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Optimization of Hybrid Laminated 
Composites using a Genetic 
Algorithm 
This work aims at developing a genetic algorithm (GA) to pursue the optimization of 
hybrid laminated composite structures. Fiber orientation (predefined ply angles), material 
(glass-epoxy or carbon-epoxy layer) and total number of plies are considered as design 
variables. The GA is chosen as an optimization tool because of its ability to deal with non-
convex, multimodal and discrete optimization problems, of which the design of laminated 
composites is an example. First, the developed algorithm is detailed explained and 
validated by comparing its results to other obtained from the literature. The results of this 
study show that the developed algorithm converges faster. Then, the maximum stress, Tsai-
Wu and Puck (PFC) failure criteria are used as constraint in the optimization process and 
the results yielded by them are compared and discussed. It was found that each failure 
criterion yielded a different optimal design. 
Keywords: hybrid laminated composites, optimization, genetic algorithm 
 
 
 
 
 
 

Introduction 
1Composite material is usually understood as the combination of 

two or more materials on a macroscopic scale to form a useful third 
material (Jones, 1999). The advantage of composite materials is 
that, if correctly designed, they display the best qualities of their 
constituents and often some qualities that neither constituent 
possesses (Jones, 1999). 

A laminated composite is usually tailored according to the 
designer’s needs by choosing the thickness, number and orientation 
of the laminae. To achieve the best results, optimization techniques 
have been developed, and one such technique, the genetic algorithm 
(GA), has been widely used to determine the optimal design of 
composite structures (Le Riche and Haftka, 1993; Nagendra et al., 
1994; Todoroki and Haftka, 1998; Liu et al., 2000). Known 
advantages of the use of GAs include the following: (i) they do not 
require gradient information and can be applied to problems where 
the gradient is hard to obtain or simply does not exist; (ii) if 
correctly tuned, they do not get stuck in local minima; (iii) they can 
be applied to non-smooth or discontinuous functions; and (iv) they 
furnish a set of optimal solutions instead of a single one, thus giving 
the designer a set of options. On the other hand, the use of GAs has 
a number of known drawbacks, which include the following: (i) they 
require the tuning of many parameters by trial and error to maximize 
efficiency; (ii) the a priori estimation of their performance is an 
open mathematical problem; and (iii) an extremely large number of 
evaluations of the objective function are required to achieve 
optimization, which can make the use of GAs nonviable depending 
on the computational cost of each evaluation. 

In the design of laminated composites, the ply thicknesses are 
often predetermined and the ply orientations are usually restricted to 
a small set of angles due to manufacturing limitations and/or limited 
availability of experimental data. This leads to problems of discrete 
or stacking-sequence optimization. Many objective functions have 
been introduced, such as the buckling load (Le Riche and Haftka, 
1993; Liu et al., 2000) (to be maximized), the stiffness in one 
direction (to be maximized), and the strength (Groenwold and 
Haftka, 2006) (to be maximized), as well as the cost or weight 
(Nagendar et al., 1994; Seresta et al., 2007; Le Riche and Haftka, 
1995; Naik, Gopalarishnan and Ganguli, 2008) (to be minimized). A 
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popular approach used by many researchers to maximize the 
strength consists of minimizing the failure factor of a failure 
criterion, such as the maximum strain/stress, Tsai-Hill, Hoffman or 
Tsai-Wu criteria. However, the Tsai-Wu failure criterion contains 
linear and quadratic terms, and therefore the resulting designs 
become dependent on the load level. Groenwold and Haftka (2006) 
suggested that for this criterion the safety factor (i.e., the largest 
multiplicative factor that can be applied to the actual loads without 
violating the failure criterion) can be maximized instead of 
minimizing the failure factor and the resulting design becomes 
independent of the load level. 

In addition to the failure criterion, other restrictions are usually 
involved in the optimal design of laminated composites. Examples 
of such restrictions in the literature include upper and bound limits 
for the design variables, laminate symmetry and balance, and a 
maximum number of contiguous plies (this last restriction is often 
used to prevent matrix cracking). Liu et al. (2000) applied and 
compared repair strategies using a maximum number of contiguous 
plies and showed that the Baldwinian repair strategy drastically 
reduces the computational cost of constrained optimization (the cost 
of the GA, measured by the number of function evaluations 
necessary to achieve the optimization, is reduced by one or two 
orders of magnitude). The first ply failure constraint is often handled 
by a penalty approach (Le Riche and Haftka, 1993; Nagendra et al., 
1994). 

