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Investigation of the Adjoint Method in 
Aerodynamic Optimization Using 
Various Shape Parameterization 
Techniques 
This paper studies the effect of design variables vector on automatic aerodynamic shape 
optimization in the adjoint method. Three shape techniques are studied: surface points, 
relations of the NACA 4-digit airfoil series and Hicks-Henne “Bump” Functions. First, 
this paper presents the complete formulation of the optimal design problem for the Euler 
equations. Second, the implementation of these surface representation methods are 
explored. Finally, results are presented for inverse and drag minimization problems. The 
results show that the mechanism, value and the trend of drag reduction during the 
optimization strongly affected by the type of design vector. 
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Introduction 

1Engineers continually strive to improve their designs to increase 

both their operational effectiveness and their market appeal. In the 

design of a complex engineering system, relatively small design 

changes can sometimes lead to significant benefits. For example, 

small changes in wing section shapes can lead to large reduction in 

shock strength in transonic flow. Changes of this type are unlikely 

to be discovered by trial and error methods, and for such situations 

that optimization methods can play an important role.  

In the past, for a suitable design that provides a desired 

aerodynamic performance, designers needed to build numerous 

models for wind tunnel testing to confirm the final design 

performance. Such a design process does not allow for vast numbers 

of design iterations or variables to be considered. The development 

of computational fluid dynamics during recent decades has made 

possible to evaluate alternative designs by numerical simulation. 

The use of computational simulation to scan many alternative 

designs has proved extremely valuable in practice, but it still suffers 

the limitation of finding the best possible design. To ensure the 

recognition of the true best design, the ultimate goal of 

computational simulation methods should not just be the analysis of 

prescribed shapes, but automatic determination of the true optimum 

shape for the desired application. This is the underlying motivation 

for the combination of computational fluid dynamics with numerical 

optimization methods. 

The adjoint method is one of a gradient-based method, which 

has been used extensively in many aerodynamic optimization 

problems in recent decades. Studies of using of the adjoint approach 

for optimum shape design of systems governed by elliptic equations 

were initiated by Pironneau (1984). The adjoint equations approach 

to optimal aerodynamic design was first applied to transonic flow by 

Jameson (1988, 1996 and 1997). He formulated the method for 

inviscid compressible flows with shock waves governed by both the 

potential flow and the Euler equations (1988). Elliot and Peraire 

(1997) used the discrete adjoint method on unstructured meshes for 

the inverse design of airfoils and in transonic flow to produce  
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specified pressure distributions. In (2000), Dadone and Grossman 

explored the discrete adjoint method and applied it in the progressive 

optimization strategy. A comparison of both continuous and discrete 

adjoint approaches was conducted by Nadarajah and Jameson (2000, 

2001 and 2003). Baysal and Ghayour (2001) derived the adjoint 

equations in Cartesian coordinates on an unstructured grid system 

using Roe's schemes. Vitturia and Beuxb (2006) implement the 

discrete adjoint approach for aerodynamic optimization in turbulent 

viscous flow. The adjoint method has also been used by many 

researchers in aerodynamic optimization including Xie (2002), Qiao et 

al. (2002), Gauger and Brezillon (2002), Dwight and Brezillon (2006), 

Amoignon (2004) and Hazra (2004). 

The objective of the present paper is to implement the adjoint 

approach for airfoils optimization in inverse pressure design and 

constrained drag minimization problems. First, an inverse design 

problem is solved to evaluate the optimization algorithm. Second, in 

the drag minimization problem, the optimization is performed in a 

fixed lift coefficient and angle of attack is applied as an additional 

design variable to fix lift during the design process. To evaluate the 

performance of the adjoint method in design problems with 

numerous design variables and also to evaluate the effects of the 

adoption of the design vector on the optimization results, the 

constrained drag minimization is performed using two different 

design vectors. It was shown that the mechanism, value and the 

trend of drag reduction during the optimization was strongly 

affected by the type of design vector. 

