
A Vibroacoustic Application of Modeling and Control of Linear Parameter-Varying Systems 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2010 by ABCM October-December 2010, Vol. XXXII, No. 4 / 409 

 
 

Jan De Caigny 
jan.decaigny@mech.kuleuven.be 

Katholieke Universiteit Leuven 

Department of Mechanical Engineering 

Celestijnenlaan 300B, B-3001, Heverlee, Belgium 

Juan F. Camino 
camino@fem.unicamp.br 

University of Campinas – UNICAMP 

School of Mechanical Engineering 

13083-970 Campinas, SP, Brazil 

Ricardo C. L. F. Oliveira 
ricfow@dt.fee.unicamp.br 

Pedro L. D. Peres 
peres@dt.fee.unicamp.br 

University of Campinas – UNICAMP 

School of Electrical and Computer Engineering 

13083-970 Campinas, SP, Brazil 

Jan Swevers 
jan.swevers@mech.kuleuven.be 

Katholieke Universiteit Leuven 

Department of Mechanical Engineering 

Celestijnenlaan 300B, B-3001, Heverlee, Belgium 

 

A Vibroacoustic Application of 
Modeling and Control of Linear 
Parameter-Varying Systems 
This paper applies recent advances in both modeling and control of Linear Parameter-
Varying (LPV) systems to a vibroacoustic setup whose dynamics is highly sensitive to 
variations in the temperature. Based on experimental data, an LPV model is derived for 
this system using the State-space Model Interpolation of Local Estimates (SMILE) 
technique. This modeling technique interpolates linear time-invariant models estimated at 
distinct operating conditions of the system (in this case, different temperatures). Using the 
obtained LPV model, gain-scheduled and robust multiobjective H2/H∞ state feedback 
controllers are designed such that can consider a priori known bounds on the rate of 
parameter variation. Numerical simulations using the closed-loop systems are performed 
to validate the controllers and to show the advantages and versatility of the proposed 
techniques.  
Keywords: Gain-scheduled and robust control, LPV modeling, H2 and H∞ performance, 
linear parameter-varying systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 

*A main source of noise within aircraft cabins is the vibration of 

the surrounding structure, usually denoted as structural noise 

(Berglund et al., 1996; Persson and Björkman, 1988). Research in 

the area of acoustics has shown that active control strategies are 

efficient in reducing this noise in the low frequency range (see, for 

example, Alujevic et al., 2008; Camino and Arruda, 2009; Donadon 

et al., 2006; Fuller and von Flotow, 1995; Kaiser et al., 2003; 

Meurers et al., 2002; Sas et al., 1995). Several of these techniques 

assume that the plant under consideration is linear time-invariant 

(LTI), although this is not a realistic assumption for some 

applications. For instance, aircraft structures are frequently 

subjected to temperature variations that cause significant changes in 

its dynamics. To use robust control synthesis techniques for such 

parameter-varying systems, the nominal model and the uncertainty 

bounds should be appropriately determined, to ensure a realistic 

trade-off between performance and robustness. For most practical 

applications, however, this is a difficult task, and the estimated 

uncertainty set is in general too conservative. Therefore, a more 

elaborate control strategy should be investigated which can be used 

for linear parameter-varying (LPV) systems. This topic has received 

attention from the control community for over a decade, during 

which there has been a continuing effort to design LPV controllers, 

scheduled as a function of the varying parameters, that achieve 

higher performance while still guaranteeing stability for all possible 

parameter variations (see, for instance, Apkarian and Adams, 1998; 
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Apkarian et al., 1995; Leith and Leithead, 2000; Packard, 1994; 

Rugh and Shamma, 2000; Scherer, 2001; Shamma and Athans, 

1992). In the LPV control framework, the scheduling parameters 

that govern the variation of the dynamics of the system are usually a 

priori unknown, but measured or estimated in real-time (Shamma 

and Athans, 1991).  

Two distinct approaches are commonly used to control LPV 

systems: interpolating gain-scheduling (IGS) control and linear 

parameter-varying (LPV) control. In IGS control, the design is split 

into two parts. First, LTI controllers are designed for linearized 

models of the system, estimated at several fixed operating conditions. 

Second, a parameter-dependent controller is obtained by interpolating 

these LTI controllers. Although the stability of the closed-loop system 

is not guaranteed, this approach has been successfully used in many 

practical applications (Aouf et al., 2002; De Caigny et al., 2007; 

Nichols et al., 1993). In LPV control, on the other hand, stability of 

the closed-loop system is guaranteed during the design phase. Several 

analysis and synthesis techniques for LPV systems have been 

proposed based on different types of Lyapunov functions. For 

instance, the well-known quadratic stability approach uses a constant 

Lyapunov matrix that allows arbitrarily fast variation of the 

scheduling parameters (Kaminer et al., 1993; Peres et al., 1994). 