Mathias, Balandraud and Grediac (2006) studied the 
optimization of a composite patch bonded to a metal structure, and 
in addition to the stacking sequence, they also optimized the shape 
and location of the patch. Rahul et al. (2006) developed a multi-
objective optimization technique using a GA coupled to the finite 
element method to simultaneously minimize the cost and weight of 
a composite plate. Walker and Smith (2003) used a similar coupling 
to minimize the weight and deflection of laminated plates for 
different loading and boundary conditions. Murugan et al. (2007) 
used a min-max approach to combine several objectives and 
minimized all the objective functions simultaneously. The main 
advantage of the min–max approach resides in the fact that no a 
priori  articulation of preferences for the objective functions is 
needed. In the same work, Murugan et al. (2007) also employed 
target vector optimization to determine a design that would yield 
given target stiffness values for a rotor blade previously obtained by 
aeroelastic optimization, one of the classical objective functions for 
this kind of problem. 
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When the optimization problem involves continuous and 
discrete variables (a mixed-variable problem), the representation of 
the variables in a single string in the GA increases the dimension of 
the design variables space (since one real variable is transformed 
into many integer ones). To overcome this problem, decomposition 
approaches have been introduced (Antonio, 2001). These often 
involve decomposition at local and global levels: at the local level 
the best stacking sequence is determined for a given geometry, and 
at the global level new geometries are generated based on the result 
furnished by the local level. Such an approach was adapted for 
optimal composite design by Murugan et al. (2007). Antonio (2006) 
introduced a hierarchical GA with age structure adapted for the 
optimal design of hybrid composite structures with multiple 
solutions. The algorithm he proposed addressed the optimal stacking 
sequence and material topology as a multimodal optimization 
problem. Antonio showed that the procedure for species control is 
effective because it allows multiple optimal solutions and 
guarantees subpopulation diversity.  

With regard to failure criteria, Naik, Gopalakrishnan and 
Ganguli (2008) used a GA to determine the minimum weight design 
of laminated composites under restrictions associated with the 
maximum stress (MS) and Tsai-Wu (TW) criteria as well as a 
failure-mechanism-based criterion.  

One of the main criticisms of many studies related to optimal 
composite design is the use of failure criteria based on the von 
Mises or Hill yield criteria, which are more suitable for ductile 
materials (Puck and Schürmann, 1998). In fact, as the failure 
behavior of composite parts is similar to that of brittle material, it 
would be more appropriate to use criteria suited to materials that 
exhibit brittle fractures, such as Mohr’s criterion. A suitable 
criterion for composites that takes this fracture behavior into 
account is, for instance, the Puck failure criterion (PFC) (Puck, 
1996; Puck and Schürmann, 1998).  

This work develops a genetic algorithm to pursue the 
optimization of hybrid laminated composite structures. Fiber 
orientation (predefined ply angles), material (glass-epoxy or carbon-
epoxy layer) and total number of plies are considered as design 
variables. First, the developed algorithm is validated by comparing 
their results to other found in the literature (Girard, 2006). Then, 
three different failure criteria, the MS, TW and the PFC, are used as 
constraint in the optimization and their results are compared. The 
paper is organized as follows. In Section ‘Genetic Algorithm’ the 
chromosome representation, the genetic operators and the constraint 
handling are described. Section ‘Failure Criteria’ presents a brief 
review of the failure criteria used in this work. The problem 
statements and numerical results are shown in Section ‘Numerical 
Results’. Finally, Section ‘Conclusions’ reports the main 
conclusions that were drawn. 

Nomenclature 

C1 = stack orientation chromossome 
C2 = stack material chromossome 
CE = carbon-epoxy ply 
Dij = coeficient of the laminate bending stiffness matrix, Nm 
Ei = Young’s modulus of the ply in direction i, Pa 
Efi = Young’s modulus of the fiber in direction i, Pa 
FE = number of function evaluations 
FF = fiber failure mode  
Fi = parameter of Tsai-Wu failure criterion, 1/Pa 
Fij = parameter of Tsai-Wu failure criterion,1/Pa2 

fw = weakening factor for PFC, dimensionless 
G = shear modulus, Pa 
GE = glass-epoxy ply 
IFF = inter-fiber failure mode 

lp = plate length, m 
m = number of half waves of a buckling mode in direction x 
m.u. = monetary unit 
MS = maximum stress failure criterion 
mσf  = mean stress-magnification factor for fibers in the x2 

direction, due to the difference between the transverse 
modulus of the fibers and the matrix (parameter of PFC), 
dimensionless 

n  = number of half waves of a buckling mode in direction y, 
total number of stacks of a laminate 