Nomenclature 

A = jacobian matrix in physical domain  

B = boundary 

c = chord length 

C = inviscid jacobian matrixes, coefficient 

D = flow field domain  

E = total energy 

f = inviscid flux vector in physical domain, Hicks and Henne 

sine “bump” functions 

F = inviscid flux vector in computational domain, design 

variables vector 
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G = gradient vector of cost function 

G  = norm of gradient vector 

h = step size 

H = total enthalpy 

m = step sizes in finite difference method  

I = cost function  

J = determinant of mapping derivatives  

K = mapping derivatives matrix 

l = grid line counter 

m = maximum mean camber of the airfoil, number of step sizes 

M = mach number  

N = number of design variables  

n = components of unit vector normal to the surface, design 

step counter 

O = truncation error 

p = chordwise position of the maximum mean camber, 

pressure 

R = residual term of governing equation 

s = surface element 

t = maximum thickness of the airfoil, time  

T = Temperature 

t1 = location of the maximum point of the bump 

t2 = controller parameter of  the width of the bump 

u = velocity component in physical domain 

U = velocity component in computational  domain 

w = flow field variables in physical domain  

W = flow field variables in computational domain 

x = design variables vector, physical coordinates 

ybasis= y component of initial surface point 

yc = camber line function 

yt = thickness function  

Greek Symbols 

γ = ratio of specific heats 

λ  = adjoint boundary condition parameter 

ρ = density 

ε = smoothing parameter 

ξ = computational coordinates 

δ = kronecker delta function, variation 

θ = camber line slope 

α = angle of Attack, step length in optimization algorithm 

ψ = adjoint variable 

∇  = gradient function 

∇  = smoothed gradient function 

∂ = partial derivation  

Subscripts 

b relative to wall 

d relative to desired pressure, relative to drag 

i counter 

j counter  

l relative to variable on the lower surface, relative to lift 

p relative to pressure  

u relative to variable on the upper surface  

ξ relative to computational domain 

I relative to contribution due to variation of the flow field 

variable  

II relative to contribution due to variation of the design 

variable 

n relative to present optimization step 

n+1 relative to new optimization step 

new relative to variable in present design cycle 

old relative to variable in previous design cycle  

1 relative to the first component 

2 relative to the second component 

General Description of the Adjoint Approach 

For flow over an airfoil or wing, the aerodynamic properties, 

which define the cost function (I), are dependent to the flow field 

variables (w) and the physical location of the boundary (F): 
 

),( FwII =  (1) 

 

Since w depends on F, a change in F changes the cost function as:  
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The first term is the contribution due to the variation δw in the 

flow field and the second term is the direct effect of the geometry 

change. Assume R is the governing equation, which expresses the 

relation of w and F in the flow field domain D: 
 

R (w,F)=0 (3) 
 

Then δR is determined from the equation: 
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Since the variation δR is zero, it can be multiplied by a Lagrange 

Multiplier ψ and subtracted from the variation δI with no changing 

in the result. Thus Eq. (2) can be replaced by: 
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In order to eliminate the dependence of δI to δw, ψ must satisfy 

the adjoint equations:  
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The first term is eliminated, and we find that: 
 

FGI δδ =  (7) 
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According to Eq. (7) and Eq. (8), δI is independent of δw and, as a 

result, for a large number of design variables, we can compute the 

gradient vector (G) only with one flow solution in addition to one 

adjoint solution in each design cycle. It should be noted that the 

computational cost of one adjoint solution is less than one flow 

solution. After calculating the gradient vector, we can improve the 

design variables using an optimization algorithm. 

Governing Equations 

In this study the Euler equations are the governing equations of 

the field. The conservative form of two-dimensional Euler equations 

is as: 
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where w is flow variables and fi is the inviscid flux vector: 
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and δij is the Kronecker delta function and: 
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In these definitions, ρ is the density, E is total energy, H is total 

enthalpy and γ is the ratio of specific heats. Using a transformation 

from physical coordinates to computational coordinates, the Euler 

equations can be written as: 
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The scaled contravariant velocity components are introduced as: 
 

jiji uSU =  (16) 

  

In the computational domain, airfoil surface BW is presented 

by 02 =ξ . The boundary condition on the airfoil surface is:  

 

WBOnU 02 =  (17) 

 

On the far field boundary, the free stream condition is applied. 

A finite-volume technique with an artificial dissipation method 

introduced by Jameson, Schmidt and Turkel (1981) is used to 

discrete the integral form of the conservation equations. For 

temporal approximation, we applied the five stage modified Runge-

Kutta approach. Since the time step in explicit methods is small, we 

applied the convergence acceleration techniques, local time stepping 

and residual averaging, to accelerate the convergence rate. 
 

Adjoint Equations 

In this section, we drive the adjoint equations and its boundary 

conditions for inverse design problem.  

