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Analysis of Forecasting Capabilities 
of Ground Surfaces Valuation Using 
Artificial Neural Networks 
Industry worldwide has been marked by intense competition in recent years, placing 
companies under ever increasing pressure to improve the efficiency of their product 
processes. In addition to efficiency, precision is an extremely important factor, allowing 
companies to maintain standards and procedures aligned with international standards. 
One of the finishing processes most widely utilized for the manufacturing of mechanical 
precision components is grinding, and one of the principal criteria for evaluating the final 
quality of a product is its surface, which is influenced mainly by thermal and mechanical 
factors. Thus, the objective of this work was to investigate the intrinsic relationship 
between the surface quality of ground workpieces and the behavior of the corresponding 
acoustic emission and grinding power signals in the surface grinding processes, using 
artificial neural networks. The surface quality of workpieces was analyzed based on 
parameters of surface grinding burn, surface roughness and microhardness. The use of 
artifice-al neural networks in the characterization of the surface quality ground 
workpieces was found to yield good results, constituting an interesting proposal for the 
implementation of intelligent systems in industrial environments. 
Keywords: grinding, burn detection, surface roughness, hardness, artificial neural 
networks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 

1Grinding is a high specific energy finish machining process that 

is used widely in the manufacture of components requiring fine 

tolerances and smooth finishes. Grinding is the last stage in the 

manufacturing process, which is why it affords a high added value 

to the end product. Despite its importance and popularity, grinding 

still remains as one of the most difficult and least understood 

processes (Wang et al., 2005; Aguiar et al., 2002). 

The need for effective cost reduction, allied to the enhanced 

quality of workpieces produced, requires the implementation of 

intelligent monitoring and control systems that are adaptable to 

industrial environments. Thus, controlling damage caused in the 

grinding process is of direct interest to all the sectors that depend on 

this process, favoring a lower rate of workpiece loss and, hence, 

lower production costs. Given the importance of the process, the 

development of this area is indispensable for the metal and 

mechanical industry. 

Researchers have used a variety of techniques aimed at 

effectively controlling the grinding process, including acoustic 

emission (AE) and grinding power signals. These signals have been 

successfully used to determine parameters that indicate burn, and 

predict surface roughness, circularity, microhardness, etc.  

Several researchers have demonstrated that, when treated and 

combined, acoustic emission and grinding power signals can allow 

the implementation of control systems in real time, thus optimizing 
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the grinding process (Aguiar et al., 2002; Dotto et al., 2006; Kwak 

and Ha, 2004; Aguiar et al., 2006). 

The capability of a machine to perform functions generally 

associated with human intelligence is referred to artificial 

intelligence (AI). Grinding and other machining processes are suited 

to the application of AI techniques, because industrial practice relies 

strongly on skilled operators to achieve good results. In the artificial 

intelligence field, artificial neural networks have attracted a special 

interest in grinding research owing to its functions of learning, 

interpolation, pattern recognition, and pattern classification. 

In this work, the surface quality of workpieces ground by the 

surface grinding method was evaluated based on three parameters: 

burn detection, surface roughness and microhardness. Three 

different structures were analyzed, using artificial neural networks 

as a tool to evaluate the results. The greatest challenge of this work 

was to devise a single structure that would be able to predict the 

occurrence of the burn phenomenon and provide predictions of the 

parameters of surface roughness and microhardness for given 

grinding conditions.  

Thermal Damage and Monitoring of Grinding 

Unlike manufacturing processes using tools with defined 

geometries, such as milling and turning, in grinding the chips, are 

removed by a very great amount of geometrically undefined cutting 

edges. The abrasive is composed of cutting grains that remove tiny 

chips of material, which is why the surface finish of a workpiece is 

usually superior to that obtained through other machining processes. 

Damage on the surface of workpieces during the grinding 

operation can be caused by thermal, mechanical or chemical effects. 
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One of the most common types of thermal damage in the grinding 

process is burn of the workpiece. Burn in steels is characterized by a 

visible bluish temper color on the ground surface. In steel, due to the 

burning phenomenon, the temper color changes from light brown to 

dark brown to violet to blue, in that order, depending on the severity 

of burn. Grinding burn is best-detected by optical microscopic 

examination of the ground surface or by appropriate metallographic 

etching of the surface. However, this is only an off-line, destructive 

technique for burn detection to avoid wastage, to save time and to 

improve productivity; an in-process technique for burn identification 

is needed (Nathan et al., 1999). 

