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Identification of Non-Newtonian 
Rheological Parameter through an 
Inverse Formulation 
In this work, we introduce an inverse formulation to be applied in the identification of a 
rheological parameter associated to non-Newtonian fluids. It is built upon a creeping flow 
through a 4 to 1 axisymmetric abrupt contraction. The fluid is modeled by the Generalized 
Newtonian Fluid constitutive equation. The viscosity function is based on the one proposed 
by Souza Mendes et al. (1995). It predicts an extensional elastic behavior, controlled by a 
rheological parameter θ, which is the parameter determined via the proposed 
identification procedure. The numerical solution of the forward problem, needed in the 
iterative procedure introduced by the inverse formulation, is obtained through the finite 
volume method. A sensitivity analysis is also performed to evaluate the effect of the 
parameter θ on the dimensionless pressure drop through the contraction. The optimization 
algorithm is based on an iterative method to find the minimum of the cost function, which 
is given by the least square difference between numerical and experimental values of the 
dimensionless pressure drop. The gradient method was used to update the parameter θ, 
starting from the cost function gradient. The results obtained with the sensitivity analysis 
validated the adequacy of the proposed cost function, which is a key aspect on the 
identification formulation. Moreover, it shows that the method provides an attractive 
alternative for estimation of rheological properties. 
Keywords: non-Newtonian fluid, rheological properties, contraction flow, viscoelasticity, 
inverse analysis, parameters identification 
 
 
 

Introduction 

1Non-Newtonian fluids are widely used in important industrial 

applications, from oil exploitation to food manufacturing, passing 

through biomedical processes. Therefore, the numerical simulation 

of processes employing these fluids is a very useful and important 

tool. However, the non-Newtonian constitutive models are very 

complex, and usually require a significant amount of experimental 

data to determine the rheological parameters and, therefore, to 

calibrate and validate the final model. In the present work, we 

propose an inverse formulation aiming at estimating rheological 

properties associated to a nonlinear non-Newtonian fluid model.  

Inverse formulations are used to improve a mathematical model 

of a real system, combining physical principles with experimental 

data (Banks and Kunish, 1989). The use of such an approach has 

proven very useful in a wide range of applied fields, from 

Vibrations (Castello et al., 2008) to Biological systems 

(Prud’homme and Jasmin, 2006). The main idea is to identify a set 

of parameters such that, for a desired range of operating conditions, 

the model outputs matches the actual system outputs, when both are 

submitted to the same inputs. Due to the lack of available 

information and unavoidable measurement errors, system 

identification methods can only lead to an approximation of the 

system’s response.  

Important studies regarding optimal conditions and control 

properties of fluid flows, directly connected to inverse formulations, 

were developed (Kunish and Marduel, 2000). Different approaches 

were used to obtain rheological parameters, and this subject still 

requires lots of attention, especially when complex flows are 

involved. Within the realm of flow optimization, Fourestey and 

Moubachir (2005) analyzed the drag reduction of a Newtonian flow 

through a rotating cylinder, and solved the inverse problem using 

different algorithms. Kunish and Marduel (2000) used the optimal 

control formulation and the Phan Thien-Tanner (PTT) model in an 

abrupt contraction flow to obtain the optimal temperature at the 

boundary that would give the lowest recirculation zone. Focusing on 
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estimating rheological parameters, Bernardin and Nouar (1998) used 

experimental and numerical results of angular torque in a transient 

Couette flow of an Oldroyd fluid to identify rheological parameters. 

Sarkar and Gupta (2000) used finite element simulation to obtain 

results of entrance pressure drop in a contraction flow. Mitsoulis et 

al. (1998) used the SIMPLEX optimization to improve the value of 

extensional viscosity parameters, minimizing the difference between 

the entrance pressure drop predicted numerically, and the ones 

obtained experimentally with a capillary rheometer. The results 

showed that the method provides an attractive alternative for 

estimation of the extensional viscosity. More recently, inverse 

formulations tailored to non-Newtonian Fluids were developed by 

Yeow et al. (2005) and by Park et al. (2007 and 2009). Park et al. 

