simulations of the flow with 
two-dimensional waves and a pair of oblique waves were also run. 
The outcome reproduced the behavior expected according to the 
study carried out by Pierrehumbert and Widnall (1982). The main 
idea was to recover the classical modes of the secondary stability 
governed by the phase difference between a two-dimensional wave 
and a pair of oblique waves, namely, the bulging and the translative 
mode. In the nonlinear regime, the comparison with theoretical 
results was done on a qualitative basis. Nevertheless, simulations of 
the time evolution obtained for two- and three-dimensional 
instabilities compared well with others works presented in the 
literature (Pierrehumbert and Widnall, 1982; Sandham and 
Reynolds, 1989, 1990; Fortuné, 2000). 

The contribution of the current work consisted in studying the 
growth rate of the flow disturbances in the three dimensional 
secondary instability of the mixing layer. The purpose was to verify 
which oblique wave corresponded to the most amplified and how 
the Mach number affected the problem. In the simulations, it was 
important that the disturbances that trigged the secondary instability 
were introduced after the fundamental two-dimensional disturbances 
reached a saturated level. Initially, the simulations were run for low 
Mach number (typically under 0.1). In this regime the numerical 
simulations were compared to the theoretical results extracted from 
the study carried out by Pierrehumbert and Widnall (1982). Based 
on their theory the most amplified spanwise wavenumber 
corresponds to 3/2 of the streamwise one. The numerical results 
obtained here confirm in a more systematic way the validity of this 
theory. Simulations were extended to investigate the compressibility 
effects on the amplification rates. For Mc = 0.4 it was found that the 
most amplified three-dimensional wave corresponded to 1/ =αβ . 

Simulations for Mc = 0.8 showed the same trend. It appears that in 
the secondary instability regime, this flow may present a more two-
dimensional character as the Mach number increases, inasmuch as 
the preferred spanwise wavenumber reduced as the Mach increased. 
This is interesting and contrary to the primary instability, for which 
the higher spanwise wavenumbers dominate as the Mach number 
increases. 
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