N  = in plane load, N/m 
PFC = Puck failure criterion 

( )
||p +

⊥  = slope of the (σn,τnl) fracture envelope for σn ≥ 0 

(parameter of PFC), dimensionless 
( )

||p −
⊥  = slope of the (σn,τnl) fracture envelope for σn ≤ 0 

(parameter of PFC), dimensionless 
( )p −
⊥⊥   = slope of the (σn,τnt) fracture envelope for σn ≤ 0 

(parameter of PFC), dimensionless 
AR⊥⊥  = fracture resistance of the action plane against its 

fracture due to transverse/transverse shear stressing 
(parameter of PFC), Pa 

S = fiber failure (FF) factor of PFC, dimensionless 
S12 = shear lamina strength, Pa 
SD = standard deviation 
TW = Tsai-Wu failure criterion 
wp = plate width, m 
X = lamina strength parallel to the fiber direction, Pa 
Y = lamina strength normal to the fiber direction, Pa 

 

Greek Symbols 

τ = shear stress, Pa 
εi = normal strain in direction i, dimensionless 
εiC = compressive failure strain in direction i, dimensionless 
εiT = tensile failure strain in direction i, dimensionless 
γ = shear strain, dimensionless 
λ = buckling load factor, dimensioless 
ν = Poisson’s ratio, dimensionless 
νf12 = Poisson's ratio of the fiber, dimensionless 
θfp = angle of the fracture plane, deg. 
θk = ply orientations, deg. 
ρ = mass density, kg/m3 
σ = normal stress, Pa 

 
Subscripts 

1 relative to material coordinate direction 
2 relative to material coordinate direction 
3 relative to material coordinate direction 
C relative to compression 
cr relative to critical buckling load 
fp relative to failure plane 
k relative to fiber orientation  
min relative to minimum buckling factor 
n relative to normal to the failure plane 
p relative to plate 
t relative to tangential to the failure plane 
T relative to tensile 
x relative to x coordinate 
y relative to y coordinate 
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Genetic Algorithm 

Genetic algorithms loosely parallel biological evolution and 
were originally inspired by Darwin’s theory of natural selection. 
The specific mechanics of genetic algorithms often use the language 
of microbiology, and their implementation frequently mimics 
genetic operations (Arora, 2004). A GA generally involves genetic 
operators (such as crossover and mutation) and selection operators 
intended to improve an initial random population. Selection usually 
involves a fitness function characterizing the quality of an individual 
in terms of the objective function and the other elements of the 
actual populations. Thus, a GA usually starts with the generation of 
a random initial population and iterates by generating a sequence of 
populations from the initial one. At each step the genetic operators 
are applied to generate new individuals. The fitness of each 
available individual is computed and the whole population is ranked 
according to increasing fitness. A subpopulation is then selected to 
form a new population. Many selection methods may be found in 
the literature. In this work, tournament selection is applied (see 
Schmitt, 2001). At this point, the algorithm may repeat the process 
or, before that, a local search may be pursued, which is the case of 
this paper. Two local search methods are employed, named as: 
Neighborhood Search and Material Grouping (Girard, 2006). Then, 
all the procedure is repeated until a stopping condition is satisfied.  

The genetic operators employed in this work are crossover, 
mutation, gene swap, stack-deletion and stack-addition. In the 
following, the constraint handling, chromosome coding and the 
genetic operators are shown in detail. 

Constraint Handling 

In GAs, the most common ways of handling constraints are data 
structure, repair strategies and penalty functions (Puzzi and 
Carpentieri, 2008). The symmetry and balance of the laminate are 
handled by using the data structure strategy, which consists of 
coding only half of the laminate and considering that each stack of 
the laminate is formed by two laminae with the same orientation, 
but opposite signs (for instance, ±45o).  

A double-multiplicative dynamic penalty approach (Puzzi and 
Carpentieri, 2008) is used here to take into account the failure 
criteria. This approach leads to a penalty term being added to the 
objective function: this supplementary term has a multiplicative 
form and involves autonormalization. It is written as 

 

( ) ( )
1

1
m

j

j j

ĝ q Q
P ,q

b Q=

  += +  
   

∏
x

x  , (1) 

 

where m is the number of constraints, x is the vector of the design 
variables, jĝ ( )x  is the constraint violation, bj is a normalization 

parameter, q is the current generation number and Q is the total 
number of generations. The main advantage of this approach is that 
the penalization parameters do not need to be tuned. 

Chromosome Representation 

The classical binary representation is not used here; instead, the 
allowed angle values represent the genes of the chromosomes (i.e., 
[02 ±45 902]). In our numerical examples, we consider the 
optimization of a hybrid laminated composite. In this case, each 
individual in the population is represented by two chromosomes: the 
first describes the angle of orientation of the layers, and the second 
the layers materials, Table 1 details this approach. 

