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Numerical Investigation of the Three-
Dimensional Secondary Instabilities
in the Time-developing Compressible
Mixing Layer

Mixing layers are present in very different typégloysical situations such as atmospheric
flows, aerodynamics and combustion. It is, therefar well researched subject, but there
are aspects that require further studies. Hereitistability of two- and three-dimensional
perturbations in the compressible mixing layer wagstigated by numerical simulations.
In the numerical code, the derivatives were diseeet using high-order compact finite-
difference schemes. A stretching in the normalctive was implemented with both the
objective of reducing the sound waves generatethéyshear region and improving the
resolution near the center. The compact schemes medified to work with non-uniform
grids. Numerical tests started with an analysighaf growth rate in the linear regime to
verify the code implementation. Tests were alséopmed in the non-linear regime and it
was possible to reproduce the vortex roll-up andripg, both in two- and three-
dimensional situations. Amplification rate analysias also performed for the secondary
instability of this flow. It was found that, forsemtially incompressible flow, maximum
growth rates occurred for a spanwise wavelengthpgroximately 2/3 of the streamwise
spacing of the vortices. The result demonstratedathplicability of the theory developed
by Pierrehumbet and Widnall. Compressibility eBegtere then considered and the
maximum growth rates obtained for relatively higladd numbers (typically under 0.8)
were also presented.

Keywords. mixing layer, linear stability theory, compactnifie-difference scheme,

stretching grid, linear and non-linear growth rate

Introduction

The mixing layer, a classical phenomenon of hydnadyic
instability, comes in numerous practical situatiogsich as
aerodynamics, propulsion and environmental engingerAs a
specific example, progress in space research iendiemt on
vehicles capable of carrying higher payloads intit@and therefore
requires the development of more efficient propuissystems. Such
systems involve combustion and turbulent mixingfalet, a detailed
understanding of the physics of mixing layers iseesial for the
development of new turbulence and mixing modelsn@essibility
is a key factor in many scenarios. Owing to theseets, this field
has constituted one of the main research themaglilence over
the last thirty years. Nevertheless, there arecspd the problem
that need further investigation. The numerical stigations here
presented are devoted to the regime governed byimearity.

The engineering research and modern design regemtsnpose
great challenges in computer simulation to engme@d scientists
who are called upon to analyze phenomena in comtnu
mechanics. However, the advent of the computatiofhaid
dynamics technology has had a profound impact wid filynamics
research. It has enabled careful and detailed tigeti®ns that were
inconceivable a few decades ago. Nowadays, direcherical
simulations are generally employed to solve the id&taStokes
equations and to study the physics of hydrodynamsibility.

The mixing-layer instability, often called Kelvindtinholtz
instability, promotes the formation of spanwise tearstructures.
Analytical study on this problem began at the ehthe nineteenth
century, when Rayleigh (1980) demonstrated thafptioéile has to
have an inflexion point to be inviscidly unstabfeirther analytical
work also revealed the preference for amplificatioh two-
dimensional disturbances (spanwise wavenumber qeio) in
incompressible flows (Squire, 1933). Numerical solu of the
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equations of Linear Stability Theory (LST) to thecompressible
mixing layer was presented only much later, by Mikk (1964).

The effect of compressibility on the mixing layersiability was

investigated in laboratory experiments by Lessemx Bnd Zien

(1965, 1966) and Gropengiesser (1970). The expatahavork

published by Birch and Eggers (1973) showed a tamludn the

growth rate of the two-dimensional disturbances tlas Mach

number increased. Brown and Roshko (1974) fountlthieeffect

of density ratio alone could not be responsible tfas reduction
implying that the compressibility effect is the rhanism that leads
to it.

Renewed interest in compressible mixing layers watdd
experiments by Papamoschou and Roshko (1988) ichwihigh-
speed mixing layers with various velocity and dgnsatios were
investigated. In this work, a parameter called emtive Mach
number is proposed:

_U1-Usp
CL+cCo '

M 1)

where | and U are the free-stream velocities andand ¢ are the
free-stream sound speeds. The subscripts 1 andeR t@ the
velocity at upper (y > 0) and lower (y < 0) freeesim, respectively.
Works involving the study of linear stability wemresented by
Sandham and Reynolds (1990) and Fortuné (2000).nWhe
disturbances become large the non-linear effectst imel taken into
account. The theory associated with these effests miore
complicated than its linear counterpart. Reviewsualithe theory
can be found in Bayly (1988). Both theory and eipents show
that these flow disturbances grow and saturate iimé cycle
pattern of co-rotating vortices. In turn, the voe8 are themselves
unstable to subharmonic disturbances, meaning tlifat,a
subharmonic oscillation exists in the flow it wilfow. It eventually
results in a pairing of the vortices created by thedamental
disturbance. This phenomenon is an example of skeegn
instability.
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Investigation of three-dimensional disturbances aifsypse
wavenumber different from zero) triggering secomderstability
was also carried out. In this scenario, large sjEswortices, called
rollers, represent the saturated state reachechdymixing layer
instability. A major work in this field was produte by
Pierrehumbert and Widnall (1982). They assumed se bow
consisting of a hyperbolic tangent profile with sgmsed Stuart
vortices (Stuart, 1967). These are steady solutiafs the
incompressible Navier-Stokes equations. Two clas$ésstability
were found: fundamental and subharmonic. In theldnmental case,
two modes were found corresponding to vortex ca®rdhations
called respectively bulging and translative modEse phase was
the parameter that selected the type of mode. fEmslative mode
studied by Pierrehumbert and Widnall (1982), anddBam and
Reynolds (1990) was the more unstable. In SandhmahR&ynolds
(1990) the wavelength used was roughly equal to gpacing
between the streamwise vortices, as found in theeraxents of
Bernal and Roshko (1986). Pierrehumbert and Widi#i82) also
showed that for the fundamental mode maximum grawath was
obtained for a spanwise wavelength approximately &f the
streamwise spacing of the vortices.