Two important properties of materials are surface roughness and 

hardness. Surface roughness is characterized by geometric 

microirregularities on the surface of machined material. Surface 

roughness is generated by the interaction between the topography of 

the grinding wheel surface and the workpiece under the kinematic 

movements imposed by the machine. The morphological analysis of 

ground surfaces presents an additional complexity due to the 

innumerable phenomena involved in the process, such as slipping, 

attrition, plastic deformations without removal of material, and 

cutting of the material itself. The surface roughness requirement is 

often a consequence of dimensional tolerance requirements and the 

product’s final quality, and both these factors can be similarly 

affected by grinding conditions. Controlling surface roughness in a 

machining process is extremely important and should be done 

through the management and optimization of the machining 

processes and conditions. Hardness, in turn, is an important 

mechanical property of materials, and is a measure of its resistance 

to localized plastic deformation. These are therefore important 

parameters for characterizing the final quality of products 

originating from machining processes. 

According to Tonshoff et al. (2000), international 

competitiveness requires increased throughput and reduced 

innovation time in combination with high product quality. In the last 

few years, the use of monitoring systems for production processes 

has been increased to improve workpiece quality. There are a 

number of requirements which lead to the installation of a 

monitoring system in manufacturing. Cost intensive machines have 

to maintain reliability in order to ensure economical and ecological 

advantage. Systems for in-process quality assurance offer the 

possibility of reacting quickly to measured defects. Especially for 

processes located at the end of the value chain, such as hard turning 

and grinding, continuous process control is necessary to avoid 

rejects and refinishing. 

The rapid development of methods and tools involved in 

artificial neural networks has generated enormous interest in finding 

solutions for manufacturing-related problems. 

One of the most well known computational intelligence 

techniques are artificial neural networks (ANN), which are 

computational models analogous to the human brain and whose 

most outstanding characteristic is their ability to learn (Aguiar et al., 

2006). In situations where the variables to be studied have complex 

or nonlinear relationships, neural networks are an efficient tool 

when compared with other classical prediction methods. 

According to Brinksmeier et al. (2006), ANN models are 

distinguished by several properties, which make them suitable for 

modeling of complex, nonstationary processes that depend on many 

input variables. To obtain an ANN model of a process no analytical 

expressions for the underlying physical phenomena are required. 

The ANN model is constructed automatically through a training 

procedure based on process data. Also, ANN models are able to 

simultaneously process information from different sensors and 

physical quantities, which need not to be related. Such processing of 

information from various sources is called sensor fusion. Finally, the 

authors reported that ANN models can be effectively combined with 

physical models to further improve the modeling performance. Due 

to these properties, the ANN models continue to be considered as a 

tool suitable for modeling of grinding processes. 

Using artificial neural networks, Nathan et al. (1999) monitored 

the power and temperature in the cutting region in a cylindrical 

grinding process. In their study, the artificial neural networks 

successfully predicted the moment of the onset of burn.  

Kwak and Song (2001) used artificial neural networks trained 

with the backpropagation algorithm to predict problems frequently 

found in the cylindrical grinding process. They analyzed the 

occurrence of burn and of induced vibration in ground workpieces. 

The network they utilized proved efficient at predicting these 

patterns, showing success rates of 95% in the diagnosis of burn and 

vibrations. 

In a similar study conducted by Saravanapriyan et al. (2001), the 

burn temperature was studied as a function of the AE signal, normal 

cutting force, vibration, and the number of grinding cycles. The data 

from their experimental tests were applied to an artificial neural 

network structure. The method proved effective for the purpose of 

their study, reinforcing the effectiveness of the use of AE signals 

and of artificial neural networks in monitoring grinding processes. 

Wang et al. (2001) proposed artificial neural network structures 

to detect the occurrence of burn in grinding and collected AE signals 

for subsequent use in the networks they studied. Their results 

indicated that the use of neural networks led to an effective 

performance in the prediction of burn. 