(2007) employed a method of estimating rheological parameters, 

using velocity measurements of secondary flows in a square pipe. In 

a following work, Park et al. (2009) used the same technique in a 

pulsatile flow through a circular cylinder, and estimated 

simultaneously five rheological parameters of a differential 

constitutive equation for viscoelastic fluids. The results obtained 

were very promising, even when noisy velocity measurements were 

employed for the parameter identification.  

Our inverse formulation builds upon an abrupt 4:1 axisymmetric 

contraction non-Newtonian flow. The Generalized Newtonian 

constitutive equation was used, with a viscosity function that takes 

into account shear and extensional fluid behavior, through a flow 

classification index and a rheological parameter, namely, θ. The 

formulation, which can be cast as an optimal control problem, 

phrases the identification problem as the search for an optimal set of 

the parameter θ, which minimizes a functional cost relating the 

experimental and numerical pressure drop through the contraction. 

A sensitive analysis is performed to evaluate the effectiveness of the 

pressure drop as the performance index. Moreover, this analysis 

provides a systematic tool to better understand the complex 

phenomena involved in the system.  

The remaining of this paper is organized as follows. First, the 

mathematical model used as the Forward Problem in the analysis is 

introduced. Then, the identification algorithm is described in detail. 

Finally, the last section presents some results of the forward 

problem, the sensitivity analysis and the identification results, with 

discussions, conclusions and future perspectives.  
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Nomenclature 

Cu = Carreau number, dimensionless 

C = Couette correction 

d = Diameter of the capillary tube, m 

D = Diameter of the upstream tube, m 

D = rate of strain tensor, s-1 

J = cost function 

Lent = length of the upstream tube, m 

Lcap = length of the capillary tube, m 

Lv = detachment length, m 

ns = shear power-law index 

nu = extensional power-law index 

p = pressure, Pa 

R = flow classifier, dimensionless 

R' = modified flow classifier, dimensionless 

Re = Reynolds number, dimensionless 

u = axial velocity component, m/s 

v = radial velocity component, m/s 

v = velocity vector, W/(m
2
 K) 

We = Weissemberg number, dimensionless 

W = vorticity vector, s-1 

Greek Symbols 

∆Pcont = pressure drop through the contraction, Pa 

γ = rate of strain modulus, s-1 

η = fluid viscosity, Pa.s 

ηs = shear viscosity, Pa.s 

ηu = extensional viscosity, Pa.s 

λs = shear time constant, s 

λu = extensional time constant, s 

θ = rheological parameter, dimensionless 

ρ = fluid density, kg/m3 

Τ = stress tensor, Pa 

Flow Modeling: Forward Problem 

As mentioned before, the inverse analysis relies upon a 

mathematical model that describes the nonlinear response of a non-

Newtonian fluid, and contains the sought parameters. The resulting 

mathematical problem, namely the Forward Problem, is usually 

solved every iteration of an inverse algorithm and, therefore, should 

be as simple as possible to guarantee the feasibility of the 

identification process. Here below, the adopted model along with its 

numerical solution is addressed.  

The physical scenario, in which the parameter identification 

takes place, consists in a contraction flow that mimics the one found 

in a capillary extrusion rheometer, shown schematically in Fig. 1. 

The flow geometry leads to the formation of complex recirculation 

patterns related to the elastic behavior of the fluid and, therefore, 

prone to provide proper information for the parameters 

identification. The entrance angle of the capillary tube is taken as 

900, in order to increase the pressure drop through the contraction. 

The geometry under study is depicted in Fig. 2. The flow is assumed 

to be laminar, incompressible, steady, and axisymmetric. Moreover, 

all properties are considered to be temperature-independent.  

Taking into consideration the hypothesis above, the mass 

conservation equation is written as:  
 

div 0=v  (1) 

 

where ˆ ˆx ru v= +v e e  is the velocity vector, and u and v are the 

velocity components on the axial and radial directions, respectively. 

The momentum equation is given by:  
 

 

Figure 1. Scheme of the capillary rheometer. 

