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Optimization of Hybrid Laminated
Composites using a Genetic
Algorithm

This work aims at developing a genetic algorithmAYGo pursue the optimization of
hybrid laminated composite structures. Fiber oraiun (predefined ply angles), material
(glass-epoxy or carbon-epoxy layer) and total nurrdfeplies are considered as design
variables. The GA is chosen as an optimization beshuse of its ability to deal with non-
convex, multimodal and discrete optimization praise of which the design of laminated
composites is an example. First, the developed rithgo is detailed explained and
validated by comparing its results to other obtairieom the literature. The results of this
study show that the developed algorithm convermg&sif. Then, the maximum stress, Tsai-
Wu and Puck (PFC) failure criteria are used as daaist in the optimization process and
the results yielded by them are compared and diszlislt was found that each failure
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Introduction

Composite material is usually understood as thebawation of
two or more materials on a macroscopic scale tm famuseful third
material (Jones, 1999). The advantage of composéeerials is
that, if correctly designed, they display the bestlities of their
constituents and often some qualities that neitbenstituent
possesses (Jones, 1999).

A laminated composite is usually tailored accorditag the
designer’s needs by choosing the thickness, nuantgorientation
of the laminae. To achieve the best results, opttion techniques
have been developed, and one such technique, tietig@algorithm
(GA), has been widely used to determine the optidedign of
composite structures (Le Riche and Haftka, 1993)eNdra et al.,
1994; Todoroki and Haftka, 1998; Liu et al., 200®nown
advantages of the use of GAs include the followifigthey do not
require gradient information and can be appliegrmblems where
the gradient is hard to obtain or simply does nxiste (i) if
correctly tuned, they do not get stuck in local imi; (iii) they can
be applied to non-smooth or discontinuous functi@m (iv) they
furnish a set of optimal solutions instead of ayk&#rone, thus giving
the designer a set of options. On the other hdreduse of GAs has
a number of known drawbacks, which include theofwlhg: (i) they
require the tuning of many parameters by trial andr to maximize
efficiency; (ii) thea priori estimation of their performance is an
open mathematical problem; and (iii) an extremahgé number of
evaluations of the objective function are required achieve
optimization, which can make the use of GAs nongatepending
on the computational cost of each evaluation.

In the design of laminated composites, the plykinésses are
often predetermined and the ply orientations atmllisrestricted to
a small set of angles due to manufacturing linotaiand/or limited
availability of experimental data. This leads tolgems of discrete
or stacking-sequence optimization. Many objectiwactions have
been introduced, such as the buckling load (Le &i@ahd Haftka,
1993; Liu et al., 2000) (to be maximized), the fsgks in one
direction (to be maximized), and the strength (@vegld and
Haftka, 2006) (to be maximized), as well as thet cosweight
(Nagendar et al., 1994; Seresta et al., 2007; loheRand Haftka,
1995; Naik, Gopalarishnan and Ganguli, 2008) (ton@mized). A
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criterion yielded a different optimal design.
Keywords: hybrid laminated composites, optimization, genatgorithm

popular approach used by many researchers to nmxirie
strength consists of minimizing the failure factof a failure

criterion, such as the maximum strain/stress, Héhi-Hoffman or

Tsai-Wu criteria. However, the Tsai-Wu failure eribn contains
linear and quadratic terms, and therefore the tiaguldesigns
become dependent on the load level. Groenwold aaftk& (2006)
suggested that for this criterion tisafety factor(i.e., the largest
multiplicative factor that can be applied to théuat loads without
violating the failure criterion) can be maximizedstead of
minimizing the failure factor and the resulting ides becomes
independent of the load level.

In addition to the failure criterion, other restivms are usually
involved in the optimal design of laminated compessi Examples
of such restrictions in the literature include upped bound limits
for the design variables, laminate symmetry andarizd, and a
maximum number of contiguous plies (this last ietm is often
used to prevent matrix cracking). Liu et al. (20G{plied and
compared repair strategies using a maximum numbeordiguous
plies and showed that the Baldwinian repair stratdepstically
reduces the computational cost of constrained aopditon (the cost
of the GA, measured by the number of function eat@duns
necessary to achieve the optimization, is reducedr® or two
orders of magnitude). The first ply failure consitas often handled
by a penalty approach (Le Riche and Haftka, 1998)evdra et al.,
1994).