Aguiar et al. (2006) presented a study which involved the use of 

artificial neural networks to predict surface roughness and 

circularity parameters of workpieces ground in the cylindrical 

grinding process. To carry out this study, they used parameters from 

experimental tests, using AE and cutting force signals, DPO 

parameter, etc. Their results confirmed the successful prediction of 

surface roughness and circularity, with the neural networks showing 

results very similar to the experimental ones.  

Spadotto et al. (2007) reported in their study that the artificial 

neural network structure was implemented using AE and grinding 

power signals as inputs, aiming to quantify the percentage of surface 

burn on workpieces ground in the surface grinding. The results 

showed the neural networks can provide reliable information about 

the workpiece integrity when properly trained. 

Aguiar et al. (2007) conducted a study to analyze the surface 

roughness of ground workpieces based on various statistical 

parameters obtained by monitoring acoustic emission and grinding 

power signals applied to artificial neural networks. In their work, the 

networks achieved success rates of approximately 70% in the 

predictions of surface roughness. 

Experimental Set-up and Measurements 

The experimental set-up for this work is illustrated in Fig. 1. 

The workpieces used in the tests were taken from SAE 1020 steel, 

with final dimensions of 160 mm length, 12.7 mm width and 43 mm 

height. The tests were carried out with a Sulmecânica, model 

RAPH-1055, surface grinding machine equipped with a 

conventional aluminum oxide grinding wheel (NORTON, model 

ART-FE-38A80PVH) of medium granulometry and high hardness. 

The acoustic emission signals were acquired using a Sensis, model 

DM-42 sensor positioned close to the base of the grinding table so 

as to cover all the machining conditions without saturation of the 

signals. A signal amplifier with a filter was used to accommodate 

the acoustic emission signals within a range of 50 kHz to 1 MHz. To 

measure the grinding power in grinding, sensors were used to 

measure the electric power of the three-phase induction motor which 

drives the grinding machine main spindle. According to Malkin 

(1989), the net power available in the grinder is a little less than its 
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total evaluated power due to the inefficiency of the transmission 

system. The effective power of the main motor was determined by 

measuring the electric current and voltage transducer (Hall Effect). 

The electric current and voltage of the motor frequency inverter 

were monitored by a power module. The acoustic emission and 

power signals were captured by a National Instruments data 

acquisition board (model PCI-6111) with 12 bits precision, with 

maximum sampling frequency of 5 million samples per second, 

installed in a computer dedicated to the tests. LabVIEW software 

(National Instruments) was used to acquire the signals and store 

them into binary files for subsequent processing and analysis. 
 

 

Figure 1. Experimental setup. 

 

The tests were carried out through a previous selection of 15 

cutting depths, adopting 3 repetitions for each depth, with the 

cutting depth ranging from 5 µm to 50 µm. The dressing, lubrication 

and grinding wheel peripheral velocity parameters were properly 

controlled in order to ensure the same grinding conditions in the 3 

repetitions of each test. The velocity of the workpiece was set to 

0.044 m/s, and the grinding wheel’s peripheral velocity to 30 m/s; 

the latter kept constant by adjusting the frequency of the induction 

motor in the frequency inverter. This step was necessary due to the 

diametric loss the wheel underwent during the tests. The dressing 

overlap ratio (Ud) as being the relation between the dressing width 

and the dressing feed rate was kept unitary, thus maintaining the 

dressing conditions for all the tests executed. The cutting fluid 

employed was an emulsion containing 4% in volume of lubricant 

oil. The tests consisted of a single pass of the grinding wheel along 

the workpiece for each condition analyzed. The AE and grinding 

power signals were measured in real time at a rate of 2.5 million 

samples per second, and were stored onto binary files for each test. 

The machining parameters used in the preparation of the test bench 

are summarized and presented in Table 1. 
 

Table 1. Machining parameters. 

Machining Parameters of the Test Bench 

Peripheral grinding wheel velocity (Vs) (m/s) 30  

Workpiece velocity (Vw) (m/s) 0.044  

Number of passes 1 

Type of cooling fluid Water-oil 4% emulsion 

Type of grinding wheel 38A80PVH – Norton 

Original grinding wheel diameter (mm) 203.2  

Original grinding wheel width (mm) 31.75 

Workpiece dimensions (mm) 160 x 12.7 x 43 

 

The collected signals were processed using MATLAB software 

to generate the DPO and DPKS parameters (described hereafter) 

utilized to feed the artificial neural networks. After the grinding 

tests, the workpieces were tested to quantify parameters such as 

burn, surface roughness and microhardness. 