 

 

Figure 2. The geometry. 

 

div ( ) divpρ τ⊗ = −∇ +v v   (2) 

 

where ρ is the density, p is the pressure and τ is the extra-stress 

tensor, which is related to the flow kinematics by the Generalized 

Newtonian Liquid constitutive equation (Bird et al., 1987):  
 

2τ η= D   (3) 

 

In this equation, [ ( ) ] 2T≡ ∇ + ∇ /D v v  is the rate of strain tensor, 

and η is the non-Newtonian viscosity function. For simplicity, the 

only elastic behavior considered here is the extensional (thickening) 

viscosity, whose contribution is taken into account through the 

viscosity function given by a weighted average between extensional 

and shear viscosities:  
 

η = ηs(γ̇  )Rθ

ηu(γ̇  )(1-Rθ)  (4) 
 

This equation was first introduced with θ = 0 in Souza Mendes 

et al. (1995). The functions ηs and ηu are the shear and extensional 

viscosities respectively, and γ̇  =[2tr(D
2
)]

1/2
 is the modulus of the 

strain rate tensor. The quantity R is a flow classifier, taking the 

value equal to 0 in pure extension and to 1 in shear flows 

(Thompson et al., 1999). It is defined as: 
 

( )
( )

2
1

2

2

tr
2

( ) 1

R
R R

tr R

− ′
′ = =

′ +

 
 DW WD

D

 (5) 

 

where = − ΩW W  is the relative-rate-of-rotation tensor, 

[ ( ) ] 2
T

= ∇ − ∇ /W v v  is the vorticity tensor, and Ω is a tensor related 
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to the rate of rotation of D following the motion (Thompson et al., 

1999 and Thompson and Souza Mendes, 2005). θ is a new 

rheological parameter, which is proposed here as an attempt to 

better describe the fluid behavior. The parameter θ defines, along 

with the flow classifier R , a geometrically weighted average 

between shear and extensional viscosities. All rheological 

parameters are supposed to be known a priori, in order to build a 

suitable model for numerical simulations. Indeed, the motivation of 

the present work relies on the estimation of those parameters, and a 

methodology for determining θ is the focus here.  

The shear and extensional viscosity functions ηs(γ̇ ) and ηu(γ̇ ) 

are given by the Carreau equations: 
 

ηs = ηs0 [1+ (λs γ̇  )2]((ns -1)/2)   (6) 
 

ηu = ηu0 [1+ (λu γ̇  )2]((nu -1)/2)   (7) 
 

where ηs0 and ηu0 are the low strain rate viscosities, λs and λu are the 

time constants, ns and nu are the power-law indexes. In order to 

simplify the presentation and the assessment of the proposed 

formulation, these quantities are considered to be previously 

determined by independent experiments.  

Considering the geometry described by Figure 2, the boundary 

conditions are given by:  

• non-slip and impermeability at walls: u = v = 0 

• constant inlet velocity: (0 )u r u, = , v(0,r) = 0 

• developed flow at outlet: 0x∂/∂ =   

• symmetry at the centerline (r=0): 0u r∂ /∂ = , v = 0 

The governing dimensionless groups are obtained using the 

following dimensionless variables
1
:  

 
2ˆ ˆ ˆu u U v v U p p Uρ= / = / = /   (8) 

 

τ̂ = τ /ρU2       γ̇ˆ = γ̇ /γ̇ c         η̂ = η/ηs0  (9) 
 

In the definitions above, U is the average velocity at the smaller 

diameter (capillary) tube, γ̇ c = 8U(3ns+1)/(4ns d) is the characteristic 

strain rate modulus and d is the capillary diameter. The Reynolds 

number is defined as:  
 

0s

Ud
Re

ρ

η
=   (10) 

 

The Carreau and Weissenberg numbers are the dimensionless 

time constants that determine where the transition occurs from the 

zero-shear-rate plateau to the power-law portion of the shear and 

extensional viscosity functions. They are respectively defined as:  
 

Cu = λs γ̇ c                We = λu γ̇ c (11) 