 
 
 

Table 1. Chromosome representation. 

Stack Orientation Chromosome (C1) 
Empty Stack 02 ±45 902 

0 1 2 3 
Stack Material Chromosome (C2) 
Empty Stack Carbon-Epoxy (CE) Glass-Epoxy (GE) 

0 1 2 

 
 
The orientation angle and material of each ply are coded in the 

chromosomes of each individual. One example of chromosome 
decoding is shown in Fig. 1. 

 
 

 
Figure 1. Example of chromosome decoding. 

Crossover 

Crossover is the basic genetic operator. It involves combining 
the information from two parents to create one or two new 
individuals. The X1-thin crossover operator is presented in Le Riche 
and Haftka (1993) and used here. In Le Riche and Haftka (1993) 
several crossover methods are described and compared. The X1-thin 
is a one-point crossover strategy that restricts the location of the 
breakpoint to the full part of the thinner parent laminate and 
generates two new individuals, as shown in Fig. 2. 

 
 

 
Figure 2. Example of crossover operation. 

Mutation 

The mutation operator must be applied in the GA to guarantee 
gene diversity so that the algorithm does not get stuck in local 
minima (Schmitt, 2001). In the present work, this operator is based 
on randomly changing the value of a gene in the chromosome. Thus, 
the algorithm chooses an individual of the population and then, also 
randomly chooses a gene to be mutated. As the work is dealing with 
hybrid laminated composites, the mutation is applied to the angle as 
well as to the material chromosome. Figure 3 exemplifies both 
mutations.  

 
 

 
Figure 3. Example of mutation operator. 
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Gene-Swap  

The gene-swap operator selects two genes randomly from a 
laminate and then swaps them. It was introduced by Le Riche and 
Haftka (1995), who showed that the permutation operator (Le Riche 
and Haftka, 1995), which was used before the gene-swap operator 
was introduced, shuffles the digits too much and that the gene-swap 
operator is more efficient. The same authors showed that this 
operator is quite effective when the problem deals with buckling 
load, because when an individual has a good pool of genes, the 
gene-swap helps to reorganize them, possibly resulting in a better 
design than when the mutation is applied. One example of gene-
swap for hybrid laminate chromosome is given in Fig. 4. 

 
 

 
Figure 4. Example of gene-swap operator. 

 
 
In the example of the hybrid laminated composite referred to 

above, the crossover points of the two chromosomes for each 
individual are the same. In addition, when the gene-swap is applied, 
both orientation and material are swapped. 

Stack Addition-Deletion 

We introduce two supplementary operators. The first one adds 
and the second deletes a lamina of the composite part under design. 
The first operator tends to force the laminate to satisfy the first ply 
failure constraint, while the second one tends to reduce the weight 
of the laminate, thus forcing the laminate to satisfy the criterion of 
minimum weight. An example of this operator is in Fig. 5. 

 
 

 
Figure 5. Example of stack addition-deletion operat ors. 

 
 
Both operators always act on the lamina closest to the mid-

surface of the laminate, since it has the weakest effect on the 
bending properties of the structure. This feature may be important 
when buckling is involved, since buckling is highly dependent on 
the bending properties of the laminate. It is more convenient to 
delete the lamina with the weakest influence on the bending 

properties, since it is observed in practice that the algorithm rapidly 
converges to the best design for the most external laminae. 

Local Search 

Local search may be employed in the GA in order to accelerate 
the convergence of the algorithm. As already mentioned, two local 
search methods are used: Neighborhood Search and Material 
Grouping. 

The Neighborhood Search is based on making small changes in 
the genes of the chromosome that represents the orientations. One 
individual is chosen among the best designs of the population (i.e., 
among the five best individuals). Then, one of its genes is randomly 
chosen and the other allowable values that this gene may have are 
tested. Finally, the best design is chosen to remain in the population 
(i.e., the best design among individual, test 1 and test 2, as shown in 
Fig. 6). 

 
 

 
Figure 6. Example of Neighborhood Search operator. 

 
 
In the practice of optimizing laminated composites, it has been 

noted that usually the different material laminas are grouped 
together at the optimal design (Girard, 2006). Thus, the Material 
Grouping method consists in grouping the material laminas of a 
chromosome. First, one individual is chosen among the best ones of 
the population. Then, the genes with the same material are grouped 
and the new design is tested. If such design is better than the 
original one, it is kept in the population. The Material Grouping 
operation is depicted in Fig. 7. 