Obviously, this yields conservative controllers for practical 

applications where the rate of parameter variation is bounded. To 

mitigate some of the conservatism associated with the approaches 

based on quadratic stability, many synthesis procedures based on 

parameter-dependent Lyapunov functions have been proposed. For 

instance, synthesis procedures for H2 and H∞ gain-scheduled and 

robust static output feedback controllers have been presented (De 

Caigny et al., 2008a,b, 2010a) for polytopic discrete-time LPV 
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systems with an a priori known bound on the rate of parameter 

variation. The case where the system can have a homogeneous 

polynomial dependency on the scheduling parameter has been 

considered in De Caigny et al. (2009a, 2010a, 2010b). Most LPV 

control design techniques require an LPV model of the system that 

accurately describes the variation of the system dynamics over the 

workspace. However, while identification of linear time invariant 

(LTI) systems based on measured input-output (IO) data has been 

intensely studied and LTI model estimation algorithms are widely 

spread, estimation of LPV models remains a difficult problem which 

is still in a state of development. In the literature, there exist two main 

approaches to obtain LPV models: a global identification approach 

(see, for example, Bamieh and Giarré, 2002; Felici et al., 2007; Lee 

and Poolla, 1999; Nemani et al., 1995; Verdult and Verhaegen, 2005) 

and a local modeling approach (see, for example, De Caigny et al., 

2008c, 2009b, 2011; Lovera and Mercere, 2007; Paijmans et al., 2008; 

Steinbuch et al., 2003; Wassink et al., 2005). The global approach is 

based on the assumption that it is possible to perform a global 

experiment by exciting the system while the scheduling parameters 

are persistently changing the system dynamics. In case it is impossible 

to perform a global experiment, it is appropriate to use a local 

approach, based on the interpolation of a set of local LTI models that 

are estimated using a collection of local experiments, performed by 

exciting the system at different fixed operating conditions. To 

properly interpolate these local models, all local LPV modeling 

techniques require that the local LTI models are defined with respect 

to a consistent state-space representation. Afterwards, an appropriate 

methodology is applied to construct an LPV model that interpolates 

these consistent local models. The main drawback of the local 

approach is the fact that the time propagation of the scheduling 

parameter is not used. Therefore, these local methods are more 

suitable for systems with scheduling parameters that vary slowly in 

time; a common guideline in interpolating gain-scheduling control 

practice (Shamma and Athans, 1992). 

The aim of this paper is to show the recent advances in both 

modeling and control of LPV systems using a vibroacoustic setup as 

a practical application. First, experimental data is used to obtain an 

LPV model of the vibroacoustic setup using the State-Space Model 

Interpolation of Local Estimates (SMILE) technique; a local LPV 

modeling technique developed in De Caigny et al. (2008c, 2009b). 

Second, using the obtained LPV model, multiobjective H2/H∞ gain-

scheduled and robust static state feedback controllers are computed. 

The LPV control design is then validated through numerical 

simulations. Finally, the advantages and disadvantages of the 

proposed LPV modeling and control design techniques are 

discussed. The paper is organized as follows. In the next section, the 

vibroacoustic application is introduced. The following section starts 

by presenting an overview of the SMILE technique which is then 

used to obtain an LPV model of the vibroacoustic setup. The 

synthesis conditions for gain-scheduled and robust H2 and H∞ state 

feedback control which are applied to the obtained LPV model is 

then presented as well as the concluding remarks. 

Vibroacoustic Application 

This section describes the vibroacoustic setup (displayed in Fig. 1), 

that consists of a lexan plate clamped on a rigid baffle in a semi-

anechoic room (see Donadon et al., 2006, for details). The exogenous 

disturbance w that causes the vibration of the plate is provided by a 

point force driven by a shaker. The control input u, used to attenuate 

the sound pressure inside the semi-anechoic room, is provided by a 

flexural moment driven by a piezoelectric patch attached to the plate. 

The output z is the sound pressure measured by a single microphone, 

located in the semi-anechoic room near the plate. 

 

Figure 1. Vibroacoustic setup. 

 

The experiments performed by the authors in Donadon et al. 