Mathias, Balandraud and Grediac (2006) studied
optimization of a composite patch bonded to a m&taicture, and
in addition to the stacking sequence, they alsinopéd the shape
and location of the patch. Rahul et al. (2006) tmed a multi-
objective optimization technique using a GA couptedhe finite
element method to simultaneously minimize the emst weight of
a composite plate. Walker and Smith (2003) useichdas coupling
to minimize the weight and deflection of laminatpthtes for
different loading and boundary conditions. Muruggnal. (2007)
used a min-max approach to combine several obgtiand
minimized all the objective functions simultanegusThe main
advantage of the min—-max approach resides in tbietffi@at noa
priori articulation of preferences for the objective fumes is
needed. In the same work, Murugan et al. (2007 afsployed
target vector optimization to determine a desigat tlvould yield
given target stiffness values for a rotor bladeviongsly obtained by
aeroelastic optimization, one of the classical cidje functions for
this kind of problem.
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When the optimization problem involves continuousd a
discrete variables (a mixed-variable problem), rdygresentation of
the variables in a single string in the GA increatbee dimension of
the design variables space (since one real varigbteansformed
into many integer ones). To overcome this probléecomposition
approaches have been introduced (Antonio, 2001gsé&hoften
involve decomposition at local and global levelsthe local level
the best stacking sequence is determined for axgjeemetry, and
at the global level new geometries are generateddban the result
furnished by the local level. Such an approach wadapted for
optimal composite design by Murugan et al. (20@ntonio (2006)
introduced a hierarchical GA with age structure paeld for the
optimal design of hybrid composite structures withultiple
solutions. The algorithm he proposed addressedphimal stacking
sequence and material topology as a multimodal mipdtion
problem. Antonio showed that the procedure for ggecontrol is
effective because it allows multiple optimal sabus and
guarantees subpopulation diversity.

With regard to failure criteria, Naik, Gopalakrishm and
Ganguli (2008) used a GA to determine the minimusight design
of laminated composites under restrictions assediavith the
maximum stress (MS) and Tsai-Wu (TW) criteria adlves a
failure-mechanism-based criterion.

One of the main criticisms of many studies relai@dptimal
composite design is the use of failure criteriacdasn the von
Mises or Hill yield criteria, which are more suitabfor ductile
materials (Puck and Schirmann, 1998). In fact, hes failure
behavior of composite parts is similar to that dftle material, it
would be more appropriate to use criteria suitednterials that
exhibit brittle fractures, such as Mohr's criterioA suitable
criterion for composites that takes this fracturehdwvior into
account is, for instance, the Puck failure criteri@®FC) (Puck,
1996; Puck and Schirmann, 1998).

This work develops a genetic algorithm to pursue th
optimization of hybrid laminated composite struesur Fiber
orientation (predefined ply angles), material (gtapoxy or carbon-
epoxy layer) and total number of plies are consideas design
variables. First, the developed algorithm is vakdaby comparing
their results to other found in the literature @&it, 2006). Then,
three different failure criteria, the MS, TW an@&tRFC, are used as
constraint in the optimization and their resulte aompared. The
paper is organized as follows. In Section ‘Gendligorithm’ the
chromosome representation, the genetic operatarshenconstraint
handling are described. Section ‘Failure Critepaésents a brief
review of the failure criteria used in this workhd problem
statements and numerical results are shown in @edtlumerical
Results’. Finally, Section ‘Conclusions’ reports ethmain
conclusions that were drawn.

Nomenclature

C1 = stack orientation chromossome

C2 = stack material chromossome

CE = carbon-epoxy ply

D; = coeficient of the laminate bending stiffnessnimaNm

Ei = Young’'s modulus of the ply in direction i, Pa
Ei = Young’'s modulus of the fiber in direction i, Pa
FE = number of function evaluations

FF = fiber failure mode

Fi = parameter of Tsai-Wu failure criterion, 1/Pa
Fj = parameter of Tsai-Wu failure criterion,1/Pa

fw = weakening factor for PFC, dimensionless

G  =shear modulus, Pa

GE = glass-epoxy ply
IFF = inter-fiber failure mode
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lp, = plate length, m

m = number of half waves of a buckling mode inaion x

m.u. = monetary unit

MS = maximum stress failure criterion

m,; = mean stress-magnification factor for fiberstiire »
direction, due to the difference between the trarsy
modulus of the fibers and the matrix (parametePB€),
dimensionless

n = number of half waves of a buckling mode irecliion vy,
total number of stacks of a laminate
N =in plane load, N/m

PFC = Puck failure criterion

p}) = slope of thed;,z,) fracture envelope for,>0
(parameter of PFC), dimensionless

p;) = slope of thed;,z,) fracture envelope for, <0
(parameter of PFC), dimensionless

p) = slope of thed,,r,) fracture envelope fos, <0
(parameter of PFC), dimensionless