The design problem can be studied as a control problem 

choosing airfoil surface as the control function to minimize the cost 

function I subject to constraints defined by the flow equations. The 

cost function for inverse design problem is defined as: 
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or in the computational domain 
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pd is the desired pressure on the surface. A variation in the shape 

results in a variation δI in the cost function: 
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From Euler equations in the steady state: 
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Multiplying Eq. (22) by a co-state variable vector, ψ and 

integrating over the domain, we have: 
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Assuming ψ is differentiable and integrating by parts gives: 
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where ni are the components of the unit vector normal to the surface 

in computational domain. Adding Eq. (26) to the variation of cost 

function, we have: 
 

∫∫

∫ ∫

+
∂

∂

−−+−=

B

i

T

ii

D i

T

Bw Bw

dd

dBFndDF

dspppdsppI

)(

)(
2

1
)( 2

δψδ
ξ

ψ

δδδ
 (27) 

 

where 
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From the third integral of Eq. (27), to eliminate the term, which 

contains δw, the adjoint equations can be obtained: 
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where ψ is adjoint variables vector. From flow boundary condition 

on the surface (Eq. (17)):  
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The first and fourth integral in Eq. (27) with the above equation 

follows the adjoint boundary condition on the surface: 
 

dppnn −=+ 2312 ψψ  (31) 

 

where n1 and n2 are the components of unit vector normal to the 

surface: 
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But for better convergence and easier implementation, the 

adjoint boundary conditions on the surface can be derived as follow: 
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where 
 

dpp −=λ  (34) 

 

The subscripts (i,1) and (i,2) in the above equations denote cells 

below and above the wall. On the far field, with attention to fourth 

integral in Eq. (27), we must choose the ψ such that 
 

0=i

T

i Cnψ  (35) 

 

For subsonic and transonic flows that the outer boundary is far 

from the body, we can set: 
 

041 =−ψ  (36) 

 

Because of the similarity of the adjoint equations to flow 

equations, the same numerical methods used to solve the flow 

equations can be used to solve the adjoint equations. This greatly 

simplified the procedure to implement the adjoint module. If the 

coordinate transformation is such that δS21 δS22 and are negligible in 

the far field, then the final expression for δI can be written as: 
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Constrained Optimization 

In the drag minimization problem, we want to maintain the lift 

coefficient constant and equal to its initial value by changing the 

angle of attack. Therefore, in this case: 
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and the additional constraint is: 
 

0=
∂

∂
+

∂

∂
+

∂

∂
= δα

α
δδδ lll

l

C
F

F

C
w

w

C
C  (39) 

 

or  
 

α

δδ
δα

∂

∂
∂

∂
+

∂

∂

−=
l

ll

C

F
F

C
w

w

C
 (40) 

 

The angle of attack is updated using Eq. (40) in each design 

cycle. To compute δα  we need to solve an additional adjoint 

equation. The derivation process of adjoint equations and its 

boundary conditions for the constrained drag minimization is similar 

to the inverse design problem. For the drag minimization problem, 

Eq. (33) can be used to apply adjoint boundary condition on the 

surface. For the drag minimization problem, λ  in Eq. (33) is: 
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where 
∞p  and 

∞M  are the free stream pressure and Mach number, c 

is chord length, γ is ratio of specific heats, α is angle of attack and Cl 

is lift coefficient. 

Optimization Algorithm 

In this section, we drive the adjoint equations and its boundary 

conditions for inverse design problem. 

After calculation of the gradient vector, we can change the 

design variables using an optimization algorithm. In this work, 

steepest descent algorithm and smoothed steepest descent algorithm 

have been adapted to treat the design variables towards optimum 

values. In the steepest descent algorithm, the design variables vector 

x can be updated as: 
 

fxx
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where α is the step length and f∇  is gradient vector of the cost 

function. In the smoothed steepest descent algorithm, the design 

variables vector x can be updated as: 

 

fx ∇−= αδ  (44) 

 

We replace the gradient f∇  by a smoothed value f∇ . To apply 

smoothing in the x direction, the smoothed gradient f∇  may be 

calculated using a discrete approximation such as: 
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where ε is the smoothing parameter. The smoothing ensures that 

each new shape in the optimization process remains smooth. 

Consequently it is necessary to smooth the gradient vector when we 

apply surface points as design variables. The smoothing also allows 

us to use much larger steps, and leads to a large reduction in the 

number of design iterations.  