 
 

 
Figure 7. Example of Material Grouping operator. 

 

Failure Criteria 

Failure analysis of laminated composites is usually based on the 
stresses in each lamina in the principal material coordinates (Jones, 
1999) (see Fig. 8). The failure criteria can be classified in three 
classes: limit or non-interactive theories (e.g., maximum stress or 
maximum strain), interactive theories (e.g., Tsai-Hill, Tsai-Wu or 
Hoffman) and partially interactive or failure mode-based theories 
(PFC) (Daniel, 2007). In the present work, one criterion from each 
class is considered. 
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Figure 8. Principal material coordinates of a typic al unidirectional lamina. 

 

Maximum Stress Failure Criterion (MS) 

According to the maximum stress theory, failure is predicted 
when a maximum stress in the principal material coordinates 
exceeds the respective strength. That is, 

 

1 2orT TX Yσ σ≥ ≥         (for tensile stresses) 

1 2orC CX Yσ σ≤ − ≤ −     (for compressive stresses) 

12 12Sτ ≥                             (for shearing stresses) (2) 

 
where 1σ  and 2σ are the normal stresses in the directions 1 and 2, 

respectively; 12τ  is the shear stress in the elastic symmetry plane 1-2; 

XT and XC are the tensile and compressive strengths parallel to the 
fiber direction, respectively; YT and YC are the tensile and compressive 
strengths normal to the fiber direction, respectively; and S12 is the 
shear strength. Note that XT, XC, YT, YC and S12 are positive quantities. 

Tsai-Wu Failure Criterion (TW) 

The Tsai-Wu criterion, formulated to predict failure of 
orthotropic materials, is derived from the von Mises yield criterion. 
It states that the lamina fails when the following condition is 
satisfied 

 
2 2 2

11 1 12 1 2 22 2 21 12 1 1 2 22 1F F F F F Fσ σ σ σ τ σ σ+ + + + + ≥  (3) 
 

where Fi and Fij are parameters that are a function of the strength 
properties XT, XC, YT , YC  and S12 (see, for instance, Jones, 1999). 

Puck Failure Criterion (PFC) 

In this section, only the main features of the PFC are presented. 
The entire derivation can be found in Puck (1996) and Puck and 
Schürmann (1998). The PFC follows Mohr’s hypothesis that 
fracture is caused exclusively by the stresses that act on the fracture 
plane. It involves two main failure modes: Fiber Failure (FF) and 
the Inter-Fiber Failure (IFF) (Puck and Schürmann, 1998).  

FF is based on the assumption that fiber failure under multiaxial 
stresses occurs at the same threshold level at which failure occurs 
for uniaxial stresses. 

 
 
 

 
Instead of dealing with the principal material coordinates (axes 

1-2-3), IFF equations are derived based on the axes corresponding to 
the failure plane. These axes are shown in Fig. 9, where θfp 
represents the angle at which failure occurs. The PFC therefore 
provides not only a failure factor, but also the inclination of the 
plane where failure will probably take place, thus allowing a much 
better assessment of the consequences of IFF in the laminate.  

 
 

 
Figure 9. Transformation from the 1-2-3 axes to the  axes corresponding to 
the failure plane ( σn, τnt, τn1). 

 
 
 
IFF is subdivided into three failure modes, as described in Puck 

and Schürmann (1998), which are referred to as A, B and C. Mode A 
occurs when the lamina is subjected to tensile transverse stress, 
whereas modes B and C correspond to compressive transverse stress. 
The classification is based on the idea that a tensile stress σn > 0 
promotes fracture, while a compressive stress σn < 0 impedes shear 
fracture. For σn < 0, the shear stresses τnt and τn1 (or just one of them) 
have to face an additional fracture resistance, which increases with 
|σn|, analogously to an internal friction (Puck and Schürmann, 1998). 
The distinction between modes B and C is based on their failure 
angles, which are 0º for mode B and a different value for mode C. In 
addition, failure mode C is considered more severe, since it produces 
oblique cracks and may lead to serious delamination. 

The equations for the PFC are summarized in Table 2, where we 
also introduce a weakening factor fw, which decreases the strength 
of the laminate due to high stress in the fiber direction. According to 
Puck and Schürmann (1998),  fw  is given by 

 

( )( )0.9
n

w E FFf f=  (4) 

 
where E( FF )f  is the failure effort for FF in the lamina, and n, in this 

equation, is an exponent that depends on the matrix of the laminate 
(for instance, n = 6 for epoxy). We refer henceforth to this situation 
as PFC_fw, while we denote the situation where fw = 0 by PFC. 
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Table 2. Equations for the PFC (Puck and Schürmann,  1998). 