(2006) revealed that the system dynamics was highly sensitive to the 

temperature in the semi-anechoic room. Therefore, the setup is an 

LPV system with the temperature as the scheduling parameter. For 

the modeling of this vibroacoustic setup, it is necessary to consider a 

local LPV modeling approach because of the slow rate of variation 

of the temperature. Indeed, since the temperature can only be 

changed slowly, a long measurement should have to be performed to 

ensure the conditions of persistent excitation of the scheduling 

parameter (Bamieh and Giarré, 2002), resulting in an intractable 

amount of data. Therefore, performing local identification 

experiments, for different fixed values of the temperature, is the 

most convenient option. 

To apply the local approach, frequency response functions 

(FRFs) were measured from the disturbance w and the control input 

u to the output z at four different temperatures θ ∈{22.9°, 23.4°, 

24.4°, 25.4°}. Based on the measured FRFs, a 10th-order discrete-

time state-space LTI model has been estimated at each operating 

condition, using the subspace identification method (Ljung, 1999; 

van Overschee and Moor, 1996; Verhaegen, 1994) implemented in 

the Matlab Identification toolbox. Figure 2 presents the magnitude 

and phase of the experimentally obtained FRFs (dashed) and of the 

corresponding estimated LTI models (solid) in the frequency range 

120 – 260 Hz. All the estimated models have five complex poles, 

for instance, the poles of the estimated model from w to z 

corresponding to the temperature 22.9º are located at 135 Hz, 160 

Hz, 206 Hz, 247 Hz, and 253 Hz. The LTI models clearly show a 

good correspondence to the FRFs. The next section shows how to 

use the SMILE technique to obtain an LPV model by interpolating 

these four LTI models. Notice that the output sound pressure z is 

given by z = Hu(jω)u + Hw(jω)w, where Hw(jω) and Hu(jω) denote 

respectively the transfer functions from the disturbance w and the 

control input u to the output z. In the active noise control 

community, Hw(jω) is referred as the primary source and Hu(jω) as 

the secondary source. 

LPV Modeling Using the Smile Technique 

This section presents how to use the SMILE technique to model 

the vibroacoustic setup. For a detailed presentation, see De Caigny 

et al. (2008c). The notation in this section is as follows: matrices 

associated with the interpolating LPV model are denoted using 

standard math font, e.g., A0, …; matrices associated with the local 

LTI models are denoted using San Serif font, e.g., Aℓ, …; the 

subscript ℓ indicates the index of the local model. Throughout the 

paper, the discrete-time state-space model 
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(a) Disturbance w to microphone z 

 

 
(b) Control u to microphone z 

Figure 2. Measured FRFs (black, dashed line) and estimated 10
th

-order LTI 

models (red, solid line) for θθθθ ∈∈∈∈ {22.9º, 23.4º, 24.4º, 25.4º}. 

 

 

The interpolating LPV model is chosen to have the following 

state-space representation affine in the single scheduling parameter 

θ ∈ RR: 
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H
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where 
 

A0, A1 ∈ RRn×n, B0, B1 ∈ RRn×r, C0, C1 ∈ RRs×n, and D0, D1 ∈ RRs×r. 
 

This choice has the advantage that the LPV model H(θ) given by 

model (1) can be used in LPV control synthesis techniques for affine 

LPV models (for example, Amato et al., 2005; Apkarian et al., 1995; 

de Souza and Trofino, 2006; Lu et al., 2008) as well as in the linear 

fractional transformation framework (for example, Packard, 1994; 

Scherer, 2001). Moreover, when θ is bounded, model (1) can be 

converted exactly in a polytopic LPV model1 with two vertices, which 

is useful since control synthesis for polytopic models has been widely 

studied (De Caigny et al., 2008a, 2008b; Leite and Peres, 2004; 

Montagner et al., 2007; Oliveira and Peres, 2008). The recent work De 

Caigny et al. (2011) has extended the LPV modeling technique to 

consider a more general class of LPV models that can be 

parameterized using a homogeneous polynomial dependency on the 

scheduling parameter, which include as a particular case, affine 

models. 

The aim of the SMILE technique is to estimate the system 

matrices of model (1) such that the resulting LPV model H(θ) 

interpolates the m local LTI models 
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~

~ ~
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l
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H l m

C D
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identified at distinct operating conditions, that is, for different 

fixed values of the  scheduling parameter θ , indicated by 
~

θ l for l = 

1, …, m. All local LTI models are assumed to have the same 

number of states n, the same number of inputs r and the same 

number of outputs s. As the state-space representation is not 

unique, the local models (2) cannot be readily interpolated since it 

is not guaranteed that they are represented with respect to the 

same state-space basis. Therefore, a similarity transformation 

matrix 
lT  needs to be calculated for each local model such that the 

transformed models 
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 (3) 

 

are defined with respect to a consistent state-space representation. 