The Inverse Problem 

The present section introduces an inverse problem aiming at the 

parameter identification associated to the modeling discussed 

previously. This problem is cast in an optimal control framework, 

where the vector Θ , which contains the sought parameters, plays 

the role of the control. Indeed, the proposed formulation can be 

extended to the case where the components of vector Θ  are 

functions of the kinematic variables. Roughly speaking, the optimal 

control problem relates some measured data (like, for instance, the 

                                                           
1 dimensionless quantities are denoted by a hat symbol ⋅̂ , and dimensional variables 

without 

pressure drop along the flow) to its model counterpart value. 

Therefore, the inverse problem consists in finding a minimum of a 

cost function ( ), ,J p Θv , subjected to constraints provided by the 

state Eqs. (1), (2) and (3), and by the boundary conditions. This cost 

function should reflect the mismatch between measured data and 

modeling output.  

The appropriate choice of the cost function J plays a crucial role 

in obtaining the sought parameters, and it is very difficult to have 

any a priori idea of its optimal form. For instance, Park et al. (2007 

and 2009) deals with the identification of rheological parameters by 

using velocity measurements. The cost function choice should take 

into consideration the feasibility of the experiments and, at the same 

time, the good conditioning of the mathematical problem to be 

solved. Typically, a functional defined as the square of the 

difference between model and experimental data is taken, leading to 

a least square constrained problem that might be solved by means of 

a numerical technique. Indeed, least square formulations are the 

most often used approach within the realm of inverse problems.  

In the present work, the scalar θ (see Eq. (4)) is the sought 

parameter, and the pressure drop through the contraction is the 

available data. The cost function J is thus defined as:  
 

( )
2

exp

1

1
( ) ( )

N
i

i

J u v p C u v p C
N

θ θ
=

 
 
 

, , ; = , , ; −∑  (12) 

 

where N stands for the number of measurements and C is a 

dimensionless pressure drop through the contraction, defined as the 

Couette correction:  
 

cont

w cap
2

P
C

τ
,

∆
=   (13) 

 

In the equation above, 
cont

P∆  is the pressure drop through the 

contraction and 
w cap

τ
,

 is the wall shear stress at the developed 

region of the small diameter tube. The numerical pressure drop 

through the contraction is obtained extrapolating the linear pressure 

drop at the developed regions of the larger and capillary tubes, to the 

contraction section. In a capillary rheometer, pressure measurements 

are obtained before the contraction and at the exit of the capillary 

tube (atmospheric pressure), so that the pressure drop would be also 

taken using a pressure extrapolation from the capillary tube and the 

pressure measured before the contraction. It is worth mentioning 

that this is in fact an approximation of the real pressure drop at the 

contraction, due to experimental limitations.  

The above choice of the cost function reflects two main features 

of the proposed inverse method. As it is applied to a steady-state 

flow, no integration over the time span of the analysis is necessary. 

Indeed, an average produced from similar realizations allows the 

noise reduction in the experimental data, enhancing the reliability of 

the formulation. The cost function uses the dimensionless pressure 

drop, which is a global variable associate to a complex flow. This 

permits the use of standard experimental procedures. On the other 

hand, it is not possible to evaluate, by means of simple 

considerations, the sensitivity of this variable with respect to the 

parameters to be identified, due to the non-linear relationship 

between the parameter and the final output. This sensitivity plays a 

crucial role on the efficiency of the inverse method, and will be 

addressed later on.  