Statistical Parameters used in the Artificial Neural 

Networks 

Various failure monitoring parameters have been studied in 

grinding processes. Two important parameters investigated by 

Aguiar et al. (2002) and Dotto (2006) are the DPO and DPKS 

parameters. These parameters were employed in this work because 

the authors reported that they were effective in detecting the 

grinding burn. Both parameters take advantage of the relatively 

unpredictable level of the acoustic emission signal, mainly due to 

the mechanical interfaces conditions of the signal transmission from 

the workpiece to the sensor. On the other hand, the grinding power 

signal is directly related to the grinding wheel cutting capacity. As 

the burning instant approaches, momentary softening of the 

workpiece material causes sudden variation of the acoustic emission 

signal, increasing its dispersal along the grinding pass, but no 

sudden variation of the grinding power signal is observed. 

Therefore, a combined analysis of RMS acoustic emission signal 

dispersal with the electrical power signal level is expected to be 

useful about grinding burn phenomenon (Aguiar et al., 2002). 

The DPO parameter is defined as the standard deviation from 

the root mean square value of the acoustic emission signal 

multiplied by the maximum value of the mean grinding power 

signal per grinding wheel pass. The DPKS parameter is calculated 

by the standard deviation of the acoustic emission multiplied by the 

sum of the grinding power subtracted from its standard deviation 

raised to the fourth power. DPO and DPKS can be represented, 

respectively, by Eqs. (1) and (2). 
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where Max is the maximum value, Pot is the grinding power, AE is 

the acoustic emission, std is the standard deviation, and m was 

selected as being 1024 in this work. 

It should be noted that the DPO and DPKS parameters were 

obtained from the files stored during the acquisition of data from the 

experimental tests. 

Classifying Burn 

Besides visual inspection on all ground workpieces, the 

Grinding Analysis software developed by Dotto (2004) was used in 

order to better classify the occurrence of thermal damage on the 

ground workpiece. This software employs the digital picture of each 

ground workpiece to analyze the level of burn occurred on its 

surface based on a gray scale previously established. A reference 

value of 10% burn of the ground surface was adopted. Thus, all the 

workpieces showing a threshold above 10% burn of the ground 

surface were classified as “with burn”, while values below that limit 

were classified as “without burn”. This procedure was adopted to 

prevent the burn analysis from only following a subjective pattern 

through visual analysis. 
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Measuring Surface Roughness 

The surface roughness of each tested workpiece was measured 

with a portable Taylor Robson surface roughness tester, model 

Surtronic 3+, adjusted to a sampling length of 8 mm. The mean 

arithmetic surface roughness (Ra) was the standard used in the 

reading. After selecting the measurement parameters, the readings 

were taken transversal to the cut, on 15 subdivisions of the 

workpiece spaced 1 cm apart, with three repetitions for each 

measurement. Figure 2 illustrates the 15 divisions made on the 

workpieces.  
 

 

Figure 2. Division of the workpiece for mean surface roughness 
measurements. 

 

The mean values of surface roughness for each cutting depth were 

used in the training stages of the artificial neural networks, and also 

served to verify the prediction efficiency of the networks under study. 

Measuring Microhardness 

The microhardness was measured with an M-Testor 

microhardness tester (Otto Wolpert-Werke, Baujahr, 1962), using 

the Vickers scale since this was the most appropriate scale for the 

type of metal and hardness involved. The weight utilized was 100 

grams and the spacing between the points along the workpiece was 

approximately 10 mm. These tests consisted of measuring the 

microhardness along the surface of the workpiece in order to 

identify the behavior of the metallurgical transformation of the 

material, when burn of the workpiece occurred. To minimize 

measuring errors due to variations in the microhardness of the 

material’s surface, three measurements were taken along the same 

perpendicular strip of the workpiece, as illustrated in Fig. 3. 
 

 

Figure 3. Divisions of the workpiece to measure microhardness. 