Once the models (3) have been calculated, an optimization problem 

can be formulated and solved to find the optimal system matrices of 

the interpolating LPV model (1). Assuming that the m MIMO LTI 

models 
~

lH  (2) are available, the SMILE technique consists of five 

steps to compute an interpolating LPV model (see the flowchart in 

Fig. 3). 
 

                                                           
1
 See Boyd et al. (1994) for an introduction on polytopic models and LMI 

representation. 
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Figure 3. Flowchart of the SMILE technique. 

 

These five steps are now briefly presented and applied to the 

four (m = 4) local 10th-order 2-input 1-output LTI models identified 

for the vibroacoustic setup. 

STEP 1: Choose one input-output (IO) combination (i, j) for all 

original local MIMO models 
~

lH  to obtain m local SISO models 

 

( )
( )

( ) ( )

~ ~

~ , :,

, ,
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, ,, ,:
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l l j
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l i jl i
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For the vibroacoustic setup, the IO combination (i, j) = (1,2) 

from the control input u to the microphone z is chosen, thus yielding 

four LTI SISO models 
~

lH , (1,2), l =1, …, 4. 

STEP 2: Calculate the poles 
lp  (independent of the choice of 

IO-combination (i, j)) and zeros 
( ), 1,2l

z  of the original local SISO 

models ( )

~

, 1,2lH . Sort these poles and zeros such that they are in the 

same order for all local SISO models ( )

~

, 1,2lH . Fig. 4 shows the real 

and imaginary part of the poles and zeros of the 4 local SISO 

models ( )

~

, 1,2lH  as a function of the varying temperature θ. All local 

models have 5 complex conjugated pole pairs, 1 non-minimum 

phase real zero and 4 complex conjugated zero pairs. The sorting of 

the poles and zeros is indicated in Fig. 4 with solid lines that 

connect corresponding poles (resp. zeros) for the 4 different local 

temperatures. 
 

 
(a) Poles 

lp  

Figure 4. Poles and zeros of the local models ( )1,2l,H
~

. 

 

 
(b) Zeros 

( ), 1,2l
z  

Figure 4. (Continued). 

 

STEP 3: Divide the local SISO models ( )

~

, 1,2lH  into a gain 

( ), 1,2l
K  multiplied by the series connection of τ1 1st-order and τ2 2

nd-

order state-space submodels 
( ), 1,2l

H
τ  expressed in the observable 

form. Then, explicitly calculate this series connection to obtain a 

new and consistent state-space representation of the local SISO 

models (denoted as 
( ), 1,2l

H ). Since all LTI SISO models are 10th-

order, they can be represented by a gain multiplied by the series 

connection of τ2 = 5 2nd-order submodels. In Fig. 4 this division is 

emphasized by assigning the poles and zeros 5 different markers and 

colors: poles and zeros with the same marker and color are assigned 

to the same LTI SISO submodel. 

STEP 4: Calculate, for each local model ( )

~

, 1,2lH , the similarity 

transformation matrix 
lT  that transforms the system matrices of 

( )

~

, 1,2lH  into those of 
( ), 1,2l

H . Apply this transformation matrix 
lT  

to the corresponding original MIMO LTI model 
~

lH  to obtain the 

model 
lH . 

STEP 5: To obtain the system matrices of the interpolating 

MIMO LPV model (1), the following linear least-squares cost 

function is minimized 
 

2 2
~ ~

0 1 0 1
1

2 2
~ ~

0 1 0 1                 

m

F F

F F

E A A A B B B

C C C D D D

θ θ

θ θ

=

= + − + + − +

+ + − + + −

Σ l ll l

l

l ll l

 

 

where ||  ||F represents the Frobenius norm of a matrix. 

Figure 5 compares the 4 local LTI MIMO models (red, solid) to 

the obtained interpolating LPV model (black, solid with dots), 

evaluated at 11 equidistantly spaced temperatures in the interval 

[22.9º; 25.4º]. The LPV model clearly shows a smooth interpolation 

of the local MIMO models. 

 



A Vibroacoustic Application of Modeling and Control of Linear Parameter-Varying Systems 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2010 by ABCM October-December 2010, Vol. XXXII, No. 4 / 413 

                            
(a) Disturbance w to microphone z                                                                  (b) Control u to microphone z 

Figure 5. The interpolating LPV model, evaluated at 11 different temperatures (black, solid with dots) compared to the 4 local LTI MIMO models (red, solid). 