PSD = fracture resistance of the action plane agaitst

fracture due to transverse/transverse shear stngssi
(parameter of PFC), Pa
S = fiber failure (FF) factor of PFC, dimensionless
S, = shear lamina strength, Pa
SD = standard deviation
TW = Tsai-Wu failure criterion
w, = plate width, m

X =lamina strength parallel to the fiber directipRa

Y = lamina strength normal to the fiber directid®a
Greek Symbols

T = shear stress, Pa

& = normal strain in direction i, dimensionless

& = compressive failure strain in direction i, dimgonless
&r = tensile failure strain in direction i, dimensilass

1% = shear strain, dimensionless

A = buckling load factor, dimensioless

v = Poisson’s ratio, dimensionless

V1, = Poisson's ratio of the fiber, dimensionless
&, = angle of the fracture plane, deg.

4. = ply orientations, deg.

£ = mass density, kgin

o  =normal stress, Pa

Subscripts

1 relative to material coordinate direction
2 relative to material coordinate direction
3 relative to material coordinate direction
C relative to compression

cr  relative to critical buckling load

fp  relative to failure plane

k relative to fiber orientation

min relative to minimum buckling factor
relative to normal to the failure plane
relative to plate

relative to tangential to the failure plane
relative to tensile

relative to x coordinate

relative to y coordinate

<X 4—~T >
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Optimization of Hybrid Laminated Composites using a Genetic Algorithm

Genetic Algorithm

Genetic algorithms loosely parallel biological ewin and
were originally inspired by Darwin’s theory of nedli selection.
The specific mechanics of genetic algorithms oftea the language
of microbiology, and their implementation frequgntmimics
genetic operations (Arora, 2004). A GA generallyolves genetic
operators (such as crossover and mutation) andtiegleoperators
intended to improve an initial random populatioele8tion usually
involves a fitness function characterizing the gyalf an individual
in terms of the objective function and the otheznents of the
actual populations. Thus, a GA usually starts i generation of
a random initial population and iterates by genegaa sequence of
populations from the initial one. At each step gfemetic operators
are applied to generate new individuals. The fiénes each
available individual is computed and the whole gapon is ranked
according to increasing fithess. A subpopulatiothen selected to
form a new population. Many selection methods meyfdund in
the literature. In this work, tournament selectisnapplied (see
Schmitt, 2001). At this point, the algorithm mapeat the process
or, before that, a local search may be pursued;hwisi the case of
this paper. Two local search methods are employadied as:
Neighborhood Search and Material Grouping (Gir2@D6). Then,
all the procedure is repeated until a stopping ttandis satisfied.

The genetic operators employed in this work aresswaer,
mutation, gene swap, stack-deletion and stack-additin the
following, the constraint handling, chromosome ogdiand the
genetic operators are shown in detail.

Constraint Handling

In GAs, the most common ways of handling constsaéme data
structure, repair strategies and penalty functiqfaizzi and
Carpentieri, 2008). The symmetry and balance ofléhgnate are
handled by using the data structure strategy, whtichsists of
coding only half of the laminate and consideringttbach stack of
the laminate is formed by two laminae with the samentation,
but opposite signs (for instance, #45

A double-multiplicative dynamic penalty approachufB and
Carpentieri, 2008) is used here to take into actdhba failure
criteria. This approach leads to a penalty ternmdpeidded to the
objective function: this supplementary term has altiplicative
form and involves autonormalization. It is writtes

1)

P(x.0)= |j[1+ @jb(jX)[mQQﬂ ’

wherem is the number of constraints,is the vector of the design
variables, @j(x) is the constraint violatiorl; is a normalization

parameterq is the current generation number a@dis the total
number of generations. The main advantage of hiscach is that
the penalization parameters do not need to be tuned

Chromosome Representation

The classical binary representatioma used here; instead, the

allowed angle values represent the genes of tharaisomes (i.e.,

[0, #45 9Q]). In our numerical examples, we consider the parent 1

optimization of a hybrid laminated composite. Inistltase, each
individual in the population is represented by mtwomosomes: the
first describes the angle of orientation of theetay and the second
the layers materials, Table 1 details this approach
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Table 1. Chromosome representation.

Stack Orientation Chromosome (C1)
Empty Stack | 9 ‘ +45 |
0 1 2

Stack Material Chromosome (C2)
Empty Stack | Carbon-Epoxy (CEF Glass-Epoxy (GE
0 1 2

9¢
3

-

The orientation angle and material of each plycaed in the
chromosomes of each individual. One example of mosbme
decoding is shown in Fig. 1.