Pierrehumbert and Widnall (1982) considered that three-
dimensional fundamental mode was responsible firthial three-
dimensional deformation of the spanwise vorticesdileg to the
generation of longitudinal vortex structures calbedids. The braids
appeared only at non-linear stages of the threewsional
development of the rollers and as such were netctlir accessible
by the primary linear stability theory. For the @brdimensional
subharmonic mode, Pierrehumbert and Widnall (19&2)nd
another kind of secondary instability called hdligaairing.
However, the most amplified subharmonic waves wée two-
dimensional ones. This corresponds to the two-daioe@l pairing
process most commonly observed in experiments. lR4$889)
presents theoretical studies on secondary stalfiditgompressible
mixing layer. In his work, the study of the subhanit instability
found that for convective Mach numbers of about @h4 helical
pairing mode was more amplified than the two-din@mal pairing
mode. This is a further indication that the dominararacter at high
M. is three-dimensional.

The main contribution of the current work consistserifying
the growth rate of the three-dimensional flow disances in the
secondary instability. This was done for both casspible and
incompressible flows, and the results were analymetthe light of
the theory developed by Pierrehumbert and Widri#iBR). Based
on the works presented in this review, the curreatle was
subjected to numerous tests to assure the comgtémentation of
the numerical methodology. These tests mainly wel the
reproduction of Linear Stability Theory results.€eTimitial sections
give the main characteristics of both the code tedsimulations.
Then the results of tests for the time developiriging layer are
presented, first in the linear regime and therhartonlinear regime.
The conclusions are given in the last section. Trteoduction
should contain information intended for all readefghe journal,
not just specialists in its area. It should describe problem
statement, its relevance, significant results aadcliusions from
prior work and objectives of the present work.

Nomenclature

X = Cartesian coordinate in (x,y,z) direction, m
t =time, s

c =sound speed, m/s

M = Mach number, dimensionless

M. =convective Mach number, dimensionless
Re =Reynolds number, dimensionless
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Pr  =Prandtl number, dimensionless

U =free stream velocity, m/s

T =free stream temperature, K

U,  =velocity component in (x,y,z) direction, m/s
p =pressure, N/

E, =total energy, J/(Kg K)

e =internal energy, J/(Kg K)

g =heat transfer heat, J/(Kg K)

¢, =specific heat at const. volume, J/(Kg K)

C,  =specific heat at const. pressure, J/(Kg K)

k =thermal conductivity, J/(Kg K)

A =amplitude of disturbance, m

f = generic function

f = derivative of the function

h =grid spacing

N =number of grid points

dx =grid spacing in the streamwise direction, m
dy =grid spacing in the normalwise direction, m
dz =grid spacing in the spanwise direction, m
Ly =wavelength in the streamwise direction, m
L, =wavelength in the normalwise direction, m
L, =wavelength in the spanwise direction, m

Y.  =center of computational domain in the y-direction,
H  =length of computational domain in the y-directiom,

LHS =left hand side
RHS =right hand side
a,b,c = coefficients used in the numerical methods

Greek Symbols

M« =dynamic viscosity, kg/(m s)

o =density, kg/mh

y =ratio of specific heats, dimensionless

T = viscous stress tensor

J, = vorticity thickness of the initial profile

a  =wavenumber of the disturbance in the x- directiom
Bn  =wavenumber of the disturbance in the z-directioeneh

n corresponds to the index of spanwise wavenuriber,
o  =frequency of the disturbance flow, 1/m
c = decay rate of the disturbance in the normal dirati
@ =phase between a two-dimensional and an oblique wave
n = transformation of y coordinate
K, A = coefficients used in the numerical methods

Super scripts

' = dimensionless variables

= base flow variables

= flow disturbance variables
=filtered function

u]

Subscripts

mm = Minimum value of any variable

max = Maximum value of any variable

1 =refers to the upper (y > 0) free stream or domiraote
=refers to the lower (y < 0) free stream or subhamimmode

Submission

In the current study, the governing equations ahe t

compressible Navier-Stokes equations. The contiragtiation is

P Lo, @
& X
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The momentum equations for the velocity componémtthe
streamwise, normal and spanwise directions canrlteewas

g Y b 3)
a X; & &
and the energy equation is
r AiErre) A @
a 3 X X

i i ]

where xis the Cartesian coordinates (x,y,z), t is theetimis the

velocity components (u,v,wp is the density and p is the pressure.

The total energy is given by = ple+u® +v? +w?/2) and the
primitive variable e is the internal energy. Thensimensional
constitutive relations for a Newtonian fluid and uFer heat
conduction are

10w Oup 20u o )
i" Re ox; 0% 30% g
And
1 aT
4=~ (6)

(y-1)MZ PrRedx;

where the Prandtl number is definedms= C Ik Y is the ratio

of specific heat4cp is the specific heat at constant pressure rand

the thermal conductivity. The Reynolds number o titow is
defined as
p.I.Ula-.QO

@)

Re=

The dimensional variablesg,U,, /) are the density, the velocity

and the dynamic viscosity of the base flow at thpar (y > 0) free
stream. The parametef, is the vorticity thickness of the initial

velocity profile given by

U -Up
\ﬁ/deAX

8)

20 =

where the subscripts 1 and 2 refer to the velatityre upper (y > 0)
and lower (y < 0) free stream, respectively. Thegut-gas law for
non-dimensional pressure and temperature is

p=(y-1)pee 9)
And

MZp
0

. (10)

These conservation equations were presented wétfotlowing
non-dimensionalization scheme:

* *

u; :i p:i p:L T :L
! UlY P ' plUlz ' Tl (11)
tu; % . 90,
t= X = =0 0pn W= —9
300 5*90 2o U,
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where g is the streamwise wavenumber amrd is the radial

frequency of the imposed disturbance. The supgtscri indicates
dimensional parameters.