 

The quality of the fit can also be numerically verified by 

comparing the vector of Hankel singular values (Moore, 1981) of 

the local LTI models with the interpolating LPV model evaluated 

at the four local operating conditions. These vectors, for the LTI 

and the LPV case, are respectively denoted by Glti[i] and Glpv[i], 

for i = 1, ..., 4. Table 1 presents the relative difference between 

these two vectors, calculated as ║ Glti[i] − Glpv[i] ║2 / ║ Glti[i] ║2. 
 

Table 1. Relative difference between the Hankel singular values of the 
local LTI models and the interpolating LPV model evaluated at the 4 
operating conditions. 

 Index i of the operating condition 

Model 1 2 3 4 

w → z 0.0368 0.0175 0.1005 0.0466 

u → z 0.0647 0.0307 0.0665 0.0221 

Gain-Scheduled and Robust H2 and H∞∞∞∞ State Feedback 

This section presents synthesis procedures for gain-scheduled 

and robust H2 and H∞ state feedback controllers for discrete-time 

polytopic LPV systems with known bounds on the rate of parameter 

variation. First, the modeling of the uncertainty domain is 

introduced, then the synthesis conditions are given and afterwards 

state feedback controllers are computed for the LPV model obtained 

in the previous section. A schematic view of the closed-loop system 

is shown in Fig. 6, in which the model H(α) already contains the 

transfer functions of the primary and the secondary sources. 
 

 

Figure 6. Schematic view of control configuration. 

Modeling of the Uncertainty Domain 

Consider the polytopic discrete-time linear parameter-varying 

system 
 

( )
( )( ) ( )( ) ( )( )
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u
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A k B k B k
H

C k D k D k

α α α
α

α α α

 
 =
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 (4) 

 

where the system matrices  

A(α(k)) ∈ RRn×n, Bw(α(k)) ∈ RRn×r, Bu(α(k)) ∈ RRn×m, Cz(α(k)) ∈ RRs×n, 

Dw(α(k)) ∈ RRs×r, and Du(α(k)) ∈ RRs×m belong to the polytope 
 

D = {(A,Bw,Bu,Cz,Dw,Du)(α(k)): (A,Bw,Bu,Cz,Dw,Du)(α(k)) =  

Σ
N

i=1 αi(k) (Ai,Bw,i,Bu,i,Cz,i,Dw,i,Du,i), α(k) ∈ ΛN } (5) 
 

with the vector of time-varying parameters α(k) ∈ RRN belonging to 

the unit simplex given by 
 

ΛN = {ξ∈ RRN : Σ
N

i=1 ξi=1, ξi≥0, i=1, ..., N}  (6) 
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The rate of variation of the parameters ∆αi(k) = αi(k+1) - 

αi(k), i = 1, … , N, is assumed to be limited by an a priori known 

bound b ∈ RR such that 
 

-b∆αi(k) ≤ ∆αi(k) ≤ b(1-∆αi(k)), i = 1, …, N,  (7) 
 

with 0 ≤ b ≤ 1. Compared to synthesis procedures based on 

quadratic stability, that allows ∆αi(k) to be arbitrarily large, 

synthesis procedures that yield less conservative controllers can be 

derived by explicitly taking into account that ∆αi(k) satisfies Eq. (7), 

as discussed in Oliveira and Peres (2008). 

Gain-Scheduled Control Synthesis 

The goal is to provide a parameter-dependent state feedback 

control law u(k) = K(α(k))x(k), with K(α(k)) ∈ RRm×n, such that the 

closed-loop system 
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is exponentially stable with a guaranteed H2 and H∞ performance for 

all possible parameter variation. A solution to the gain-scheduled H∞  

state feedback design problem, in terms of a finite set of LMIs 

defined in the vertices of the polytope (5), is provided by the next 

theorem. 

Theorem 1: Let the saclar η be given. If there exist, for i = 1, …, 

N, matrices Gi ∈ RRn×n, Zi ∈ RRm×n and symmetric positive-definite 

matrices Pi ∈ RRn×n such that† 
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for i = 1, ..., N and ℓ = 1, ..., N and 
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for ℓ = 1, ..., N, i = 1, ..., N−1 and j = i+1, ..., N, then the parameter-

dependent static state feedback gain 
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stabilizes system (4) with a guaranteed H∞ performance bounded 

by η . 

The proof for Theorem 1 can be found in De Caigny et al. 

(2008b). The next theorem provides a finite set of LMIs for the 

design of a gain-scheduled H2 state feedback controller for 

system (4). 

                                                           
†
 The symbol * within a matrix represents the symmetric term of the matrix. 