Identification of the Rheological Parameters 

The nonlinear inverse problem introduced previously was 

solved numerically through a gradient method (Beck et al., 1985). A 
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typical iteration of a gradient minimization method is presented 

below:  
 

1  
( ) ( 1 )

k k k

T
k nJθ θ α θ

′+ = − = ,...,   (14) 

 

where αT is the step length of the algorithm and J’ stands for the 

gradient of the cost function J (Eq. 12). The most delicate aspect 

of the proposed algorithm is the computation of this gradient. A 

direct computation would lead to a very troublesome numerical 

problem involving the sensitivities of the state fields with respect 

to the sought parameters. Here, this computational procedure is 

replaced by a scheme based on finite difference approximation of 

the derivative, which is often used in similar problems 

(Gunzburger, 2003):  
 

 ( ) ( )
0

2

J J
J

θ θ θ θ
θ

θ

′ + ∆ − − ∆
≈ ∆ →

∆
 (15) 

 

The computational algorithm is summarized as:  

Step 0 - Set k = 0 and choose the initial guess θ0 

Step 1 - Solve the forward problem and obtain the estimated 

values for Ck 

Step 2 - Compute ( )
k

J θ (Eq. 12) and its gradient 
 

( )
k

J θ
′

using 

Eq. (15)  

Step 3 - Choose a descent step αT 

Step 4 - Update the sought parameters by using 
 

1
( )

k k T k
Jθ θ α θ

′

+
= −   

Step 5 - Check convergence. If yes, end. If no, go to step 1. The 

convergence was considered satisfactory if
5

10| J |
−

≤ , 

since the sought parameter θ0 remains unaffected for 

values of tolerance below 10-5.  
 

To obtain a solution for the Forward Problem (Step 1), the mass 

and momentum conservation equations (Eqs. (1) and (2)), together 

with the constitutive equation described before (Eq. (3)), were 

discretized by the Finite Volume Method (Patankar, 1980). 

Staggered velocity components were employed to avoid unrealistic 

pressure fields. The pressure-velocity coupling was handled by the 

SIMPLEC algorithm (Van Doormaal and Raithby, 1984). The 

resulting algebraic system was solved by the TDMA line-by-line 

algorithm, coupled with the block correction algorithm (Settari and 

Aziz, 1973) to increase the convergence rate. The solution was 

considered converged, when the normalized residue of the 

conservation equations was less than 10-5. It is worth mentioning 

that no significant changes on the velocity and pressure fields were 

observed for lower values of tolerance. Moreover, the step length 

was taking constant and equal to 1 along all numerical experiments. 

In order to investigate the above numerical approach within the 

conditions engendered by the inverse formulation, a convergence 

study was carried out. A non-uniform mesh with 280 control volumes 

in the axial direction and 110 control volumes in the radial direction 

was used. The mesh was refined near the contraction and near the 

walls. Some tests were performed to validate the numerical solution. 

The results for the Couette correction and for the dimensionless 

detachment length (Lv/D) for a Newtonian fluid were compared to the 

ones obtained in the literature. Errors equal to 0.8 % for the Couette 

correction, and to 4.7 % for the detachment length were found. The 

velocity profiles were obtained for three different meshes, for 

Newtonian and non-Newtonian fluids ( 1, 2, 1)
s u

n n θ= == . The 

differences between the chosen mesh and a more refined mesh (with 

360 control volumes in axial direction and 130 control volumes in 

radial direction) were below 1%.  

Numerical Results 

The effectiveness of the proposed formulation is assessed 

through the axisymmetric abrupt contraction flow, depicted in Fig. 2. 

This first evaluation of the proposed method uses only synthetic data 

produced by numerical simulations of the Forward Problem. The 

motivation for using this geometry is twofold: the reproduction of 

experimental likely scenarios and the presence of extensional and 

shear deformation modes along the flow. The geometric parameters 

are Lent/D = Lcap/D = 2, and D/d = 4. All the situations analyzed 

here were obtained for low Reynolds numbers ( 3
10Re

−
≤ ), in order 

to avoid inertia effects.  

The sensitivity of the measured data with respect to the sought 

parameters is one of the main issues when developing an inverse 

method aiming at parameter identification. Here, a sensitivity 

analysis is performed by analyzing the effect of the rheological 

parameters on the flow pattern. Particular emphasis is placed on the 

elastic characteristics of the fluid response and, also, on the role 

played by the parameter θ.  