Structures of the Artificial Neural Networks 

The neural network (NN) chosen for the training and validation 

of the data was Backpropagation, due to the excellent characteristics 

of this ANN model for the purpose of this research. The set of 

networks were implemented with MATLAB software. The training 

was based on the traingdx criterion, which is a network-training 

function that updates the weight and bias values according to the 

moment of the descending gradient and the adaptive learning rate. 

Sigmoidal tangent transmission functions were used in the 

network’s architecture, since the network’s input and output data 

were normalized between -1 and +1 values. The number of training 

cycles was set at 10,000 epochs. This number was adopted to avoid 

presenting the training set to the network too many times, leading to 

a loss of generalization, or insufficient times to enable it to reach its 

optimal performance. Another parameter set for all the networks 

was the mean square error. The estimated value, which presented 

good generalization and convergence in preliminary tests, was set to 

10-2. Thus, the training of the networks was concluded when any of 

the above criteria were met. 

In this research, three different configurations were studied to 

dimension the neural networks in order to determine which 

configuration would present the best results in predicting the 

parameters adopted as output data. The set of input variables utilized 

to feed the neural networks was selected from the parameters 

established in the design of the experimental tests, in addition to 

parameters from the workpiece grinding process. The set of output 

variables from the neural networks was adopted to provide a good 

characterization of the surface quality of the workpieces subjected to 

the grinding tests. Figure 4 shows a diagram of the methodology 

along with the three NN configurations defined according to the 

input set employed. Thus, configuration 1 is that one with RMS 

acoustic emission, grinding power and depth of cut as inputs to the 

neural network; configuration 2 with DPKS and depth of cut as 

inputs; and configuration 3 with DPO and depth of cut as inputs. All 

configurations have the same output variables: burning detection, 

surface roughness, and microhardness. 

 
 

 

Figure 4. Diagram of the methodology showing the three NN configurations. 

 

To determine the parameters of the neural networks, several 

structures were constructed. For each of the three configurations 

studied here, networks with distinct parameters were generated in 

order to determine the structure that would present the best 

generalization of the problem. The principal varied parameters were: 

number of intermediary layers, number of neurons of the intermediary 

layers, learning rate (lr), and momentum coefficient (mc). 

The number of intermediary layers was set first, after which the 

variation in the number of neurons comprising them was defined. 

For each proposed structure, training cycles were generated with 

diverse learning rates and momentum values. The learning rate was 

tested for an interval of 0.1 to 0.9, and for each value, the 

momentum was also varied from 0.1 to 0.9. Training tests were 

carried out for each combination of learning rate and momentum 

coefficient. Upon conclusion of the training, the result was validated 

using 9 preselected workpieces. 

One of the points worth mentioning in the conception of 

dimensioning the neural networks is the sensitivity of parameters 

such as the learning rate, momentum coefficient, number of 

intermediary layers, and number of neurons in the intermediary 

layers to influence the network’s performance. The selection of the 
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optimal parameters for the network requires an empirical process in 

the quest for satisfactory results. 

The data collected for the design of the experimental tests were 

separated into two categories: training data (used for training the 

networks), and validation data (used to verify the performance of the 

predictions). 

Out of the 45 workpieces obtained in the tests, 31 were selected 

to make up the neural network training set. These workpieces were 

kept invariable in order to allow performance comparisons of each 

structure implemented. 

Nine workpieces were selected for the validation stage, taking 

care of selecting workpieces with different cutting depths. These 

workpieces represented a significant sample of the process, covering 

the entire domain of the tests and considering the most diverse 

samples obtained in the experimental stage. 

The choice of the workpieces for training and validation stages 

was based on the suggestion given by Prechelt (1994), that is, 75% 

of the total of workpieces meant for the training stage and 25% for 

the validation stage. 

Results and Discussion 

The acoustic emission and grinding power signals were 

monitored to track the phenomena resulting from the grinding 

process of the workpieces used in the experimental tests. These 

signals also served as the basis that originated the statistical 

parameters DPO and DPKS, which, together with the AE and 

grinding power signals, comprised the set of inputs into the artificial 

neural networks used for the qualitative evaluation of the 

implemented process. AE and grinding power signals were collected 

for all the workpieces used, and the behavior of the signals was 

analyzed through graphs generated from the stored data. The signals 

were processed with Matlab software, after calculating the root 

mean square (RMS) value of the raw acoustic emission and power 

signals. The graphs in Fig. 5 illustrate the acoustic emission (RMS) 

and grinding power signals from the workpieces ground at a cutting 

depth of 35 µm. A low-pass filter implemented in Matlab software 

was used to render the graphs more understandable, since the 

signal’s high frequency would confuse its average behavior. The 

cutting frequency, which consists of the 3 dB point, was 5 kHz, and 

this parameter was used in the implementation of the digital filter 

for generating the graphs. 
 