In problems of hydrodynamic instability the varieblare often
decomposed into two parts: the base flow and alsiistlrbance
flow. This decomposition, adopted in the presentkwa@an be
written in the following way

u(x,y,z)=u(y) +u'(x y,2)
v(xy,2)=v(xy.2)

12
w(xy,2)=w(xy,2) ¢
plxy.2)=1
T(xy.2)=T(y)
p(x.y,z)=1/ M2

where () indicates the base flow and) efers to the disturbance

flow. In the current analysis, the base flow isadnant in the
streamwise direction and the components (v,w) efltase velocity
are null. Sometimes this decomposition is used he tode
implementation. However, in the current implemeptatthe total
variables were used.

M ethodology

Base Flow

Many different velocity profiles have been proposedthe
literature to model a mixing layer. The profile ds@ the current
numerical work corresponds to a hyperbolic tangéniction
(Fortuné, 2000), in which the upper part travel$h®s right and the
lower to the left. The base velocity profile wadided as

Up+Up Ui -Up (13)

Y2 tanh -2
2 2 S

For this profile, the vorticity thickness is givey Eq. (8). This
profile has often been used, partially becausesitanalytical.
Consequently, the flow speed can be calculatedtlgxfar each
value of y. The derivatives of this function areolam as well. A
disadvantage of this profile is that it satisfie® tmomentum and
energy equations only approximately. Therefore, simaulations
exhibit a transient while the profile relaxes te #xact solution. As
this transient is very short, the use of Eq. (18¢dnot affect the
results at the later non-linear stages. Indeediaiase flows that
satisfy the conservation equation only approxinyagéee commonly
used (Sandham and Reynolds, 1990).

A uniform pressure was assumed for the initialebfiow. The
initial mean temperature profile was calculatedrira solution of
the compressible boundary layer energy equationnagisg unity
Prandtl number (White, 1974). For the antisymmetr@an velocity
profile considered here and with equal free streamperatures, the
general relation of Crocco-Busemann leads to

u(y)=——7--=

T(y)=1+ Mfi(yz_l)(l—ﬁz(y)) (14)

This expression also involves the assumption thatflow is
parallel. With a constant density along the velpgrofile, the
convective Mach number () of this flow is equal to the free
stream Mach number (M).
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Initial Condition

Along with the base flow profiles, the flow distarces have to
be defined. Numerical errors engender perturbatishéch are
sufficient to trigger the instabilities in the mixj layer, but for very
accurate codes such as the current one, this prteless a very long
time. The development of the instability and therfation of vortex
structures can be largely accelerated and bettetraited by the
introduction of flow disturbances.

In this work, the flow disturbances were expondritiactions
in the y-direction. These functions are convenibetause they
decrease really quickly and satisfy the boundanyd@@mns of no

Ricardo A. Coppola Germanos et al.

Numerical M ethod

Simulations performed in the current work requirbeyh
accuracy of the numerical solution (Lele, 1992; #qu2003).
Compact finite-difference schemes were then adogthd compact
schemes for spatial derivatives are extremely cti@ when
explicit time advancement schemes are used. The pmsular
compact scheme for spatial derivatives, also cdfladé scheme, is
the symmetric sixth order version. In the curremplementation
this approximation was used only for the interiasints. This
scheme is symmetric and does not exhibit dissipagivors.

For compact schemes, the finite-difference apprations to

disturbances af . . In the x-direction the disturbance wasthe derivatives of the function are expressed lagear combination

periodic. All these issues were used to defige For two-
dimensional disturbances)’ was calculated from the continuity
equation for incompressible flow. This is only trigr very small
Mach numbers, but it did not affect the long timoéugon. The flow
disturbances could then be written as

, 2
7
map

v =[A codapx)+ Ay codaple

[A sinfayx)a, + A Sil’(azx)al]e—ﬂyz (15)

where A is the amplitudey is the streamwise wavenumber agd
is the decay rate of the disturbance in the y-timac The subscripts
1 and 2 refer to the fundamental and subharmonialesmo
respectively.

Based on similar hypotheses, the three-dimensimita@l flow
disturbances used were

v = A2 [sinfac+ gl
+% [sin(ax + B,2) + sin(ax — ﬂnz)]e’”y2
- AZTﬂ” [codax+ B,2) - codax - ,L?nz)]e’”y2
v = Afoodax-+ g’
+ Aofcodax + B,z) - codax - ﬁ’nz)]e"’y2
w = Acodox + qa)]e“’y2
+ Ag[codax + B,2) - codax - /Enz)]e'”y2

(16)

where g represents the spanwise wavenumber, the lowesy be

of the given function values and derivatives oretaa$ nodes. First,
a uniformly spaced mesh was considered where tldesare
indexed by i, which varies from 1 to N. In thesbermes, the value
of f'is dependent on all the others nodal values. Ineg#n

compact (also called implicit) schemes are sigaifity more
accurate for short length scales than non-comgharses (Collatz,
1966; Kopal, 1961). Lele (1992) emphasizes the imapae of
using methods of high-order and shows schemes @fitrorder
approximation for the interior of the mesh.