Figures 3 and 4 show the streamlines, the flow classifier (Eq. 5) 

and the viscosity fields for different set of rheological parameters, in 

order to evaluate their effects on the flow pattern. These results were 

obtained for Boger fluids, i.e., constant shear viscosity, ns = 1. It can 

be observed the presence of the corner vortex, and how it increases 

by stimulating the fluid elasticity (increasing We, nu , θ). Analyzing 

the flow classifier field (Figs. 4(a) and 4(b)), it is noted that shear 

flow (R = 1) occurs close to the walls, and also everywhere away 

from the contraction plane. Extensional flow (R = 0, dark region) 

occurs in a large region located just upstream the contraction plane, 

and a nearly rigid body motion (R > 1, light region) occurs in the 

corner vortex. The viscosity fields show a smooth viscosity 

variation near the contraction region. Away from the contraction, 

the viscosity is constant and equal to the shear viscosity, since there 

is no extension. As the fluid approaches the centerline, close to the 

contraction zone, flow is predominantly extensional, and largest 

values of viscosity are obtained.  
 

 

Figure 3. Streamlines for different rheological parameters. 

 

The effect of We and nu on the vortex size and Couette 

correction can be better evaluated with the aid of Figs. 5 and 6. As 
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already mentioned, the vortex size increases with fluid elasticity. 

This result is in accordance with the literature (Boger et al., 1986; 

Boger et al., 1992; Boger and Binnington, 1994), and stresses the 

importance of the extensional behavior on flow pattern. The 

pressure drop through the contraction also increases monotonically 

with the Weissenberg number and with the exponent nu. It is worth 

mentioning that for a Newtonian fluid, the Couette correction is 

equal to 0.58.  

 

 
 

Figure 4. (a) and (b): Flow classifier field; (c) and (d): viscosity field. 
Results for different rheological parameters. 

 

  

Figure 5. Vortex size versus We for ns = 1, θθθθ = 1 and nu = 1.5, 2 and 2. 

 

Figure 6. Couette Correction versus We for ns = 0.5, 0.75 and 1, θθθθ = 1 and 
nu = 1.5, 2 and 2. 

 

From now on, some results directly related to the parameter 

identification problem will be presented. The proposed formulation 

is expected to handle the identification of several different 

parameters simultaneously. Despite that, here only the new 

rheological parameter θ is assumed to be unknown. This allows a 

deeper understanding of the role played by θ, by means of a 

sensitivity analysis (Guzbunger, 2003). Further, it leads to a simpler 

numerical problem, which is suitable for assessing and testing the 

proposed formulation. Fig. 7 presents a sensitivity analysis of the 

Couette correction with the sought parameter θ. The Couette 

correction was normalized with the value obtained with θ = 1. It can 

be observed that the Couette correction can be quite sensitive to the 

parameter θ, leading to the conclusion that it is a reasonable choice 

for the variable to be used on the identification procedure. However, 

it’s worth mentioning that the choice of the Couette correction 

replacing the dimensional pressure drop adds an uncertainty 

associated to the wall shear stress, which also needs to be measured 

experimentally. The impact of this uncertainty on the identification 

procedure will be assessed later on. 
 

 

 

Figure 7. Normalized Couette Correction versus θθθθ for ns = 1, We  = 13.1 
and nu = 1.5, 2 and 2. 

 

Figures 8 to 10 show the normalized cost function ( ( 1)J J J θ
∗

= / = ) 

pattern for different flow conditions. These results were obtained 

replacing the experimental data by synthetic data. The synthetic data 

were produced through numerical simulation for some prescribed 

value of θ, by solving the forward problem via the finite volume 
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technique, as described in the previous section. Moreover, the 

inverse analysis employs a coarser grid than the one used to obtain 

the synthetic data in order to avoid the so called inverse crime. The 

results show that the cost function behavior is strongly dependent on 

the fluid properties and this type of analysis should be used as guide 

for setting up the experimental conditions. The existence of local 

minima is a drawback for the identification procedure and, 

therefore, should be avoided. Figures 8 and 9 show that at the range 

of θ analyzed, some local minima tend to appear, as the fluid 

extensional behavior is more pronounced (higher nu). However, the 

shear thinning fluid behavior (ns < 1) is favorable to the 

identification procedure, since it seems to delay the appearance of a 

local minimum. Figure 10 shows the effect of We on the cost 

function. Once again, it is noted that the increase of elastic effects 

due to extension (higher We ) leads to the disappearance of a local 

minimum (see case with nu = 2) within the analyzed range.  