Cl: [0 2 3 1] —= [+45 90,
C2: [0 1 1 2] — [CE

02]5
CE  GE

Figure 1. Example of chromosome decoding.

Crossover

Crossover is the basic genetic operator. It inlgembining
the information from two parents to create one wo tnew
individuals. The X1-thin crossover operator is préged in Le Riche
and Haftka (1993) and used here. In Le Riche anitk&l1993)
several crossover methods are described and cothpdre X1-thin
is a one-point crossover strategy that restrices lthtation of the
breakpoint to the full part of the thinner pareamlnate and
generates two new individuals, as shown in Fig. 2.

Before After
Parent 1 C1 00331;11 0033122
c2 0011222 0011211
Parent 2 C1 00012322 0001212
) 0001112 0001122
Figure 2. Example of crossover operation.
M utation

The mutation operator must be applied in the GAyuarantee
gene diversity so that the algorithm does not dgetksin local
minima (Schmitt, 2001). In the present work, thietor is based
on randomly changing the value of a gene in therdesome. Thus,

the algorithm chooses an individual of the popolatind then, also

randomly chooses a gene to be mutated. As the iwatialing with
hybrid laminated composites, the mutation is agpi@the angle as

well as to the material chromosome. Figure 3 ex#mepl both
mutations.

Before After
c1 0033122 00321122
c2 0011211} 0011212
: i

Figure 3. Example of mutation operator.

July-September 2009, Vol. XXXI, No. 3/271



Gene-Swap

The gene-swap operator selects two genes randawmy &
laminate and then swaps them. It was introducetleoRiche and
Haftka (1995), who showed that the permutation ajeer(Le Riche
and Haftka, 1995), which was used before the gemgoperator
was introduced, shuffles the digits too much arad the gene-swap
operator is more efficient. The same authors showed this
operator is quite effective when the problem desith buckling
load, because when an individual has a good poajeoks, the
gene-swap helps to reorganize them, possibly ieguih a better
design than when the mutation is applied. One elarap gene-
swap for hybrid laminate chromosome is given in Big

Before After
Parent1  Ci 0033122, 00321273,
Q2 0014172 112/ 001222 111
+ T =~

Figure 4. Example of gene-swap operator.

In the example of the hybrid laminated compositerred to
above, the crossover points of the two chromosofoeseach
individual are the same. In addition, when the ggamap is applied,
both orientation and material are swapped.

Stack Addition-Deletion

We introduce two supplementary operators. The &rst adds
and the second deletes a lamina of the compositeipder design.
The first operator tends to force the laminateatis§ the first ply
failure constraint, while the second one tendsetiuce the weight
of the laminate, thus forcing the laminate to $atike criterion of
minimum weightAn example of this operator is in Fig. 5.

Rafael Holdorf Lopez et al.

properties, since it is observed in practice thatalgorithm rapidly
converges to the best design for the most extéginahae.

L ocal Search

Local search may be employed in the GA in ordesidcelerate
the convergence of the algorithm. As already mewetip two local
search methods are used: Neighborhood Search anédriéfla
Grouping.

The Neighborhood Search is based on making smatiggs in
the genes of the chromosome that represents thatations. One
individual is chosen among the best designs opthpaulation (i.e.,
among the five best individuals). Then, one ofjgses is randomly
chosen and the other allowable values that thig geay have are
tested. Finally, the best design is chosen to nenmaihe population
(i.e., the best design among individual, test 1 t@sti2, as shown in
Fig. 6).

c1 c2

Parent 1 individual 00333122 0011212
test 1 0013122 0011212
test 2 0023122 0011212

Figure 6. Example of Neighborhood Search operator.

In the practice of optimizing laminated compositédas been
noted that usually the different material laminag @rouped
together at the optimal design (Girard, 2006). Thhe Material
Grouping method consists in grouping the mate@ahihas of a
chromosome. First, one individual is chosen ambegoest ones of
the population. Then, the genes with the same mbt@me grouped
and the new design is tested. If such design iseb¢han the
original one, it is kept in the population. The K@l Grouping
operation is depicted in Fig. 7.

Before After Before After
Parent 1 C1 0033122 O33122;’§‘; Parent 1 C1 0133123 0133123
(@) 0011211 01121132 2 021213240 0411222
Stack Addition - Figure 7. Example of Material Grouping operator.
Before After . N
Failure Criteria
Parent 1 Cl 00331 2:”2\‘; 0003312 Failure analysis of laminated composites is usuadlyed on the
C2 001121 0001121 stresses in each lamina in the principal mateoakdinates (Jones,

Stack Deletion

Figure 5. Example of stack addition-deletion operat  ors.