Here, the following & order compact (implicit) derivatives
were used

fig +3f+ fily =

1

17)
- (fiop +28fi_y ~28fi,g — fiyp) + O(he)

In the equation above, h is the grid spacing. Tégsiation
corresponds to the approximation used in the stnésen and
spanwise directions, for all points.

The compact approximations for the second derieatve
similar to that of the first. These derivativesttharrespond to the
viscous terms in the governing equations may in@olhe
evaluation of successive first derivatives. Whespactral method
is used, there is no loss of accuracy if thesevddvies are
computed in such a way. However, with finite-diface methods
one finds that two applications of a first derivati give a
significantly worse representation at high wavenarsbthan a
direct second derivative computation. The speeanallysis carried
out by Lele (1992) shows that for the first derivatthe modified
wavenumber at high wavenumbers goes to zero. Theico for
this problem is to calculate the second derivativigectly,
avoiding these problems and providing more accuratlyis

n=0, and ¢ is the phase difference between the two-dimension@pproach, however, is non-conservative, but fordase studied

wave and the pair of three-dimensional, obliqueasgav

Boundary Condition

Periodic boundary conditions were used in the streand span-
wise directions. In the normal direction, an unbaesh boundary
condition would be necessary. Thus boundary caombti were
adapted to simulate an infinite domain, even thoutte
computational domain was finite. In the current ations, the
normal component of velocity in the free stream \satto zero.
This corresponds to the impermeability conditioror Ehe other
primitive variables the first derivatives in thernal direction were
set to zero. This boundary condition is often neférto as free-slip.
For a sufficiently large distance from the mixingyér, this
boundary condition produces accurate results.

128 / Vol. XXXI, No. 2, April-June 2009

here, it did not bring any difficulty. The schemer fsecond
derivatives adopted in this work was

1
an?
, +48f,_, 102 +48f, , +3f,,) +O()

2f" +11f"% 2£",

17)
(3f,

I
The approximation above was used for the streanspad-wise
directions, which have periodic boundary conditions

In the normal direction, a"2 order approximation at the
boundaries was used. Tests were performed with ghis other
schemes. The results showed that the numericalneche more
stable with 2 order approximations than the high order scheihes.
is emphasized that, for a sufficiently long dis®rfrom the shear
zone, it is possible to use low order without redgcthe overall
accuracy of the simulations.

ABCM
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For the interior points in the y-direction, the samompact - _15 1 _ _
. ) o f =21+ = (4f, —6fy +4f, - f5)
scheme described above was used for first and dederivatives, 16 16 (23)
Eq. (17) and Eq. (18) respectively. At the boundary 1, the f=3¢ 4t (1, + 63— 41, + f)
- : : H 22— 127 \11 3 4 5
scheme for first derivative can be written as 4 16
- 1
fg==fa+ (= fy+4f +4f, -~ f5)
f] = 2ih(—sf1 +4fy - f3)+0(h) (19) 8~ 16

. ) The truncation error for these methods is showrain. 2
For the points next to the boundary, i = 2

,_ 1
f2 25(_ fi+ f3)+0(h2) (20) Table 2. Stencil size and truncation error for numerical filter.
o _ _ _ Schemes | Max L.H.S. | MaxR.H.S.| Truncation
The second derivatives, at the boundary i = 1, Wiseretized as Stencil size | Stencil size error
fl”:iz(fl_zfer f3)+o(h2) (21) 23 5 7 -1/228 h*
h 24 1 5 3/48 h*
, , 25 1 5 11/191 H*
For the points next to the boundary, i = 2 26 1 5 3/48 Af*
a1
fZ:F(f1—2f2+ )+ oh?) (22)

For the points at the opposite boundary, i = N andN-1, similar
approximations were used.

Table 1 shows the stencil size and the truncatioor dor first
and second derivatives.

Table 1. Stencil size and truncation error for numerical schemes.

Grid Stretching

The governing equations can be transformed fromade€ian
coordinate system to any general orthogonal coatdirsystem.
Hence a non-uniformly spaced computational gridhie physical
plane can be transformed into uniformly spaced gridthe
computational plane.

Simple transformations can be used to cluster godhts in

Schemes | Max L.H.S. | Max R.H.S.| Truncation regions of large gradients, where more resolutiorequired. Here,
Stencil size | Stencil size error in the points near the free stream the problem jeriess
resolution, while at the center of the domain greaesolution is
17 3 5 1/28 hf’ needed. Therefore, it is possible to stretch the amd decrease the
18 3 5 -1/2414 H® overall number of points used while maintaining tbheerall
19 1 3 -1/3 hf* accuracy.
20 1 3 -1/6 hf* In this work, a formula from Anderson, TannehilldaRletcher
21 1 3 1/2 h¥ (1984) giving a constant stretching was adopted a stretching
22 1 3 -1/2 hf? parameter that varies from zero (no stretching)atge values. It
produces the most refinement near y =which is located at the
center of the grid
The time-advancement of the computational variables sinr(7 - B)] (27)
(p.ou Er) Was obtained by a™order Runge-Kutta method. The ¥~ VC{“W}
scheme used here works in four steps (FerzigerRarit, 1997).
The combination of these steps results in "4 oftder accurate Where
algorithm in time.
The non-linear terms in the Navier-Stokes equatan produce 1 [ 1+le -1y 1 H)
aliasing errors. In order to remove this error,ightorder compact ‘5'" 1+ -1y, / H)

filter was implemented (Lele, 1992). The numeriddter was
applied after the last step of the Runge-Kutta s&heThis filter
consists in recalculating the distribution of thémitive variables
and is of &' order accuracy as below

0.170292;_, + 0.6522474f, _; + f; + 0.6522474f;,, +

0.170292% , , = 0.000679925; 3 + 0.1666774;_, +
066059f_; + 09891856  + 0.66059;, +

0.1666774; ., + 0.000679925; ,5 + O(h4)

(22)

Implementation of the filtering schemes on domaiith non-
periodic boundaries requires the near boundary f\talde treated
separately. Therefore, near boundary explicit fdasuvere needed:

J. of the Braz. Soc. of Mech. Sci. & Eng.
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In Eq. (27), the parameter H is the size of thepatational domain.
In order to apply this transformation to the gowegnequations,
partial derivatives have to be taken. For the fiestivatives we have

of _of on (28)
dy 9ndy

where
an _ sinh(zB) (29)

W ry1+[(y/ vo) -1 sintlB)?