Grid Modification 

Jameson (1988) introduced a grid perturbation method that 

modifies the current location of the grid points based on perturbations 

at the surface geometry. The approach is not dependent on the method 

of structured grid generation. This method was also successfully used 

by Burgreen and Baysal (1994). In this method, the grid points are 

modified along each grid index line projecting from the surface. At 

first, the arc length between the surface point and the far-field point 

along the grid line is computed and then the grid points at each 

location along the grid line are attenuated proportional to its arc length 

distance from the surface point and the total arc length between the 

surface and the far-field. The algorithm can be described as: 
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where i is the current grid index. The vector Cj can be defined as: 
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where Nj is the ratio of the arc length from the surface to the current 

grid point and the total arc length from the surface to the far-field 

along the grid line that can be written as: 
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Cost Function and Design Variables 

The choice of design variables is one of the most crucial steps in 

any optimization procedure. The success of the optimization of the 

model problem depends on both the choice of design variables and 

the cost function. 

A. Cost Function 

The cost function for the inverse design problem in 

computational domain is defined as Eq. (19). The cost function for 

the drag minimization problem in computational domain is defined 

as:  
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B. Design Variables 

Three shape parameterization methods are studied for two-

dimensional aerodynamic shape optimization. They are the surface 

points, the definition of the NACA 4-digit airfoil series and the 

Hicks-Henne bump functions. 

B.1. Surface Point 

This method uses the mesh points to represent the surface. In 

other words, the design variables are the x and y locations of the 

mesh points. The main advantage of parameterizing a shape with 

surface points is that there is no restriction on the attainable 

geometry. Also, this parameterization technique can be easily 

implemented in any design problem. However, the use of surface 

points does present some difficulties. First, the independent 

displacement of a single point may cause the flow solver to become 

ill-conditioned, but more importantly it violates the assumption that 

the geometry surface is continuous. The point-wise gradients may 

contain high frequency modes, ultimately leading to unsmooth 

geometry profiles. Second, for complete aircraft configurations the 

surface point approach would require a very large number of design 

variables. This large number of design variables would limit the use 

of descent algorithms such as quasi-Newton approaches because of 

the high cost of the associated matrix operations. 

B.2. Definition of the NACA 4-Digit Airfoil Series 

In NACA 4-digit airfoil series, three parameters, m (the 

maximum mean camber), p (the chordwise position of the maximum 

mean camber) and t (maximum thickness of the airfoil) are used to 

define the airfoil shape. The NACA airfoils are constructed by 

combining a thickness envelope with a camber or mean line. The 

equations, which describe this procedure are: 
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where yt(x) is the thickness function, yc(x) is the camber line 

function, and 
 

)tan(
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is the camber line slope. It is not unusual to neglect the camber 

line slope, which simplifies the equations and makes the reverse 

problem of extracting the thickness envelope and mean line for a 

given airfoil straightforward. The NACA 4-digit thickness 

distribution is given by: 
 

)1015.02843.0

3516.0126.029690.0(
2.0

43

2

xx

xxx
t

yt

−+

−−=±  (53) 

 

The camber line is given by: 
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The camber line slope is found from Eq. (52) using Eq. (54), and the 

upper and lower surface ordinates resulting from the combination of 

thickness and camber are then computed using Eqs. (50) and (51). 
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In present work m, t are taken as design variables and p is 

assumed to be 0.4. 

B.3 Hicks-Henne "Bump" Functions 

An alternative shape parameterization technique was proposed 

by Hicks and Henne (1974, 1978). They proposed the use of a set of 

smooth functions to perturb the initial geometry. The geometry can 

be parameterized using the weighted sum of a number of Hicks and 

Henne sine “bump” functions, as shown in Eq. (55) 
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where t1 locates the maximum point of the bump and t2 controls the 

width of the bump. The design variables are the coefficients αj 

multiplying the various Hicks-Henne bump functions. Figure 1 shows 

a set of 16 Hicks-Henne bump functions with parameter t2 = 10.  

 

 

 

Figure 1. A set of 16 Hicks-Henne bump functions.  