Both operators always act on the lamina closesthé mid-
surface of the laminate, since it has the weakéstteon the
bending properties of the structure. This featusy e important
when buckling is involved, since buckling is highdgpendent on
the bending properties of the laminate. It is moo&venient to
delete the lamina with the weakest influence on Hending

272 / Vol. XXXI, No. 3, July-September 2009

1999) (see Fig. 8). The failure criteria can bessilged in three
classes: limit or non-interactive theories (e.ggximum stress or
maximum strain), interactive theories (e.g., Tsdi-H'sai-Wu or

Hoffman) and partially interactive or failure mobased theories
(PFC) (Daniel, 2007). In the present work, oneecitin from each
class is considered.
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Fiber

Matrix

Figure 8. Principal material coordinates of a typic  al unidirectional lamina.

Maximum Stress Failure Criterion (MS)

According to the maximum stress theory, failurepiedicted
when a maximum stress in the principal material rdmates
exceeds the respective strength. That is,

g,2X; or 0,2, (for tensile stresses)
g, <-X. or 0,<-Y,

‘TZLZ‘ 2 SlZ

(for compressive stresses)

(for shearing stresses)

)

Instead of dealing with the principal material atioates (axes
1-2-3), IFF equations are derived based on the @x@ssponding to
the failure plane. These axes are shown in FigwBere 6,
represents the angle at which failure occurs. TRE€ Fherefore
provides not only a failure factor, but also thelimation of the
plane where failure will probably take place, thall®wing a much
better assessment of the consequences of IFF lartthirate.

Figure 9. Transformation from the 1-2-3 axes to the
the failure plane ( Gn, Tnt, Tn1)-

axes corresponding to

whereg, and o, are the normal stresses in the directions 1 and 2,

respectively;7,, is the shear stress in the elastic symmetry flabe
Xt and X are the tensile and compressive strengths patalléhe

IFF is subdivided into three failure modes, as diesd in Puck
and Schirmann (1998), which are referred to as An@C. Mode A

fiber direction, respectively; andYc are the tensile and compressiveoccurs when the lamina is subjected to tensilestense stress,

strengths normal to the fiber direction, respetfivand Sy, is the
shear strength. Note tht, Xc, Yr, Yc andSy,are positive quantities.

Tsai-Wu Failure Criterion (TW)

The Tsai-Wu criterion, formulated to predict fadurof
orthotropic materials, is derived from the von Misgeld criterion.
It states that the lamina fails when the followingndition is
satisfied

Fuo; +2F o0 +F ,0°+F 12 +Fq +Fqg 21 ®3)

whereF; andF; are parameters that are a function of the streng

propertiesXr, Xc, Y1, Yc andSy; (see, for instance, Jones, 1999).

Puck Failure Criterion (PFC)

In this section, only the main features of the RIFE€ presented.
The entire derivation can be found in Puck (1996J &uck and
Schirmann (1998). The PFC follows Mohr's hypothetigt
fracture is caused exclusively by the stressesdttabn the fracture
plane. It involves two main failure modes: Fibeilti@ (FF) and
the Inter-Fiber Failure (IFF) (Puck and Schirmat898).

FF is based on the assumption that fiber failumenmultiaxial
stresses occurs at the same threshold level athwhilure occurs
for uniaxial stresses.
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whereas modes B and C correspond to compressive/éige stress.
The classification is based on the idea that ailtestressc, > 0
promotes fracture, while a compressive stigss O impedes shear
fracture. Fors, < O, the shear stressgsandz,,; (or just one of them)
have to face an additional fracture resistancechvimcreases with
lowl, @analogously to an internal friction (Puck and i8aann, 1998).
The distinction between modes B and C is basedheir failure
angles, which are 0° for mode B and a differentievdbr mode C. In
addition, failure mode C is considered more sew&@nee it produces
oblique cracks and may lead to serious delamination
The equations for the PFC are summarized in Tabléh2re we

also introduce weakening factof,, which decreases the strength

the laminate due to high stress in the fibeedtion. According to

uck and Schirmann (1998), is given by

f,=(0.9%c)" 4

where fg ¢ is the failure effort for FF in the lamina, angin this

equation, is an exponent that depends on the nttixe laminate
(for instancen = 6 for epoxy). We refer henceforth to this siioat
as PFC_fw, while we denote the situation wHgre0 by PFC.

July-September 2009, Vol. XXXI, No. 3/273
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Table 2. Equations for the PFC (Puck and Schirmann,  1998).