This relation should be used in combination witle tbompact
schemes. Applying relation (28) to the derivatiygpr@ximations,

April-June 2009, Vol. XXXI, No. 2 /129



the following tridiagonal compact scheme for thestfiderivatives
was obtained

Kl#j'_lg—f +l#j'g—f + KWJ-'+1Z—f (30)
Ylj-1 Yl Ylj+
fin= i1, five = fj2
dn dn
where 1 . The parametersk, a e b can be defined

" anidy
according to the compact finite-difference scheisedu
A similar procedure can be applied for the secoerivdtives

2 2 2 2
o1 _ ot o% +g(y] (31)

o2 noy? an?loy
where
on_ sin@(yl e -1) (32)
ay 3
[yt el ve) sl
Equation (31) can be rewritten as
ﬁzifﬁ_{'/” ﬂ} (33)
an? w2oy? [w?on

Using the relation w" of _w" of and replacing the term

Ww2ap Wiy
between square brackets in Eq. (33), one has

% _ 1 9% o (34)

an? - W,zy L,u'3$

Therefore, applying relation (34) to the second ivdgive
approximation

1 9%f

¥ 2 oy°

1 9%f
(’Uj'gl 6y2

1 9%f
+
wjyz 6y2

i
w" of " oof
+ = + —
i1 (;U'S ay j 4,:3 oy
fj+1—fj—1+bfj+2‘fj—2
dry dn

i1 j+1 (35)
_wroof

RZrY,

j+l

+a

Bogey et al. (2000) recommend that the grid stietclshould
not exceed 1.8% in order to avoid problems withcepderivatives.

One basic assumption of these methods is that #sh rmust be
sufficiently smooth so thap/gp and 9%/9»? can be calculated

without appreciable loss in the overall accuracy.

Computational Tests

In this section, results from direct numerical siation of the
compressible Navier-Stokes equations are usedst@nel verify the
current code. Simulations of two- and three-dimemal flow

disturbances in linear and non-linear regime wemégpmed and the

results were compared with existing theories.

Linear Stability

This section presents results of the evolutiomaof-timensional

sinusoidal disturbances in a mixing layer in thgimee governed by

130/ Vol. XXXI, No. 2, April-June 2009
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the linear theory. Simulations were performed amal growth rate
for uniform and non-uniform grids were comparedtheoretical

ones in order to analyze the code implementatiahedficiency of

the grid stretching. Theoretical results were extgd from Sandham
and Reynolds (1990).

An important aspect to be considered in these sitiaus is the
treatment of the vertical diffusion. This diffusiorcreases the width
of the mixing layer during the simulation, whichplies a variation
of the mean flow over time. The strategy adopte he avoid this
diffusion was to cancel the vertical diffusion terrfor the base
flow a%G/0n7% =0.

First the mixing layer problem was simulated witie tEuler
equations and two tests were performed. Thesewests carried out
using a disturbance with only one mode, that iy one streamwise
wavenumber. The wavenumbers of the disturbances elese to the
values of maximum amplification as predicted byeéintheory. The
mesh for both uniform and non-uniform grids hadx480 points in
the x- and y-directions respectively. The grid #pgaused in the
streamwise direction with a uniform mesh was=dx38 for M.= 0.4
and dx= 0.60 for M.= 0.8. For the uniform mesh, in the normalwise
direction the grid spacing utilized was d.30. For the non-uniform
mesh in the y-direction, the minimum and maximunsimepacing
were dyn, = 0.0089 and dy,~ 1.67. The initial amplitude of the
disturbance given by Eq. (15) was approximately. this amplitude
ensured that the phenomenon started in the regiweried by the
linear theory. The non-dimensional time step (dthese simulations
was 10°.

Figure 1 shows the growth rate of the unstable veave function
of non-dimensional time for M= 0.4. The vertical coordinate is in
logarithm scale. The dashed line shows the resulafnon-uniform
grid with a stretching parameter=12. The growth rate from this
case was about 0.30 which is very close to therétieal results (solid
line) of approximately 0.31. The dashed-dotted Ig¢he numerical
result for a uniform grid. The amplification ratbtained was about
0.27. The disagreement might be attributed todherésolution in the
interior of the computational domain generated bgrpaccuracy of
the uniform grid spacing simulation in the rotatibregion.

LINEAR THEORY
" = = = = GRID STRETCHING
107 mimimim UNIFORM GRID

AMPLITUDE
]
!

20 30 20 50 80 70

NON-DIMENSIONAL TIME

Figure 1. Amplitude evolution for inviscid at for M. = 0.4 and a = 0.82.

Figure 2 presents results for.™ 0.8. Similar to the previous
results, the dashed-dotted line gives at low a¢euamplification
rate of about 0.11 for uniform grid. The theordtiesults for this
convective Mach number give an amplification ratealoout 0.14.
The solid line represents the simulation with thee wf grid
stretching. The growth rate obtained in this sirtiafawas 0.125.
This result is closer to the theoretical prediction
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LINEAR THEORY
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70
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Figure 2. Amplitude evolution for inviscid flow at M; = 0.8 and a = 0.52.