 

Figure 5. AE and POWER signals for the three tests at a depth of 35 µm. 

The graph of Fig. 6 presents the burn classification results 

obtained with the Grinding Analysis software (Dotto, 2004), 

considering a 10% burn of the ground surface as the standard 

reference. As can be seen, for the experimental conditions adopted, 

i.e., type of steel and grinding wheel, dressing characteristics, 

velocity, cutting fluid, and grinding machine, there was a cutting 

depth range from which burn began to occur. Note that the burn 

phenomenon began at a cutting depth of 35 µm. At this cutting 

depth, burn results were obtained for two of the three workpieces 

tested. The only case when burn occurred at a cutting depth of less 

than 35 µm was in a workpiece cut at a depth of 22.5 µm, which 

presented burn on 13.17% of its surface. This may have been caused 

by non-controlled parameters in the grinding process or by self-

excited vibration of the machine-tool set. 
 

 

Figure 6. Burn classification of the ground workpieces. 

 

Figure 7 shows the mean value of all the surface roughness 

values along the workpieces. Note that the most significant increase 

in surface roughness began at a cutting depth of 30 µm. This depth 

also represents the onset of burn of the workpiece, as discussed 

earlier herein. An analysis of Fig. 7 reveals that the variation in 

surface roughness along the workpieces increased at greater cutting 

depths, a fact that was also reflected in the values of the standard 

deviations around the mean value. Lower cutting depths tend to 

generate surfaces with a more uniform surface roughness. 
 

 

Figure 7. Mean surface roughness obtained for the adjusted cutting depths. 

 

Figure 8 depicts the overall mean value of all the values of 

microhardness along the workpieces. Note that the microhardness 

values increase significantly in the workpieces ground at cutting 

depths of 35 µm and deeper, where the burn phenomenon occurs. 
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Figure 8. Mean values for microhardness obtained for adjusted cutting 
depths. 

 

Tables 2, 3 and 4 show some of the results obtained by the 

ANNs, highlighting the combinations of parameters that generated 

the smallest errors of prediction by the structures implemented in 

the neural network architecture. These results represent a sample 

selected from the various networks studied. Note that the prediction 

results obtained by the networks were extremely satisfactory, since 

the mean error attained by all the parameters was 6.2%. 
 

Table 2. Results of the neural networks for Configuration 1. 

Structure Epochs lr mc Mean Prediction Error (%) 

3-10-3 2878 0.5 0.4 6.03 

3-20-3 1233 0.3 0.4 5.54 

3-5-10-3 1848 0.4 0.3 6.42 

3-10-15-3 2099 0.4 0.3 6.51 

 

Table 3. Results of the neural networks for Configuration 2. 

Structure Epochs lr mc Mean Prediction Error (%) 

2-10-3 4096 0.5 0.4 6.31 

2-20-3 519 0.4 0.3 6.12 

2-5-10-3 5804 0.5 0.4 5.96 

2-10-15-3 1004 0.4 0.3 6.08 

 

Table 4. Results of the neural networks for Configuration 3. 

Structure Epochs lr mc Mean Prediction Error (%) 

2-10-3 5725 0.5 0.4 6.55 

2-20-3 298 0.4 0.3 6.43 

2-5-10-3 1601 0.4 0.6 6.37 

2-10-15-3 2634 0.4 0.3 6.08 

 

The comparative graph in Fig. 9 is based on the analysis of the 

trained structures, which showed the lowest prediction errors. The 

graph indicates the evolution of the performance of the networks as 

the number of intermediary layers and/or the number of neurons was 

modified. Note that the networks whose input signals used 

configurations 1 and 2 presented an excellent performance in 

predicting the output parameters. The results for configuration 3 

were also good, albeit inferior to those obtained with configurations 

1 and 2. It was also found that configuration 1 presented a loss in 

performance for networks composed of two intermediary layers, 

which was not the case of configurations 2 and 3. 