Type of failure Failure Mode Failure Condition (
)()( IFFEFFE forf ) Condition for validity 
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Numerical Results 

Example 1: Material Cost Minimization Under Buckling 

and Weight Constraints 

In this example, the material cost minimization of a hybrid 
laminated composite plate is described. Two types of layers are 
considered: carbon-epoxy (CE) and glass-epoxy (GE). The former is 
lighter and stronger, while the latter has a cost advantage as the 
price per square meter of this laminate is about 8 times less. The 
laminated is subjected to symmetry and balance constraints as well 
as a maximum weight and a minimum buckling load factor. The 
allowable orientation angle values are 02, ±45 and 902 degrees. Thus, 
the optimization problem reads as follows: 

 

Find:{ }, mat ,k k nθ , { }2 20 , 45, 90kθ ∈ ± , { }mat GE, CEk∈ , k = 1 to n  (5) 

Minimize Material cost 

Subject to: Minimum buckling load factor λcr ≥ λmin 

 Maximum weight: 85 N 

 
where θk is the orientation of each stack of the laminate and n the 
total number of stacks. As already mentioned, each stack is 
composed of two layers to guarantee balance. In this problem, each 
CE and GE layer is also assumed to cost 1 and 8 monetary units 
(m.u.), respectively. 

The plate is rectangular, simply supported and subjected to 
compressive in-plane loads per unit length Nx and Ny, as shown in 
Fig. 10. Each layer is 0.127 mm thick, and the length and width of 
the plate are 0.92 m and 0.75 m, respectively. The classical 
lamination theory and the linear buckling analysis (Jones, 1999) is 
used. The buckling load factor λcr represents the failure buckling 
load divided by the applied load, and is calculated as (see Gürdal, 
Haftka and Hajela, 1999), 
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4 2 2 4
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2 2
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    +            

 (6) 

 
where Dij are coefficients of the laminate bending stiffness matrix, 
m and n determine the amount of half waves in the x and y direction, 
respectively, lp is the plate length, wp is the plate width (Fig. 10). 
Note that the Eq. 6 input requires positive values for compressive 
and negative values for tensile forces.  
 
 

 
Figure 10. Laminated composite plate subjected to i n-plane loads. 

 
 
The elastic material properties of the CE layers are E1 = 138 GPa, 

E2 = 9 GPa, G12 = 7.1 GPa, Poisson’s ratio ν12 = 0.30 and mass 
density ρ = 1605 kg/m3. The GE layer elastic material properties are 
E1 = 43.4 GPa, E2 = 8.9 GPa, G12 = 4.55 GPa, Poisson’s ratio ν12 = 
0.27 and mass density ρ = 1993 kg/m3.  

The in-plane applied loads are fixed compressive values Nx = 
0.175 N/m and Ny = 0.175 N/m. This problem was previously 
investigated by Girard (2006) and the global optimum results for 
three different minimum buckling load factors are shown in Table 4. 
The underlined figures for the orientation correspond to GE stacks, 
and the remaining figures to CE stacks. For further comparisons, 
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Table 3 also shows the number of function evaluations required by 
the algorithms proposed by Girard (2006) to achieve the global 
optimum design. We also note that for optimum laminate 
configuration the CE layers are placed at the outer surface, which 

provides a higher bending stiffness, thus being more effective to 
satisfy the buckling constraint. 

 

 
 

Table 3. Optimal material cost and stacking sequenc e for the three different minimum buckling load fac tor (Example 1). 

λmin Cost (m.u.) λcr Weight (N) nº of plies Stacking sequence FE1 FElocal
2
 

150 33 167.4 79.7 48 ( ) ( )3 9
45 45

S
 ± ± 

 14945 1426 

250 55 262.4 82.6 52 ( ) ( )6 7
45 45

S
 ± ± 

 18345 2409 

375 120 447.8 84.4 60 ( )15
45

S
 ± 

 25894 1480 

1 mean number of function evaluations to achieve the global optimum without local search, based on 50 independent runs (Girard, 2006) 
2 mean number of function evaluations to achieve the global optimum using local search, based on 50 independent runs (Girard, 2006) 

 
 
 
In the following, we present a convergence study of this 

problem comparing the results of the GA developed in this paper 
with and without the local search. The population size is equal to 20 
individuals in all the analysis. The parameters used in the GA are 
shown in Table 4. They are the same for all the tests pursued. In the 
material grouping local search, two of individuals among the ten 
best are chosen per iteration. For the neighborhood search, two 
individuals are investigated among the five best ones. 

 
 

Table 4. Probability values used for the GA operato rs. 