Simulations of the Navier-Stokes equations rathantthe Euler
equations were also performed. The grid and th&i@mplitude of
the disturbance adopted were the same as thateinptévious
inviscid simulations. The Reynolds number was 5B0ain the
wavenumbers selected corresponded to maximum acapiiin
according to the theory.

In Fig. 3 the dashed-dotted line shows the timdutim of a
two-dimensional disturbance at;™ 0.4. For a grid with constant
spacing the amplification rate was about 0.26. Thés an
underestimation compared to the theoretical resihléd give an
amplification rate of about 0.28 (solid line). Tth@shed line shows a
growth rate of approximately 0.27 with the use dfl gstretching.
Although this result still underestimates the tletical values, it is
closer to the linear analysis.

107

LINEAR THEORY

= = = = GRID STRETCHING
UNIFORM GRID

10° L

AMPLITUDE

50 60
NON-DIMENSIONAL TIME

70

Figure 3. Amplitude evolution for viscous flow at Mc = 0.4, Re = 500 and
a=0.82.

Figure 4 shows the time evolution for,M 0.8. The same
analysis was made. The growth rate obtained fouttiform mesh
was approximately 0.07, while for a mesh with griicetching it was
about of 0.09. Both simulations were close to thalwical results
which give a growth rate about 0.11, but once mtre grid
stretching improved the result.
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Figure 4. Amplitude evolution for viscous flow at M; = 0.8, Re = 500 and
o =0.52.

According to the results presented above, thecsiireg used in
the y coordinate significantly improved the accyrbdy clustering
the points in the region of interest. This improegmis extremely
necessary for the three-dimensional simulationsréguire a much
larger number of points in the mesh. In the nextige the code
verification was extended to the non-linear regime.

Two-Dimensional Non-Linear Stability

The full compressible Navier-Stokes equations wesed to
carry out analysis in the non-linear regime. Agéia evolution of a
small two-dimensional disturbance in the mixing eaywas
simulated. The previous simulations confirmed ttreg judicious
use of non-uniform grids provides better resultd, aonsequently,
the simulations here were performed with this nuca¢technique.
The idea was to reproduce some classical phenoimetiee non-
linear regime. These comparisons were mainly cptadé, but
provided confidence that the code was correct.

The theory associated with the non-linear effect®are complex
than the linear theory. Reviews of the subject lmarfound in Bayly
(1988). The mesh for these problems had a dimergié0 x 100 in
the x- and y-directions respectively. The compateal domain in the
streamwise direction was, E 4r / 0.82= 15. In the normal direction
the computational domain wag £ 24. The grid spacing used in the
streamwise direction with a uniform mesh was dx250For the non-
uniform mesh in the y-direction the minimum and maxn mesh
spacing were gy,= 0.07 and dyj,,= 0.7. The initial amplitude of the
disturbance was approximately10This amplitude ensured that the
phenomenon started in the regime governed by tiearitheory. The
time step dt of these simulations was210he disturbance was
composed of only one mode. Both theory and expeatisnshow that
in a mixing layer the disturbance does not grovinfnite. Instead,
these disturbances saturate in a limit cycle pattfr co-rotating
vortices.

Figure 5 shows the evolution of the two-dimensional
disturbances in time. Initially, in the linear regd, the disturbances
are very small and display a sinusoidal pattern.xtNehe
fundamental mode grows and saturated vortices aaraed. After
the vortices reach the limit cycle oscillation, yhee dissipated due
to viscous effects.

April-June 2009, Vol. XXXI, No. 2 /131



Ricardo A. Coppola Germanos et al.

Figure 5. Contour plots of spanwise vorticity. Linear and non-linear two-
dimensional evolution of a disturbance for M, = 0.4, Re = 500 and a = 0.82.
The disturbance here was composed of only a fundamental mode. The
frames presented correspond to the non-dimensional times 10, 55, 60, 65,
85 and 160. Relative to the parameter wit, the frames correspond to 8.2,
45.1, 49.2, 53.3, 69.7 and 131.2.

Figure 6 shows the evolution of the mixing layerthwihe
introduction of both a fundamental and a subharmamde. In the
initial stage, the growth of a fundamental wave tap vortex
saturation was observed. In turn, the vortices #remselves
unstable to a subharmonic disturbance. The resu#t pairing of
vortices. It is important to emphasize that in gystem there is no
mechanism for the production of subharmonic disindes, but
only for amplification. After the fundamental modaturates, the
subharmonic mode grows and two of the primary stines begin to
rotate around each other. Apparently the vorticegach picture
were perfectly identical, which testify to the amey of the code.
After that, the pairing occurs between these twdie®s and one
large vortex results.

Results for M= 0.6 are shown in Fig. 7. The first frame shows

the flow structure at a non-dimensional time eqoalS5. Here, the
two-dimensional disturbances excited by the fundeelemode are
not evident. It can be observed in the sequenc#lfor 0.4 that at
the same time the flow already presented a sinabqdttern. In

other words, the disturbance at.™ 0.4 grew faster than the

disturbance at ly= 0.6. Proceeding with the analysis fog#0.6, it

can be observed in the second frame that the fuadtdhmode
was visible for a non-dimensional time equals to TBe next
frame, at time about 85, presents the structuresoefotating

vortices before a merging. The results fofM0.4 show a similar
phenomenon at an earlier time of 65. The disturbagcited by
the subharmonic perturbation then becomes evideadjng to the
pairing which occurs at time around 117. Fog#M0.4 the same
phenomenon occurred at a time of about 100. Inrotloeds, the
pairing for M, = 0.6 took a longer time to occur.
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Figure 6. Contour plots of spanwise vorticity. Linear and non-linear two-
dimensional evolution of a disturbance for M, = 0.4, Re = 500 and a = 0.82.
The frames presented correspond to the non-dimensional times 60, 65, 80,
90, 100 and 110. Relative to the parameter wit, the frames correspond to
49.2, 53.3, 65.6, 73.8, 82 and 90.2.