Type of failure Failure Mode Failure Condition ¢_ .., or fg ) Condition for validity
) . . s .
Fiber Failure (FF) Tensile P if S=0
_ Vi . S o _ .
S=&+ om0, Compressive - +(10p, f =1 if S<0
f1 1C
2 2 2
Inter Fiber Failure (IFF)  Mode A \/[ij +[1— p‘D*")Y—T] [2] +p0 &g, =1 0,20
S, SWANS S,
Mode B 1 2 OV . - . <()anc|05&<iAE
g( i+ (pGon) + puu)@j* fu=1 z To1| [Tox]
1
Mode C [ Tat ]2+[&]2 Yo it =1 o, <0and0sis@
irpls)) () o) : o) R
N dr. = dr.
Definitions p(uu) :_[TZI] of (02.72) curve,o,2 ( p(Dll) = _[i} of (0,,75) curve,o,< €
92 )g,=0 do, 7,=0
i i A = Ye = Sy oYe _ ) = HLSD = ( *))
Parameter relationships R E(UTEB) 257 [ 1+2p; 5 1] P = pY s, Ty = Syy[1+ 2832
4 2 2 4
. m m n n
Numerical Results e Dll[lj +2(Dyp* ZDse)[lj [Wj +D zz{w ]
P p p p
Ay =mi (6)

2 2
mn m n
Example 1: Material Cost Minimization Under Buckling [I] Ny +[W] Ny
and Weight Constraints P P

In this example, the material cost minimization afhybrid whereD; are coefficients of the laminate bending stiffnesatrix,
laminated composite plate is described. Two typkdagers are mandn determine the amount of half waves in xendy direction,
considered: carbon-epoxy (CE) and glass-epoxy (Bi§.former is  respectively/, is the plate lengthw, is the plate width (Fig. 10).

lighter and stronger, while the latter has a cabtaatage as the Note that the Eq. 6 input requires positive valf@scompressive
price per square meter of this laminate is abotih®s less. The znd negative values for tensile forces.

laminated is subjected to symmetry and balancet@ints as well
as a maximum weight and a minimum buckling loaddacThe

allowable orientation angle values a5 and 99 degrees. Thus,
the optimization problem reads as follows:

PP P04

Find:{ 4., maj n}, 40, +45 99} ,mat, O GE, CE, k=1ton (5)

S

- —— -«
Minimize Material cost RR S
. .. . R w
Subject to: Minimum buckling load factag, > Ain — -~ i
S
S

Maximum weight: 85 N

e

4

wheredy is the orientation of each stack of the laminatd & the
total number of stacks. As already mentioned, eatdctk is
composed of two layers to guarantee balance. fnptublem, each Figure 10. Laminated composite plate subjectedtoi  n-plane loads.
CE and GE layer is also assumed to cost 1 and &tagnunits
(m.u.), respectively.

The plate is rectangular, simply supported and exbfl to
compressive in-plane loads per unit lenfthandN,, as shown in
Fig. 10. Each layer is 0.127 mm thick, and the tkerand width of
the plate are 0.92 m and 0.75 m, respectively. Thessical B = _ ) i S
lamination theory and the linear buckling analySisnes, 1999) is E, = 43.4 GPaF, = 8.9 GPaGy, = 4.55 GPa, Poisson's ratig, =
used. The buckling load factdy, represents the failure buckling 0-27 @nd mass densjpy= 1993 kg/rfy

load divided by the applied load, and is calculaisd(see Giirdal, The in-plane applied loads are fixed compressiveesN, =
Haftka and Hajela, 1999), 0.175 N/m andN, = 0.175 N/m. This problem was previously

investigated by Girard (2006) and the global optimtesults for
three different minimum buckling load factors an@wn in Table 4.
The underlined figures for the orientation correspdo GE stacks,
and the remaining figures to CE stacks. For furtt@mparisons,

The elastic material properties of the CE layeeskar= 138 GPa,
E, = 9 GPa,G;, = 7.1 GPa, Poisson’s ratig, = 0.30 and mass
densityp = 1605 kg/m. The GE layer elastic material properties are
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Table 3 also shows the number of function evaluatiequired by
the algorithms proposed by Girard (2006) to achigwe global
optimum design. We also note that for optimum laaten
configuration the CE layers are placed at the ostgface, which

Table 3. Optimal material cost and stacking sequenc

e for the three different minimum buckling load fac

provides a higher bending stiffness, thus beingemeffective to
satisfy the buckling constraint.

tor (Example 1).