 

Theorem 2: If there exist, for i = 1, …, N, matrices Gi ∈ RRn×n, Zi 

∈ RRm×n, and symmetric positive definite matrices Pi ∈ RRn×n and Wi 

∈ RRp×p  such that 
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for i = 1, ..., N and ℓ = 1, ..., N, 
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for ℓ = 1, ..., N, i = 1, ..., N−1 and j = i+1, ..., N, 
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for i = 1, ..., N, 
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for i = 1, ..., N−1 and j = i+1, ..., N, then the parameter-dependent 

state feedback gain (9) stabilizes system (4) with a guaranteed H2 

performance bounded by ν given by { }2

, , ,
min max Tr

i i i i

i
P G Z W i

Wν = . 

The proof for Theorem 2 can be found in De Caigny et al. (2008a). 

By combining the LMI conditions presented in Theorems 1 and 

2, it is possible to design mixed H2/H∞ controllers. Multiobjective 

H2 and H∞ specifications can be imposed on different closed-loop 

input-output combinations by appropriately selecting the right input-

output channels of the open-loop system (4) and applying the 

control synthesis procedures of Theorem 1 or 2, using the same 

variables Gi and Zi for all performance specifications. For each 

performance specification, however, a different set of Lyapunov 

matrices can be used. This mixed H2/H∞ synthesis technique extends 

the G shaping paradigm, presented in de Oliveira et al. (2002) for 

uncertain LTI systems, to the class of polytopic LPV systems with 

bounds on the rate of parameter variation. 

Robust Control Synthesis 

Robust state feedback controllers u(k) = Kx(k) can be easily 

derived from Theorems 1 and 2, as shown in the following 

corollaries. 

Corollary 1: If there exist matrices Gi ∈ RRn×n, Zi ∈ RRm×n, and 

symmetric positive-definite matrices Pi ∈ RRn×n, for i = 1, ..., N, such 

that (8) holds for i = 1, ..., N and ℓ = 1, ..., N, with Gi = G and Zi = Z, 

for i = 1, ..., N, then the robust state feedback gain K = ZG
-1 stabilizes 

system (4), with a guaranteed H∞ performance bounded by η . 

Corollary 2: If there exist matrices Gi ∈ RRn×n, Zi ∈ RRm×n, and 

symmetric positive-definite matrices Pi ∈ RRn×n  and Ri ∈ RRp×p, for i 

= 1, ..., N, such that (10) holds for i = 1, ..., N and ℓ = 1, ..., N and 

(11) holds for  i = 1, ..., N, with Gi = G and Zi = Z, for i = 1, ..., N, 

then the robust static output feedback gain K = ZG-1 stabilizes 

system (4), with a guaranteed H2 performance ν given by 

 

{ }2

, , ,
min max Tr

i i

i
P G Z W i

Wν = . 
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Obviously, robust multiobjective H2/H∞ state feedback 

controllers can be obtained as well, by combining the results of 

these two corollaries for different performance specifications. 

The following subsection presents the numerical results 

obtained using the proposed gain-scheduled and robust 

multiobjective H2/H∞ state feedback synthesis conditions. 

Numerical Results 

The aim of this subsection is to design gain-scheduled and 

robust state feedback controllers for the vibroacoustic system by 

applying the synthesis conditions to the LPV model computed in 

previous section. The goal of the control design is to minimize an 

upper bound γ2 on the closed-loop H2 performance from the 

disturbance w to the output z (indicated here as 
2wzT ), while an 

upper bound γ1 is enforced on the closed-loop H∞ performance from 

the disturbance w to the control signal u (indicated here as 
wuT

∞
) 

to obtain controllers that do not have excessively large control 

signals. 

To use the synthesis conditions of Theorems 1 and 2 and 

Corollaries 1 and 2, the affine LPV model obtained with the 

SMILE technique is converted to a polytopic model with two 

vertices. For this model, the corresponding two scheduling 

parameters are given by 
 

maxmin
1 2

max min max min

and ,    
θ θθ θ

α α
θ θ θ θ

−−
= =

− −
 

 

with θmin = 22.9º and θmáx = 25.4º. Note that αi ≥ 0, for  i = 1, 2, and 

that α1 + α2 = 1. Consequently, α = [α1  α2]
T belongs to the unit 

simplex Λ2 as defined in (6). 

The obtained controllers are validated through numerical 

simulations. First, Pareto optimal curves that describe the trade-off 

between the obtained upper bound γ2 on 
2wzT  and the imposed 

upper bound γ1 on 
wuT

∞
 are presented. Afterwards, the 

performance of the gain-scheduled controllers is analyzed using 

Bode plots and time domain simulations. 