Figure 7. Contour plots of spanwise vorticity. Linear and non-linear two-
dimensional evolution of a disturbance for M, = 0.6, Re = 500 and a = 0.70.
The frames presented correspond to the non-dimensional times 55, 73, 85,
110, 117 and 128. Relative to the parameter wit, the frames correspond to
38.5,51.1, 59.5, 77, 81.9 and 89.6.

The fact that the growth rates are not the sameemdke
comparison of the results of Figures 6 and 7 mdfieult. Possibly,
another interesting way of analyzing these residtto use a
normalized time that would take into account th&edince in
growth rates. This can be defined as the progctSince in both

simulations the initial disturbance amplitude waernitical, they
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would also have identical amplitudes throughout lthear regime
for identical values otqt . The values otqt for the frames shown /&\

were calculated and are also given in the figureshis normalized ,
time frame the figures suggest that the vortexipgiin the process z
is comparatively faster for the higher Mach numbase. This may
be related to the fact that the pairing has a dycetat is more
related to the vortices configuration than to thedr regime growth
rates.
The tests carried out for two-dimensional flow diseances in
the non-linear regime showed that the current @aderecover the
classical secondary instability phenomenon of three-developing
mixing layer.

Three-Dimensional Non-Linear Stability

The analysis was extended to the three-dimensgimallations.
Once again the code was tested and the effectrofective Mach Figure 8. Disturbance composed of a two-dimensional and a pair of
number in the non-linear evolution of various comaions of ©Plique waves for Mc = 0.4 and Re = 500 with & = 0. The frame presented
unstable waves was considered. In particular, theporal cofresponds to the non-dimensional time 46.
development of a combination of a two-dimensionad a pair of
oblique waves was performed in all simulations regmb in this
section.
The secondary instability process studied by Phemebert and
Widnall (1982) presents two different modes knowrbalging and
translative modes. The effect of the phasdn Eq. (16) was here

considered, first with the objective of recoveritfte secondary z/g\x
instabilities phenomenon. In this analysis theiahgtep of the flow

disturbance presented a sinusoidal behavior. Thialimmplitude

was A = 10° for the two-dimensional wave and, A 10* for the

pair of oblique waves. Two simulations were runedor phase

¢ =0 to recover the development of the bulging mode amather

with¢ = 71/2, for the translative mode. The Reynolds number was

500. The mesh adopted in these simulations was BIDxx 60 that
corresponded to the number of points in the (x,gli@ctions. The
computational domain in the streamwise and spangiigetion was
Ly =L, = 4x/ 0.82= 15. In the normal direction the computational
domain was L_: 24. The grid spacing used in the streamwise arfdgure 9. Disturbance composed of a two-dimensional and a sub-
spanwise direction with a uniform mesh was dx =—d@.25. The harmonic pair of oblique waves for M. = 0.4 and Re = 500 with a = /2. The
non-uniform grid in the y-direction ranged from,gy= 0.07 to frame presented corresponds to the non-dimensional time 46.
dymax= 0.7. Pressure is a good way to identify largdeseartical
structure in the flow and, therefore, all figurd®ow pressure iso-
surfaces. The streamwise wavenumber for all sinwratwas close
to that of the largest growth rate from linear gitgbanalysis.
Figure 8 presents an iso-surface of pressure fgr=M).4
showing the development of the bulging mode. Irs timode the
core of the spanwise vortices has a diameter tré v sinusoidal in

the spanwise direction. The structure developenh fitee translative
mode of the secondary instability is shown in BigThis mode was
more amplified and gave a structure composed afrex core that
oscillates in amplitude and locations in the spaevdirection.
Tests were further extended to simulate the thiemwsional
subharmonic secondary instability (Fig. 10). Beeaa$ the three-
dimensional subharmonic mode, the vortex cores shrited

alternately above and below the plane y = 0. Oneatzserve the
generation of spanwise phase dislocations via ilmedlpairing and
a coherent three-dimensional structure. The inlitalié helical in

the sense that it causes neighboring vortex tubesist around one

another. The helical pairing has been experimgntalhfirmed by Figure 10. Disturbance composed of a two-dimensional and a pair of
Chandrsuda et al (1978) oblique waves for M = 0.4 and Re = 500 with a = /2. The frame presented

corresponds to the non-dimensional time 42.
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Figure 11 shows results of a simulation fog #0.8 with the
evolution of a translative mode. One can found akeaing of the
spanwise structure, which develops larger amplitaflspanwise
oscillation. One can also observe the developmdnbliique
vortices in the region between two spanwise raolledsere at low
convective Mach number the streamwise braid vasticeere
formed. Therefore, a change in the developed lacgée structure
was observed as the convective Mach number waedsed, with
vortical regions oriented in a more oblique manaetthe higher
convective Mach numbers. Based on these resuléscam conclude
that the results of the three-dimensional simutatorresponded to
the results obtained from the theory.

}\ \(\V,

& \g\pw
- \z"/

three-dimensional evolution of disturbances

Non-linear
composed of a dominant mode at M. = 0.8 and Re = 500. The frames
presented correspond to the non-dimensional times 50 and 55.

Figure 11.