Amin  Cost (M.U.) Ag Weight (N) n° of plies  Stacking sequence *FE  FEqca’
150 33 167.4 79.7 48 [(+49),(£49,], 14945 1426
250 55 2624 82.6 52 [ (245), (iS)JS 18345 2409
375 120 4478 844 60 [ (+45),, 25894 1480

*mean number of function evaluations to achievegthbal optimum without local search, based on S&frendent runs (Girard, 2006)
2 mean number of function evaluations to achievegtbbal optimum using local search, based on 56prddent runs (Girard, 2006)

In the following, we present a convergence study ttuf
problem comparing the results of the GA developedhis paper
with and without the local search. The populatize $s equal to 20
individuals in all the analysis. The parametersduisethe GA are
shown in Table 4. They are the same for all thestesrsued. In the
material grouping local search, two of individualsiong the ten
best are chosen per iteration. For the neighborhseatch, two
individuals are investigated among the five besison

Table 4. Probability values used for the GA operato  rs.

Operator Probability,
crossover 1.00
mutation 0.10
gene swap 0.25
stack add 0.05
stack deletion| 0-10

The study is based on 100 independent runs andstie
criterion chosen is the total number of functioraleations (FE).
Table 5 shows the obtained results. The mean \eahgestandard
deviation (SD) of the buckling load factor are sinaw differentiate
the case that the algorithm found a solution satigf all the
constraints (defined here as a feasible solutiam) ahen the
algorithm reaches the global optimum, which isdlksign shown in

the harder the optimization is, the more effective local search
may be.

Comparing the results of the three cases with tluds&irard
(2006) (Table 3), we see that the algorithm withtht local search
presented in this paper converged much faster (uigh a lower
number of function evaluations) than the one deyedothere. Also,
its effectiveness can be compared to the algoritliim local search
of the reference. Finally, the GA developed hermngushe local
search was the fastest among all.

Example 2: Material Cost Minimization under First Ply
Failure and Weight Constraints

The main purpose of this example is to pursue thtenal cost
minimization of a hybrid laminated composite platemparing the
optimal design provided by three different firsy ilure criteria:
the maximum stress (MS), Tsai-Wu (TW) and the Piailure
criterion (PFC). As in Example 1, the laminate ishjected to
symmetry and balance constraints. A maximum wedginistraint is
also imposed in this example. Thus, the optimizapfooblem reads
as follows

Find:{ 4, mat, ,n} , §{0,, +45,9q} , mat, [} GE, CE, k= 1 ton

Minimize:

)
Material cost
Subject to: First ply failure constraint: MS, TWBFC

Maximum weight: 70 N

Table 3 for each\,,. Note that to calculate the mean and SD only

the feasible solution values are considered.
It can be seen that in all tests the local seandelarates the
convergence of the algorithm, reaching the glolpdihaum faster.

Let us consider a carbon-epoxy square laminatetd plebjected
to in-plane loads per unit lengl, = 2.0 N/m (tensile) anbl, = -2.0
N/m (compressive). The plate is analyzed using thessical

Among the cases analyzédy, = 250 is the hardest one for thelamination theory (Jones, 1999).

algorithm to converge to the global optimum, oniceeguired the
highest number of function evaluations to convetgean be also
seen that, to have 100% of probability of findinge tiglobal
optimum, the local search reduced such converganceughly a
thousand function evaluations. For the case whgje= 150, the
local search achieved the global convergence ifi dfafunction
evaluations.

Considering the number of function evaluationse®@sh i, =
375 was the easiest case to solve. In that casdothl search was
not as effective or necessary as it was in therdtih@ meaning that

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri
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Each layer is 0.1 mm thick, and the length and lwiftthe plate
are 1.0 m. The elastic material properties of tlel&yers aree; =
116.6 GPaE, = 7.673 GPaG;, = 4.173 GPa, Poisson’s ratig, =
0.27 and mass densitp = 1605 kg/m. The elastic material
properties of the GE layers afg = 37.6 GPaE, = 9.584 GPagG;,
= 4.081 GPa, Poisson’s ratiq, = 0.26 and mass densijty= 1903
kg/m’. The failure properties of the CE and GE layeessirown in
Table 6.
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Table 5. Convergence after 100 independent runs for

different number of function evaluations as stop c

Rafael Holdorf Lopez et al.

riterion (Example 1).