 

The different Hicks and Henne functions can be chosen such 

that only specific regions are refined, while the rest of the object to 

be optimized remains virtually undisturbed. The main result is that 

fewer design variables are needed to provide an adequate design 

space. Another advantage compared to the mesh point approach is 

the fact that the computed gradient always remains smooth and 

therefore, no smoothing of the gradient is required. This ensures that 

the successive surface shapes remain smooth. The disadvantage of 

the Hicks-Henne functions is that they are not orthogonal and they 

are unable to represent the complete set of continuous functions that 

vanish at x = 0 and x = 1. Thus, they do not guarantee that a 

solution, for example, of the inverse problem for a certain target 

pressure distribution will necessarily be attained. 

Computational Cost of the Adjoint Method 

Traditionally, finite-difference methods have been used to 

calculate sensitivities of aerodynamic cost functions. The 

computational cost of the finite-difference method for problems 

involving large numbers of design variables is both unaffordable 

and prone to subtractive cancellation error. In order to produce an 

accurate finite difference gradient, a range of step sizes must be 

used, and thus the ultimate cost of producing N gradient evaluations 

with the finite-difference method is the product mN, where m is the 

number of different step sizes used to obtain a converged finite 

difference gradient. (The used number of flow solvers is equal to 

mN). An estimate of the first derivative of a cost function is as: 
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where h is the step size. A small step size is desired to reduce the 

truncation error O(h), but a very small step size would also increase 

subtractive cancellation errors. But, in the adjoint method, according 

to Eq. (8) or Eq. (37), we can compute the gradient vector only with 

one flow solution in addition to one adjoint solution in each design 

cycle. The advantage is that Eq. (8) or Eq. (37) is independent of δw, 

with the result that the gradient of I with respect to an arbitrary 

number of design variables can be determined without the need for 

additional flow-field evaluations. 

Since the cost of the adjoint approach is independent of the 

number of design variables, it is feasible to use the surface points as 

design variables, whereas the cost would be prohibitive, if the 

gradients were computed by the traditional finite difference method.  

Outline of Design Procedure 

Figure 2 is a graphical representation of the design procedure 

using adjoint method in present work. 

 

 

 

Figure 2. Design cycle. 

 

 

 

Optimization Results 

A. Inverse Pressure Design Problem 

In this test case, NACA4415 is designed from NACA1410 

airfoil. The flow is subsonic with Mach number of 0.65. Both the 

initial and target airfoils are at zero degree angle of attack. Surface 

points, parameters of the NACA 4-digit airfoil series (Airfoil 
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camber (m) and its thickness (t)) and the Hicks-Henne bump 

functions are used as the design variables. A 160 x 80 cells O-Type 

grid is employed in this calculation. The initial value for m, t are 

0.01, 0.1 and the target value are 0.04, 0.15. The value of the 

parameter t2 which controls the width of the Hicks-Henne bump 

functions was set to values of 30 and 32 bump functions for all the 

test cases.  

Figure 3 compares the final airfoil shape after 85 design cycles 

for first method (surface points), second approach (parameters of the 

NACA 4-digit airfoil series) and third approach (Hicks-Henne bump 

functions). The gradient in first and third approaches is smoothed 

and the smoothed steepest descent algorithm acts as a preconditioner 

effectively reducing the number design cycles required to achieve a 

converged solution. The figure illustrates that all of the approaches 

achieve the final shape airfoil with a high degree of accuracy after 

85 design cycles. Figure 4 shows the differences for the first 60% of 

the upper surface. The point-to-point match between the target 

airfoil and the first approach as well as the second and third 

approaches is clearly visible.  
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Figure 3. Comparison of final airfoils shapes for the inverse design problem. 
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Figure 4. Comparison of final airfoils shapes at the leading edge for the 
inverse design problem. 

 

Figure 5 shows convergence history of the norm of cost function 

gradient. The figure demonstrates that with using of third method, 

the convergence of the objective function drops 5 orders of 

magnitude to a level of 2.573E-07 for the second method and as low 

as 1.564E-07 with using of second method. The negative slope of 

the convergence plot indicates that a further drop in the objective 

function is still possible. The case with meshes points (first method) 

as the design variable attained a convergence level of 1.993E-07. 

This figure validates the convergence of optimization program. 

Figure 6 compares the final pressure distribution for the various 

cases against the target pressure. However, a slight discrepancy is 

observed at the shock, as shown by the inset in Fig. 6. The figure 

demonstrates the effectiveness of the mesh points, parameters of the 

NACA 4-digit airfoil series and Hicks-Henne bump functions that 

accurately capture the geometry of the NACA4415 airfoil. 