Numerical Results

The main goal of the current work was to verify @hithree-
dimensional mode was the most amplified in the ff@id after the
two-dimensional structure of vortices saturated. alhdition, an
analysis of the compressibility effects on the afigaltion rate of
the oblique waves was also carried out. As disclsse the
literature, the development of three-dimensionaiitya nominally
two dimensional mixing layer is often attributed smcondary
instability effects as proposed by Pierrehumbedt \Afidnall (1982).
The model proposed by them was concerned withaheaed state
of the mixing layer, when the fundamental distudeEn have
developed into spanwise rollers. Therefore, in ottie check the
model, the excitation procedure had to be consibieith care. The
approach used here was as follows. First, a tweedgonal wave
was excited and allowed to grow up to saturationly@t this stage
the flow was excited with three-dimensional sedd® procedure is
illustrated in Fig. 12.
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Figure 12. lllustration about the introduction of oblique waves in a
saturated base flow.

The lowest spanwise wavenumber was defined
beﬂl/g = 025. Within the nomenclature assumed in this pajper,

represents the streamwise wavenumber of the twestiional
wave introduced to trigger the fundamental instgbiln the test
presented here, 12 oblique modes were used in totakeans that
the highest oblique modg,,/a was equal to 3.0. Moreover, the

oblique modeﬂe/gzg/zz1,5corresponds to that of maximum

amplification according to the theory given by Péumbert and
Widnall (1982). The main goal here was to verifisttheoretical
prediction.

The initial amplitude for all waves was, & 10° The Reynolds
number selected was 1000. The mesh adopted irintiidaions was
15 x 65 x 180 that corresponds to number of pdimtthe (x,y,z)
directions. The grid spacing used in the streand apan-wise
direction which had a uniform mesh was dx = 0.5d da = 0.17
respectively. The non-uniform grid in the y-directiranged from
dymin = 0.19 to dy.= 1.85. The use of grid stretching in the current
simulations was essential due the large matrixzeatl to solve the
three-dimensional equations. The stretching pravide good
resolution at the center of the computational damai

Figure 13 presents the growth rate at M 0.1 for various
spanwise wavenumbers3(). The streamwise wavenumber of the

disturbances were close to the values of maximurplification
predicted by linear theory for the respective Mdchthis figure, it
can be seen that the most amplified wavenumberesmonds
to 8/ a = 1.5. This result confirmed the theory given by Piearbert

and Widnall (1982). The results in Fig. 14 showweat it M= 0.4 the
most amplified mode correspondsg o =1.

to
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Figure 13. Growth rates as function of the span- and stream-wise
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Figure 14. Growth rates as function of the span- and stream-wise
wavenumber ratio for Mg = 0.4.

Summary and Conclusions

In this work the numerical simulation of a time-e&ping
mixing layer was performed. The governing equatiovese the
compressible Navier-Stokes equations. Adgder compact finite-
difference scheme was used for discretizing theiapderivatives.
The scheme adopted was also time accurate, usid arder
Runge-Kutta scheme. In order to remove short lesgties, a @
order compact filter was applied. Periodic boundeopdition was
implemented in the x- and z-directions. A free-slypundary
condition was used in the normal direction. Thewations were
run with a grid stretching in the y coordinate. iéchnique was
utilized both to improve code performance and tmaee sound
waves produced by both the formation of vorticalaiures and the
pairing.

First computational tests were performed to veitify code. In
the linear regime, it was possible to obtain grovettes closer to the
theoretical results with the use of stretchingha ¥ coordinate for
the same number of points. The testes covered abemof M.

J. of the Braz. Soc. of Mech. Sci. & Eng.

Copyright O 2009 by ABCM

After that, tests involving the two-dimensional eedary instability
were also performed. In this case, a sub-harmoisturdbance was
excited to reproduce the vortex pairing. Simulagiofthe flow with
two-dimensional waves and a pair of oblique wavesewalso run.
The outcome reproduced the behavior expected dogptd the
study carried out by Pierrehumbert and Widnall @98 he main
idea was to recover the classical modes of thenskzay stability
governed by the phase difference between a twosdiioral wave
and a pair of oblique waves, namely, the bulging e translative
mode. In the nonlinear regime, the comparison vifteoretical
results was done on a qualitative basis. Nevertkelimulations of
the time evolution obtained for two- and three-disienal
instabilities compared well with others works prase in the
literature (Pierrehumbert and Widnall, 1982; Samdhand
Reynolds, 1989, 1990; Fortuné, 2000).

The contribution of the current work consisted ifndying the
growth rate of the flow disturbances in the thrdenehsional
secondary instability of the mixing layer. The posp was to verify
which oblique wave corresponded to the most aneglifind how
the Mach number affected the problem. In the sitiia, it was
important that the disturbances that trigged tlo@s@ary instability
were introduced after the fundamental two-dimeraligiisturbances
reached a saturated level. Initially, the simulagiovere run for low
Mach number (typically under 0.1). In this reginfe thumerical
simulations were compared to the theoretical resettracted from
the study carried out by Pierrehumbert and Wid(E#82). Based
on their theory the most amplified spanwise wavelnem
corresponds to 3/2 of the streamwise one. The rinateresults
obtained here confirm in a more systematic wayvidiaity of this
theory. Simulations were extended to investigagecthmpressibility
effects on the amplification rates. For. #0.4 it was found that the
most amplified three-dimensional wave correspontied/ g =1.

Simulations for M= 0.8 showed the same trend. It appears that in
the secondary instability regime, this flow maygmet a more two-
dimensional character as the Mach number increasasmuch as
the preferred spanwise wavenumber reduced as tich Mareased.
This is interesting and contrary to the primarytaidity, for which

the higher spanwise wavenumbers dominate as thén Mamber
increases.
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