Operator Probability 

crossover 1.00 

mutation 0.10 

gene swap 0.25 

stack add 0.05 

stack deletion 0.10 

 
 
The study is based on 100 independent runs and the stop 

criterion chosen is the total number of function evaluations (FE). 
Table 5 shows the obtained results. The mean value and standard 
deviation (SD) of the buckling load factor are shown to differentiate 
the case that the algorithm found a solution satisfying all the 
constraints (defined here as a feasible solution) and when the 
algorithm reaches the global optimum, which is the design shown in 
Table 3 for each λmin. Note that to calculate the mean and SD only 
the feasible solution values are considered. 

It can be seen that in all tests the local search accelerates the 
convergence of the algorithm, reaching the global optimum faster. 

Among the cases analyzed, λmin = 250 is the hardest one for the 
algorithm to converge to the global optimum, once it required the 
highest number of function evaluations to converge. It can be also 
seen that, to have 100% of probability of finding the global 
optimum, the local search reduced such convergence in roughly a 
thousand function evaluations. For the case where λmin = 150, the 
local search achieved the global convergence in half of function 
evaluations. 

Considering the number of function evaluations tested, λmin = 
375 was the easiest case to solve. In that case, the local search was 
not as effective or necessary as it was in the other two, meaning that 

the harder the optimization is, the more effective the local search 
may be. 

Comparing the results of the three cases with those of Girard 
(2006) (Table 3), we see that the algorithm without the local search 
presented in this paper converged much faster (i.e., with a lower 
number of function evaluations) than the one developed there. Also, 
its effectiveness can be compared to the algorithm with local search 
of the reference. Finally, the GA developed here using the local 
search was the fastest among all. 

Example 2: Material Cost Minimization under First Ply 

Failure and Weight Constraints 

The main purpose of this example is to pursue the material cost 
minimization of a hybrid laminated composite plate comparing the 
optimal design provided by three different first ply failure criteria: 
the maximum stress (MS), Tsai-Wu (TW) and the Puck failure 
criterion (PFC). As in Example 1, the laminate is subjected to 
symmetry and balance constraints. A maximum weight constraint is 
also imposed in this example. Thus, the optimization problem reads 
as follows 

 

Find:{ }, mat ,k k nθ , { }2 20 , 45, 90kθ ∈ ± , { }mat GE, CEk∈ , k = 1 to n (7) 

Minimize: Material cost 

Subject to: First ply failure constraint: MS, TW or PFC 

 Maximum weight: 70 N 

 
Let us consider a carbon-epoxy square laminated plate subjected 

to in-plane loads per unit length Nx = 2.0 N/m (tensile) and Ny = -2.0 
N/m (compressive). The plate is analyzed using the classical 
lamination theory (Jones, 1999). 

Each layer is 0.1 mm thick, and the length and width of the plate 
are 1.0 m. The elastic material properties of the CE layers are E1 = 
116.6 GPa, E2 = 7.673 GPa, G12 = 4.173 GPa, Poisson’s ratio ν12 = 
0.27 and mass density ρ = 1605 kg/m3. The elastic material 
properties of the GE layers are E1 = 37.6 GPa, E2 = 9.584 GPa, G12 
= 4.081 GPa, Poisson’s ratio ν12 = 0.26 and mass density ρ = 1903 
kg/m3. The failure properties of the CE and GE layers are shown in 
Table 6. 
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Table 5. Convergence after 100 independent runs for  different number of function evaluations as stop c riterion (Example 1). 

Function evaluations (FE) 300 500 1000 1500 2000 2500 

λmin = 150       

% of convergence3 0 53 96 100 100 100 

λcr – mean and (SD) - 158.2 (4.76) 165.1(3.66) 166.8 (1.98) 167.4 (0.00) 167.4 (0.00) 

% of convergence with 

local search 39 100 100 100 100 100 

λcr – mean and (SD) 

158.9 

(4.83) 165.3 (3.72) 167.4 (0.00) 167.4 (0.00) 167.4 (0.00) 167.4 (0.00) 

       

λmin = 250      

% of convergence 0 11 73 91 98 100 

λcr – mean and (SD) - 255.6 (6.20) 259.1 (2.83) 261.6 (1.60) 262.3 (0.73) 262.4  (0.00) 

% of convergence with 

local search 0 44 97 100 100 100 

λcr – mean and (SD) - 260.0 (3.68) 262.1 (0.60) 262.4 (0.00) 262.4 (0.00) 262.4 (0.00) 

       

λmin = 375      

% of convergence 61 100 100 100 100 100 

λcr – mean and (SD) 

412.1 

(18.60) 433.5 (13.60) 447.8 (0.00) 447.8 (0.00) 447.8 (0.00) 447.8 (0.00) 

% of convergence with 

local search 86 100 100 100 100 100 

λcr – mean and (SD) 

423.1 

(17.80) 446.2 (2.54) 447.8 (0.00) 447.8 (0.00) 447.8 (0.00) 447.8 (0.00) 
3can also be interpreted as the probability of finding a feasible solution 

 
 

Table 6. Strength properties of the layers. 