 

 

Design Cycles

C
o

st
F

u
n

c
ti

o
n

(I
)

0 20 40 60 80

0

0.005

0.01

0.015

0.02

First Method

Second Method

Third Method

 

Figure 5. Convergence history of the norm of cost function gradient for 
the inverse design problem. 
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Figure 6. Comparison of final pressure distributions for inverse design 
problem. 

B. Drag Minimization Problem 

In this case, we have implemented the method in the constrained 

drag minimization. To evaluate the performance of the adjoint 

method in design problems with numerous design variables and also 

to evaluate the effects of the adoption of the design vector on the 

optimization results, the constrained drag minimization is performed 

using two different design vectors. In first test case, the surface 

points are used as the design variables and, in the second test case, 

m and t are adopted as design variables. The design is started by a 

NACA0012 airfoil at 3.0 degrees angle of attack. The flow is 

transonic with Mach number of 0.75. We performed computations 

on a 160 x 80 O-grid.  

It is noticeable that the optimization has been performed in an 

inviscid and compressible transonic flow filed. Therefore, drag force 

is type of wave drag and is due to the produced shock wave on the 

surface (due to compressible effects). 
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B.1. Optimization Using the Surface Points (Test Case I) 

Table 1 represents the design results. The reduction in the drag 

coefficient is considerable. We obtained 80.7 percent reduction in 

drag coefficient, but lift coefficient variations is very small. 
 

Table 1. Design results. 

 Cd  Cl  α  

Initial 0.0317  0.6027  3  

Optimal 0.0062  0.5937  1.17  

 

 

Figure 7 represents the convergence of the cost function. This 

figure shows that full convergence of aerodynamic optimization is 

obtained after 260 design iterations and we reach to the optimum 

design. And 49.65 percent reduction in drag coefficient was 

obtained after 30 design cycles. Note that during 120 final cycles 

obtained only 1.74 percents reduction.  
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Figure 7. Convergence history of the cost function for the constrained 
drag minimization problem. 

 

Figure 8 shows the convergence history of the norm of gradient 

during the design process. According to this figure, the trend is 

similar to that of the cost function variations. This figure validates 

the convergence of optimization program. 
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Figure 8. Convergence history of the norm of the gradient vector for the 
constrained drag minimization problem.  

 

Figure 9 compares the initial and optimal pressure contours. 

Figure 10 represents the initial and optimal pressure coefficients. The 

figure shows that the strong shock on the initial airfoil surface has 

been weakened strongly and drag coefficient has been reduced but the 

surface area under the curve, which is represented the value of the lift 

coefficient, has remained constant and consequently this coefficient is 

nearly the same for both the initial and optimal airfoils. 
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(b) 

Figure 9. Pressure distribution contours for the constrained drag 
minimization problem. (a) Initial and (b) optimal. 
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Figure 10. Comparison of pressure coefficient of NACA0012 and optimal 
airfoils for the constrained drag minimization problem. 
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Figure 11 shows the geometry of initial and optimal airfoils. The 

change in the upper surface and around the trailing edge is 

considerable, whereas the change in the lower surface is very small. 

Figures 10 and 11 show that the upper surface of the optimal airfoil 

has approached to a flat geometry. The flat surface has weakened 

the strength of the shock wave. Furthermore, the geometry of the 

airfoil at its trailing edge has curved downward to compensate the 

reduction of the lift coefficient due to the weakening the strength of 

the shock. It should be noted that for purpose of fixing the lift 

coefficient, the angle of attack is considered as an extra design 

variable.  
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Figure 11. Comparison of NACA0012 airfoil and optimal airfoil for the 
constrained drag minimization problem. 

B.2. Optimization Using the Relations of the Naca 4-Digit 

Airfoil Series (Test Case II) 

Table 2 represents the design results. The reduction in the drag 

coefficient is considerable. We obtained 83.28 percent reduction in 

drag coefficient, but lift coefficient variations is very small (0.4 

percents). 
 