 
 

 

Figure 8. Normalized cost function versus θθθθ for ns = 1 and different values 
of nu. 

 

 

 

Figure 9. Normalized cost function versus θθθθ for ns = 0.5 and different 
values of nu. 

 

  

Figure 10. Normalized cost function versus θθθθ. Effect of We. 

 

Any inverse formulation is subject to two major error sources, 

namely: measurement noise and uncertainties in the modeling (e.g. 

boundary conditions, driven forces, etc.). The former is not 

considered a significant source error for the present situation as long 

as data is only taken from a steady-state flow, and noise can be 

reduced by averaging the data. On the other hand, the use of the 

normalized pressure drop represented by the Couette correction 

constitutes an additional uncertainty source for the inverse analysis. 

Its impacts on the estimated value of θ are investigated through a 

simple strategy: different values of the experimental Couette 

correction replace the actual one. They are chosen such that the 

deviation from the correct value reaches 2%, more specifically the 

value used is given by 
exp(1 ) Cδ−  , with 0 02 0 02δ− . ≤ ≤ . . Figure 11 

depicts the variation of the cost minima with regard to the level of 

uncertainty. Roughly speaking, a deviation of 2% leads to a final 

error in the parameter identification of almost 5%.  

 
 

 

Figure 11. Normalized cost function versus θθθθ. Effect of the uncertainty δδδδ 
on Couette correction values. 

 

Finally, the conditions for convergence of the iterative process 

are investigated. Figures 12 to 14 show the number of iterations 

needed to obtain the parameter θ for different flow conditions. It can 

be observed that convergence is obtained with a relatively small 

number of iterations for almost all cases analyzed. It can also be 

noted that the uncertainty does not disturb the iterative procedure. It 

is worth mentioning that some tests were performed to analyze the 

influence of the initial guess on the identification procedure (more 

details can be found in Nascimento, 2007). It was observed that the 
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initial guess for θ plays an important role and can lead to errors in 

the parameter identification, since the value obtained for θ can 

converge for a local minimum. This behavior suggests that 

additional regularization techniques may be necessary to improve 

the identification procedure. Besides, as the proposed methodology 

was designed respecting a balance between experimental and 

numerical feasibilities, this inconvenient dependence on the initial 

guess can be mitigated through adjusting the experimental setup. As 

mentioned before, local minima were only observed for specific 

flow conditions. 
 

 

Figure 12. Optimization history for ns = 1. 

 

 

Figure 13. Optimization history for ns = 0.5. 

 

 

Figure 14. Optimization history for ns = 1 and nu = 2.5. 

Final Remarks 

The determination of rheological parameters using data obtained 

through standard viscometric flows opens the possibility of building 

reliable numerical models, which can be used in the design of 

complex engineered systems. As long as those experiments are very 

well established, the main challenge becomes the way experimental 

data can be explored to be integrated with the numerical model. This 

can be systematically carried out by inverse formulations.  

The present work introduces an inverse formulation aiming at 

the identification of rheological parameters associated to a nonlinear 

constitutive equation. Although the formulation has a potential to 

deal with different parameters, only the determination of θ has been 

assessed. An extensive sensitivity analysis is performed. The results 

obtained confirm the adequacy of the proposed cost function 

involving the pressure drop along the flow, which is a key aspect on 

the identification formulation. Moreover, an uncertainty analysis is 

also carried out, investigating the reliability of the inverse 

formulation, which has proven efficient and useful for more generic 

constitutive equations. The results for the identification procedure 

showed that convergence is obtained fast, but the initial guess is 

important, since some local minima can appear. Testing this 

formulation with real data, and also identifying other rheological 

parameters are subjects under study. Uncertainties should be 

specified for experimental and numerical results. 
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