 
XT 

(MPa) 

XC 

(MPa) 

YT 

(MPa) 

YC 

(MPa) 

S12 

(MPa) 

Ef1 

(GPa) 

ε1T 

 

ε1C 

 

νf12 

 

mσf 

 

( )
||p +

⊥  

 

( )
||p −

⊥  

 

Carbon-epoxy (CE) 2062 1701 70 240 105 230000 0.0175 0.014 0.23 1.1 0.3 0.25 

Glass-epoxy (GE) 1134 1031 54 150 75 72000 0.0302 0.0295 0.22 1.3 0.3 0.25 

 
 
 
The probabilities of the GA operators are the same as in 

Example 1, and the optimization results are shown in Table 7. The 
underlined figures for the orientation correspond to GE stacks, and 
the remaining figures to CE stacks.  

It is interesting to note that the optimum obtained followed the 
same pattern in every case. All layers with an orientation of 0º are 
made of CE, while those with an orientation of 90º are made of GE. 
Note that this problem is independent of the bending stiffness and as 
a consequence, it is independent of the stacking sequence. Thus, if 
the stacking sequences shown in Table 7 are rearranged, the 
laminate extensional stiffness remains the same as long as the 
number of plies with the same orientation angle and material are 
kept constant. In addition, the GE laminae were the closest to 
failure. The cheapest structure was obtained using the PFC, while 

the TW criterion resulted in a material cost over 30% higher and 
yielded the heaviest structure.  

Table 7 also shows the maximum failure factor for the CE and 
GE laminate. The TW criterion yielded the largest gap between the 
maximum failure efforts for the two different materials at the 
optimum. Again, the PFC provides not only the failure effort, but 
also the expected failure mode of the structure. For example, the 
PFC predicts that the most probable failure mode is FF, while 
PFC_fw predicts IFF (mode A). From the results obtained, we note 
that each failure criterion yielded a different optimum. This 
reinforces the idea that the failure criterion significantly modifies 
the optimal design. Thus, when optimizing laminated composite 
structures, the choice of a failure criterion corresponding to the real 
behavior of the structure is crucial for both economy and safety. 
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Table 7. Optimal material cost and stacking sequenc e of the laminate for different failure criteria (E xample 2). 

Cost and weight  Failure Criteria ( Ef )  Stacking and cost difference 

Failure 
Criterion 

Cost 
(m.u.) 

Weight 
(N) 

 CE GE  Stacking sequence4 %5 

PFC 144 55.57  0.81 (C) 0.95 (FF)  ( ) ( )2 24 4
0 90

S

 
 

 - 

PFC_fw 148 63.11  0.69 (C) 0.94 (A)  ( ) ( )2 24 5
0 90

S

 
 

 2.7 

TW 208 68.23  0.27 0.99  ( ) ( )2 26 4
0 90

S

 
 

 30.1 

MS 148 63.11  0.66 0.84  ( ) ( )2 24 5
0 90

S

 
 

 2.7 

4 any order of this combination of orientation and material gives the same response 
5 relative weight difference (percentage difference in relation to the weight obtained using the PFC) predicted by the failure criteria 

 
 
 
 

Concluding Remarks 

In this paper, a genetic algorithm was developed to pursue the 
optimization of hybrid laminated composite structures. The GA was 
chosen as an optimization tool because of its ability to deal with 
non-convex, multimodal and discrete optimization problems, of 
which the design of laminated composites is an example. First, the 
developed algorithm was validated by comparing its results to those 
obtained from the literature. Then, the maximum stress, Tsai-Wu 
and Puck failure criteria (PFC) were used as constraint in the 
optimization process and the results yielded by them were 
compared.  

The results of this study show that the developed algorithm 
converges faster than the one found in the literature and that the 
local search accelerates the convergence. Moreover, the harder the 
problem is, the more effective the local search is. 

Regarding the different first ply failure criteria, it was found that 
each criterion yields a different optimal design. Therefore, when 
optimizing laminated composite structures, the choice of a failure 
criterion corresponding to the real behavior of the structure is 
crucial for both economy and safety. 
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