Table 2. Design results. 

 m  t  Cd Cl  α  

Initial 0.00  0.12 0.0317 0.6027  3  

Optimal 0.01072  0.0501 0.0053 0.6003  2.24  

 

 

Figure 12 gives the variation of the cost function with design 

cycle. For this problem, the design cycle has 170 iterations. The 

drag coefficient reduction is 81.92 percent during the first 80 design 

cycles. This coefficient has only 1.36 percent reduction in the last 90 

cycles. Figure 13 shows the variation of the norm of the gradient 

vector with design cycle. The trend is similar to that of the cost 

function. With regard to Figs. 12 and 13, the convergence of the 

optimization program is evident.  
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Figure 12. Convergence history of the cost function for the constrained 
drag minimization problem. 
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Figure 13. Convergence history of the norm of the gradient for the 
constrained drag minimization problem. 

 

Figure 14 shows the pressure contours around the initial and 

optimal airfoils. Regarding this figure, the shock wave has moved 

toward the leading edge and its strength is considerably reduced. 

Figure 15 gives the pressure coefficients on upper and lower surface 

of initial and optimal airfoils. It is seen that the location of the shock 

wave has changed and its strength is reduced. But the surface under 

the curve is remained constant, which reveals no change in lift 

coefficient. It is clear that the drag coefficient reduction has been 

achieved due to reduction of thickness, whereas increase of the 

camber has led to increase of the lift coefficient. In fact, the 

reduction of the lift due to the reduction of the thickness has been 

compensated by increase of the camber. More over the variation of 

the angle of attack is such that the lift coefficient remains constant.  

It should be noted that the convergence rate of the optimization 

program is strongly dependent on the step size of α in optimization 

algorithm. If the step size was taken larger, it increased the 

convergence rate. But adoption of a larger step size for α leads to 

increase in geometry parameters and decrease in accuracy of the 

calculated gradients. Sometimes, larger step size caused oscillatory 

behavior of the gradients. More over adoption of smaller step size 

for α led to increase in number of design cycles. 
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(b) 

Figure 14. Pressure distribution contours for the constrained drag 
minimization problem. (a) Initial and (b) optimal. 
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Figure 15. Comparison of pressure coefficient and geometry of NACA0012 
and optimal airfoils for the constrained drag minimization problem. 

 

It is known that the location and strength of a shock wave in 

transonic regime are main parameters in drag calculation. 

Comparison of results of the optimization problem using two 

different design vectors – in one of them the surface points are 

considered as design variables and in the other one the parameters of 

4-digit NACA airfoil are design variables (Figs. 9 and 14 or Figs. 10 

and 15) – shows that when the surface points of the airfoil are 

design variables, the upper surface geometry changes such that the 

strength of the shock wave is reduced, but the location of the shock 

wave has no change. In fact, the drag reduction is carried out via the 

variation of the curvature only at region of the shock wave. And the 

lift coefficient is recovered via the increase in curvature only at the 

trailing edge region. When the thickness and camber of NACA four 

digits were considered as design variables, the shock wave moves 

toward the leading edge and the strength is reduced. In fact, the drag 

reduction is carried out via reduction of the thickness on all of the 

surface points and recovery of the lift coefficient is achieved by 

increasing the camber on all of the surface points. 

Table 3 summarizes the required runtime and number of adjoint 

and flow solvers to achieve the convergence of the optimization 

program for the constrained drag minimization problem. The used 

computer specification is "Intel(R) Core(TM) Due CPU T2450@ 

2.00GHz, 1GB of RAM". 
 

Table 3. Runtime and number of adjoint and flow solvers of the drag 
minimization problem. 

 Runtime 

Number of 

adjoint 

solvers 

Number of 

flow 

solvers 

Number of 

design 

cycles 

Test case I 
504 

minutes 
440 220 220 

Test case II 
425 

minutes 
340 170 170 

Conclusions 

In this paper, we implemented the adjoint equations method for 

the inverse pressure design and the constrained drag minimization 

problems. In the inverse design problem, surface points, parameters 

of the NACA 4-digit airfoil series (Airfoil camber (m) and its 

thickness (t)) and the Hicks-Henne bump functions are used as the 

design variables. In this problem, values of design variables were 

obtained successfully. The results of the test case show that we can 

use the adjoint approach as an efficient tool in airfoil inverse design 

problem. To evaluate the performance of the adjoint method in 

design problems with numerous design variables and also to 

evaluate the effects of the adoption of the design vector on the 

optimization results in the drag minimization problem, the 

minimization was performed using two different design vectors. It 

was shown that the mechanism and the trend of drag reduction 

during the optimization process were strongly affected by the type 

of design vector. By using the adjoint equations method, we can 

design high lift or low drag airfoils according to the desired surface 

pressure.  
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