Function evaluations (FE) 300 500 1000 1500 2000 0025
Amin = 150
% of convergence 0 53 26 100 100 100
Aer — mean and (SD) - 158.2 (4.76) 165.1(3.66) 166.98) 167.4 (0.00) 167.4 (0.00)
% of convergence with
local search 39 100 100 100 100 100
158.9
Aer — mean and (SD) (4.83) 165.3 (3.72) 167.4 (0.00) 167.4 (0.00) 160.80) 167.4 (0.00)
Amin = 250
% of convergence 0 11 73 91 98 100
Aer — mean and (SD) - 255.6 (6.20) 259.1 (2.83) 261.60) 262.3 (0.73) 262.4 (0.00)
% of convergence with
local search 0 44 97 100 100 100
Aer — mean and (SD) - 260.0 (3.68) 262.1 (0.60) 2@2.40) 262.4 (0.00) 262.4 (0.00)
Amin = 375
% of convergence 61 100 100 100 100 100
412.1
Aer — mean and (SD) (18.60) 433.5(13.60) 447.8 (0.00) 447.8 (0.00) .84©.00) 447.8 (0.00)
% of convergence with
local search 86 100 100 100 100 100
423.1
Aer — mean and (SD) (17.80) 446.2 (2.54) 447.8 (0.00) 447.8 (0.00) 840.00) 447.8 (0.00)
%can also be interpreted as the probability of figda feasible solution
Table 6. Strength properties of the layers.
X7 Xe Yr Ye Siz En &t €ic Viz | Mt p(uh) p(uﬂ)
(MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (GPa)
Carbon-epoxy (CE) 2062 1701 70 240 105 230000 6.010.014 | 0.23] 1.1 0.3 0.2§
Glass-epoxy (GE) 1134 1031 54 150 75 72000 0.03020298 | 0.22| 1.3 0.3 0.25

The probabilities of the GA operators are the samsein
Example 1, and the optimization results are shawiable 7. The
underlined figures for the orientation correspoadsE stacks, and
the remaining figures to CE stacks.

It is interesting to note that the optimum obtairieldowed the
same pattern in every case. All layers with anragon of 0° are
made of CE, while those with an orientation of 862 made of GE.
Note that this problem is independent of the begdiiffness and as
a consequence, it is independent of the stackiggesee. Thus, if
the stacking sequences shown in Table 7 are remdanthe
laminate extensional stiffness remains the samdoag as the
number of plies with the same orientation angle avaterial are
kept constant. In addition, the GE laminae were thesest to
failure. The cheapest structure was obtained ugiegPFC, while
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the TW criterion resulted in a material cost ovee@higher and
yielded the heaviest structure.

Table 7 also shows the maximum failure factor fee& CE and
GE laminate. The TW criterion yielded the largeap dpetween the
maximum failure efforts for the two different matds at the
optimum. Again, the PFC provides not only the faleffort, but
also the expected failure mode of the structure. &@mple, the
PFC predicts that the most probable failure modé-Rs while
PFC_fw predicts IFF (mode A). From the results oletd, we note
that each failure criterion yielded a different ioptm. This
reinforces the idea that the failure criterion #igantly modifies
the optimal design. Thus, when optimizing laminatmmposite
structures, the choice of a failure criterion cepending to the real
behavior of the structure is crucial for both eamyand safety.
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Table 7. Optimal material cost and stacking sequenc

e of the laminate for different failure criteria (E

xample 2).

Cost and weight Failure Criteria (fE) Stacking and cost difference
CFrii(l,L:ifn (r?](.)jt) W(e;\ight CE GE Stacking sequerice %°
PFC 144 5557 0.81(C) 0.95 (FF) [(02)4 (%)AL .
PFC_fw 148  63.11 0.69(C) 0.94 (A) [(02)4 (%)SL 2.7
T™wW 208  68.23 0.27 0.99 [(02)6 (%)AL 30.1
MS 148 63.11 0.66 0.84 [(02)4 (%)SL 2.7

4 any order of this combination of orientation andtemial gives the same response
5 relative weight difference (percentage differeimceelation to the weight obtained using the PF@Yjcted by the failure criteria

Concluding Remarks

In this paper, a genetic algorithm was developegursue the
optimization of hybrid laminated composite struesirThe GA was
chosen as an optimization tool because of itstghiti deal with
non-convex, multimodal and discrete optimizatiorolpems, of
which the design of laminated composites is an @kanfirst, the
developed algorithm was validated by comparingeatilts to those
obtained from the literature. Then, the maximunesdr Tsai-Wu
and Puck failure criteria (PFC) were used as caimgtrin the
optimization process and the results yielded bymthevere
compared.

The results of this study show that the developlkegrahm
converges faster than the one found in the liteeaAnd that the
local search accelerates the convergence. Morethverharder the
problem is, the more effective the local search is.

Regarding the different first ply failure criteridwas found that
each criterion yields a different optimal desigrhefefore, when
optimizing laminated composite structures, the cbaadf a failure
criterion corresponding to the real behavior of #teucture is
crucial for both economy and safety.
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