1) Pareto optimal curves: Figure 7 shows the trade-off curve 

between the imposed upper bound γ1 on 
wuT

∞
 and the obtained 

upper bound γ2 on 
2wzT  for two bounds b = 0.2 and b = 0.8 on the 

rate of parameter variation. The bound γ1 takes values in a fine grid 

of the interval [0;50]. In this figure, the label GS denotes gain-

scheduled control designs (solid lines) and the label R denotes 

robust control designs (dashed lines). For each bound (b = 0.2 and b 

= 0.8), one gain-scheduled and one robust H2 controller are 

calculated without the bound γ1 on 
wuT

∞
 using respectively 

Theorem 2 and Corollary 2. These four designs (indicated in Fig. 7 

with dotted lines for the gain-scheduled case and with dash-dotted 

lines for the robust case) provide the best achievable upper bound on 

2wzT , that is, the smallest achievable value for γ2, denoted by γ2. 

The value of γ2 for each control design case is given in Table 2. As 

can be seen from Fig. 7, the mixed H2/H∞ control designs always 

provide a bigger upper bound γ2 > γ2 , thus having worse guaranteed 

performance compared to the H2 control design. It is also clear that 

the performance decreases as the bound b on the rate of parameter 

variation increases. For small values of γ1 the synthesis conditions 

become infeasible (indicated with squares). As expected, the gain-

scheduled controllers GS outperform the robust controllers R. 
 

Table 2. Best achievable upper bound γγγγ2 on 
2wzT . 

Bound b R GS 

0.2 0.3278 0.2268 

0.8 0.4987 0.4553 

 

 

Figure 7. Trade-off between the imposed bound γγγγ1 on 
∞wuT and the 

obtained bound γγγγ2 on 
2wzT . 

 

2) Performance of the gain-scheduled controllers obtained for b 

= 0.2: The performance of the gain-scheduled control design for the 

case b = 0.2 is now analyzed using Bode plots (see Fig. 8) for five 

equidistantly spaced temperatures in the interval [22.9º; 25.4º]. The 

following three controllers are compared: 

• Controller K1: no upper bound on 
wuT

∞
, yielding the smallest 

achievable upper bound γ2 on 
2wzT (Fig. 8a, red); 

• Controller K2: upper bound γ1 = 35 on 
wuT

∞
(Fig. 8b, green); 

• Controller K3: upper bound γ1 = 10 on 
wuT

∞
(Fig. 8c, 

magenta). 

The Bode magnitude plot from the disturbance w to the 

microphone z of the open-loop system is indicated using black lines. 
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(a) Controller K1 (no bound on 

wuT
∞

) 

 

 
(b) Controller K2 (

wuT
∞

≤ 35) 

 

 
(c) Controller K3 (

wuT
∞

≤ 10) 

Figure 8. Bode magnitude plots of the open-loop system (black) and the closed-loop systems, using controllers K1, K2 and K3 with b = 0.2, for 5 
temperatures in the interval [22.9º;25.4º]. 

 

From Fig. 8, it is clear that compared to the open-loop system, 

all controllers improve the H2 performance from the disturbance w 

to the microphone z, for all temperatures. Controller K1 yields the 

best H2 performance (see Fig. 8a). However, since no upper bound 

is imposed on
wuT

∞
, the red curves in the right side of Fig. 8a have 

the highest peaks, thus requiring large control authority. Compared 

to controller K1, controller K2 yields slightly worse H2 performance 

(as can be seen in the left side of Fig. 8b), but since an upper bound 

γ1 = 35 is imposed on 
wuT

∞
, the green curves in the right side of 

Fig. 8b have slightly smaller peaks compared to those from Fig. 8a. 

The third controller K3 is designed with a significantly tighter bound 

γ1 = 10 on 
wuT

∞
 and consequently the curves in the right side of 

Fig. 8c are significantly lower compared to the curves associated 

with K1 and K2. 

Thus, controller K3 requires less control authority. However, the 

obtained H2 performance is also considerably worse, as can be seen 

in the left side of Fig. 8c. 

The difference between these three controllers can also be seen 

in Fig. 7. Controller K1 (indicated with the red dotted line) provides 

the lowest possible upper bound γ2. Controller K2 (indicated with the 
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green diamond) provides a slightly bigger upper bound γ2, but 

guarantees an upper bound γ1 = 35 on 
wuT

∞
. Controller K3 

(indicated with the magenta diamond) provides a significantly 

bigger upper bound γ2, but guarantees a smaller upper bound γ1 = 10 

on 
wuT

∞
. The upper bound γ1 = 35 corresponds to  20 log10 35 ≈ 

31[dBref=1Pa/N] and is indicated in Fig. 8b with the green dashed line, 

while the upper bound γ1 = 10 corresponds to 20 log10 10 = 

20[dBref=1Pa/N] and is indicated in Fig. 8c with the magenta dashed 

line. 