 

Figure 9. Performance comparison of the configurations developed for 
different NN structures. 

 

In general terms, the structure that presented the best performance 

in predicting the parameters of burn detection, surface roughness and 

microhardness was that of the neural network with one intermediary 

layer composed of twenty neurons, configuration 1, where the set of 

input data are the parameters RMS acoustic emission, grinding power 

and cutting depth. The mean prediction error obtained at the output of 

this network was 5.54%. 

Figure 10 illustrates the prediction performance of network 3-

20-3 obtained by configuration 1. These graphs show the mean 

errors of each workpiece used in the validation stage for each of the 

output parameters. The prediction of the occurrence of workpiece 

burn shows the best rates of correct prediction, with the mean value 

of prediction error of 0.16%, thus ensuring, for practical purposes, a 

100% rate of correctness. As can be seen, the detection of the 

occurrence of burn was obtained very accurately through the neural 

network implemented. 
 

 

Figure 10. Performance of network 3-20-3 obtained by configuration 1. 

 

An analysis of the network behavior in the validation tests 

indicates that the highest errors obtained involved the prediction of 
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the surface roughness parameter. The mean error attained for this 

parameter was 10.90%, and the highest error was obtained for the 

validation test #1 at a depth of 10 µm, with a prediction error of 

23.87%. This fact may be explained by the small range of variation 

obtained in the surface roughness tests. 

The network showed a high degree of precision in predicting 

microhardness, with a mean error of only 5.55%. The highest 

microhardness prediction error was that of the validation test #3 at a 

depth of 15 µm, with a correctness rate of 10.49%. Since this is a 

prediction of quantitative values, the error obtained can be 

considered low when compared with the values obtained in the tests. 

The errors generated by the neural networks in the prediction of 

the surface roughness and microhardness parameters lay within the 

standard deviation range calculated from the respective values 

obtained in the experimental tests, highlighting the good 

performance achieved in the approximation of the values expected 

by the process. Because approximation functions are involved, the 

correctness rates attained in the prediction of results can be 

considered satisfactory. The classification of burn occurrence was 

also highly reliable, showing a high accuracy in the classification of 

thermal damage generated in the workpieces. 

The measurement of the results obtained by the artificial neural 

networks was based on a comparison of the values provided by the 

networks and the values obtained through the experimental tests. 

The average rates of correctness of the network were good, as 

shown in Fig. 11, ensuring percentages for burn classification in the 

order of 99.84% and predictions of the estimated values of surface 

roughness and microhardness of 89.10% and 94.45%, respectively. 
 

 

Figure 11. Correctness rate of the artificial neural networks. 

Conclusions 

Acoustic emission (RMS) and grinding power signals allied to 

the values of cutting depth of machined workpieces supply an 

excellent set of neural network input data for predicting parameters 

that indicate burn, surface roughness and microhardness. Even with 

structures that are little refined, i.e., without adjustment of the most 

optimized parameters of the network, it is possible to obtain good 

indicators of the quality of ground surfaces with the help of this 

powerful tool. 

The use of artificial neural networks in the analysis of the 

quality of surfaces ground by the surface grinding process, as 

proposed and implemented in this work, provided excellent results 

with respect to both performance and precision attained in the 

classification of surface burn occurrence and in the approximation 

of surface roughness and microhardness values.  

The configuration 1 whose input data set was composed of RMS 

acoustic emission, grinding power and cutting depth has presented 

the best performance among the configurations studied, with a 

correctness rate of 94.45%. That was accomplished by the neural 

network structure with 3 neurons in the input layer, 20 neurons in 

the intermediary layer and 3 neurons in the output layer. 

 Configurations 2 and 3, which were composed, respectively, of 

the input data of the cutting depth and DPKS parameter and of the 

cutting depth and DPO parameter, also performed reasonably well 

in predicting the indicators of the surface quality of ground 

workpieces, with the lowest mean prediction error of 5.96% given 

by configuration 2. 

Therefore, RMS acoustic emission and grinding power signals 

are very good indicators for the characterization of workpiece 

surface quality. Allied to artificial neural networks, these signals are 

important parameters in machining processes such as grinding, 

adding value to productive processes through the qualitative 

characterization of the end product. 
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