Figure 9 shows a time domain simulation, where a unit 

impulse is applied (at t = 0) to the open-loop system and to the 

closed-loop systems computed using the three controllers K1, K2 

and K3 described above. The time interval used for the simulation 

is t ∈ [0; 0.1]. During the simulation, the scheduling parameter 

(the temperature) changes randomly in the interval [22.9º; 25.4º] 

with a bounded rate of variation b = 0.2. The open-loop response 

from the disturbance w to the microphone z (black) is compared 

with the closed-loop response computed using the controllers K1  

(red), K2 (green) and K3 (magenta). The time simulation empha-

sizes again the difference between the 3 controllers. Controller K1 

shows the best attenuation of the disturbance (as can be seen in the 

left side of Fig. 9a), but results in the highest peaks in the control 

signals (as can be seen in the right side of Fig. 9b). Controller K2 

yields slightly worse disturbance attenuation, but has smaller 

peaks in the control signal (see Fig. 9b). 

Finally, controller K3 performs significantly worse in 

attenuating the disturbance, but does not require large control 

signals (see Fig. 9c). 

Discussion 

The numerical results presented in Figs. 7, 8 and 9 show the 

potential of the proposed multiobjective H2/H∞ gain-scheduled and 

robust control design techniques. Based on the trade-off curves 

shown in Fig. 7, a specific controller can be chosen that yields a 

guaranteed closed-loop H2 performance, while still guaranteeing an 

upper bound on the H∞ performance from the disturbance w to the 

control signal u. Certainly, the main drawback of the proposed 

control design is its current limitation to the state feedback case. In 

many engineering applications, such as the vibroacoustic setup in 

this paper, it is impossible to measure all states of the system and 

consequently full state feedback laws cannot be directly 

implemented in practice. However, no results yet exist in the 

literature that provide gain-scheduled dynamic output feedback 

controllers that consider bounds on the rate of parameter variation. It 

is important to stress the incorporation of a priori known bounds on 

the rate of parameter variation into the synthesis procedure, since for 

the vibroacoustic application, quadratic stability based approaches 

fail to yield a feasible set of synthesis conditions. 

There are two possible strategies that can be used to achieve 

gain-scheduled dynamic output feedback controllers. The first 

possibility is to consider the joint design of a gain-scheduled state 

observer and a gain-scheduled state feedback controller. The second 

possibility is to derive synthesis conditions for gain-scheduled 

dynamic output feedback controllers. These are interesting open 

questions the authors plan to investigate in future works. 

Although no experimental validation is provided in this paper, 

the proposed state feedback synthesis conditions are valuable for 

several reasons. First, the state feedback controllers provide the best 

possible closed-loop performance that can be achieved for the 

vibroacoustic system. Second, the state feedback synthesis results 

might be the first step towards the design of a dynamic output 

feedback controller in the form of a full order observer combined 

with a state feedback law. Third, the influence of the bound b on the 

rate of variation can be easily verified by calculating different trade-

off curves as presented in Fig. 7. Fourth, this paper also shows that 

recent theoretical results for LPV control have the potential to be 

applied to models obtained from experimental data. 

Conclusion 

This paper shows that recently developed techniques to model and 

control linear parameter-varying systems can be applied to realistic 

engineering problems, in this case a vibroacoustic setup whose 

dynamics are highly sensitive to temperature variation. Based on 

experimentally obtained FRFs, a set of LTI models is estimated for 

different fixed temperatures. Then, an LPV model is derived for the 

vibroacoustic setup by interpolating these local LTI models using the 

State-space Model Interpolation of Local Estimates (SMILE) 

technique. Gain-scheduled and robust multiobjective H2/H∞ state 

feedback controllers are designed using LMI synthesis conditions 

based on a parameter-dependent Lyapunov matrix. These synthesis 

procedures consider a priori known bounds on the rate of parameter 

variation, which reduces the conservatism generally associated with 

methods that allow arbitrarily fast parameter variation, like the 

quadratic stability based approaches. Numerical simulations clearly 

show the advantages and versatility of the proposed modeling and 

control design procedures. 
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(a) Controller K1 (no bound on 

wuT
∞

) 

 

 
(b) Controller K2 (

wuT
∞

≤ 35) 

 

 
(c) Controller K3 (

wu
T

∞

≤ 10) 

Figure 9. Impulse response plots of the open-loop system (black) and the closed-loop systems, using controllers K1, K2 and K3 with b = 0.2, subject to a 
random variation on the scheduling parameter. 
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