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A Micromechanics Approach to 
Assess Effects of Constraint on 
Cleavage Fracture Toughness: a 
Weibull Stress Model 
This work describes an engineering methodology incorporating the statistics of 
microcracks and a probability distribution of the (local) fracture stress to assess the effects 
of constraint loss and weld strength mismatch on crack-tip driving forces. One purpose of 
this investigation is to establish a definite fracture assessment framework capable of 
providing robust correlations between toughness data measured using small, laboratory 
specimens to large, complex structural components with varying crack configurations and 
loading modes (tension vs. bending). Another purpose is to verify the effectiveness of the 
proposed methodology building upon a local fracture parameter, here characterized by the 
Weibull stress, in structural integrity assessments of cracked components including steel 
weldments. Overall, the exploratory applications conducted here lend strong support to 
use Weibull stress based procedures in defect assessments of cracked structures. 
Keywords: cleavage fracture, local approach, Weibull stress, constraint effect, weld 
strength mismatch 
 
 
 

Introduction 
1The fundamental importance of cleavage fracture behavior in 

structural integrity assessments has stimulated a rapidly increasing 
amount of research on predictive methodologies for quantifying the 
impact of defects in load-bearing materials such as, for example, 
cracks in critical weldments of high pressure vessels. Such 
methodologies play a key role in repair decisions and life-extension 
programs for in-service structures (e.g., aerospace, nuclear and 
offshore structures) while, at the same time, ensuring acceptable 
safety levels during normal operation. For ferritic materials at 
temperatures in the ductile-to-brittle transition (DBT) region, 
fracture by transgranular cleavage along well defined, low index 
crystallographic planes (see, e.g., Averbach, 1965 and Tetelman and 
McEvily, 1967) is the dominant operative micromechanism. This 
failure mode potentially limits the load bearing capacity of the 
structure as local crack-tip instability may trigger catastrophic 
failure at low applied stresses with little plastic deformation. 

Conventional methods of fracture mechanics analysis employ a 
one-parameter characterization of loading and toughness, most 
commonly the J-integral or the corresponding value of the Crack 
Tip Opening Displacement (CTOD, δ). The approach correlates 
unstable crack propagation in different cracked bodies based on the 
similarity of their respective near-tip stress and strain fields 
provided small scale yielding (SSY) conditions prevail. Under these 
conditions, near-tip plastic deformation is well-contained with 
plastic zones vanishingly small compared to the relevant physical 
dimensions in fracture specimens and structural components such as 
crack length, remaining ligament, etc. (see, e.g., the review by 
Hutchinson, 1983). However, the stress histories that develop in the 
near-tip region of a macroscopic crack in engineering structures 
containing shallow cracks are more often of different character than 
those for the high constraint SSY condition. At increasing levels of 
loading and deformation, large scale yielding conditions (LSY) 
gradually develop at the crack tip region, which relax the near-tip 
stress fields below the SSY levels, particularly for moderate-to-low 
hardening materials. The decreased level of crack-tip constraint and 
the strong interaction of remote loading with near-tip plasticity 
potentially cause significant elevations (factors exceeding 3~5) in  
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the elastic-plastic fracture toughness for shallow crack 
configurations of ferritic steels tested in the transition region, where 
transgranular cleavage triggers macroscopic fracture. The enormous 
practical implications of this apparent increased toughness of 
common ferritic steels in low-constraint conditions, particularly in 
defect assessment and repair decisions of in-service structures, have 
spurred a flurry of new analytical, computational and experimental 
research over the past years. 

More recent efforts within the framework of continuum fracture 
mechanics have focused on the development of two-parameter 
fracture methodologies to describe the full range of Mode I, elastic-
plastic crack-tip fields with varying near-tip stress triaxiality. Within 
these methodologies, J sets the size scale over which large stresses 
and strains develop, while the second parameter, such as the T stress 
(Al-Ani  and Hancock, 1991; Betegon and Hancock, 1991; Du and 
Hancock, 1991; Parks, 1992) or the nondimensional Q parameter 
(O'Dowd and Shih, 1991, 1992), scales the near-tip stress 
distribution. The approach also enables the introduction of a 
toughness locus for a specific material and temperature in 
connection with a J-Q driving force trajectory for each crack 
geometry; here, the toughness locus for the material is constructed 
upon determining the Q-value at fracture which corresponds to each 
measured -value (O'Dowd and Shih, 1991, 1992). However, the 
large number of fracture specimens and different temperatures 
needed to construct the J-Q toughness locus greatly complicate 
direct implementation of this approach to fracture assessments as 
does the application of the method (which derives from a 2-D 
framework) to fully 3-D crack geometries. Moreover, such models 
do not address the strong sensitivity of cleavage fracture to material 
characteristics at the microlevel nor do they provide a means to 
predict the effects of constraint and prior ductile tearing on 
toughness. In particular, the random inhomogeneity in local features 
of the material causes large scatter in experimentally measured 
values of fracture toughness ( ,  or CTOD). Such features do 
assessments of structural integrity using laboratory testing of 
standard specimens and simplified crack configurations to a 
complex task: what is the “actual" material toughness and how is 
the scatter in measured values of fracture toughness incorporated in 
defect assessment procedures?  
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The above arguments that continuum fracture mechanics 
approaches do not suffice to characterize the fracture behavior of  
fully yielded crack geometries motivated the development of 
micromechanics models based upon a probabilistic interpretation of 
the fracture process (most often referred to as local approaches). 
Attention has been primarily focused on probabilistic models 
incorporating weakest link statistics to describe material failure 
caused by transgranular cleavage. In the context of probabilistic 
fracture mechanics, a limiting distribution describes the coupling of 
the (local) fracture stress with remote loading (as measured by J or 
CTOD). A fracture parameter associated with this limiting 
distribution conveniently characterizes macroscopic fracture 
behavior for a wide range of loading conditions and crack 
configurations. Batdorf and Crose (1974), Evans (1978) and Matsuo 
(1981) first considered models of this type to describe brittle 
fracture for arbitrary loading. Here, a convenient function 
describing the number of microcracks per unit volume failing at 
each value of the local tensile stress is used to arrive at the 
probability of fracture for a cracked body. Later, Beremin (1983), 
Wallin et al. (1984a, 1984b, 1986, 1993), Lin et al. (1986), Godse 
and Gurland (1989), Brückner et al. (1990), among others provided 
a link between the size of carbide particles dispersed in the material 
and the inhomogeneous stress fields ahead of a macroscopic crack. 
They sought to predict the dependence of fracture toughness ( ) 
on material properties and temperature. 

IcK

Among these earlier research efforts, the work of Beremin 
(1983) provides the basis for establishing a relationship between the 
microregime of fracture and macroscopic crack driving forces (such 
as the J-integral) by introducing the Weibull stress ( wσ ) as a 
probabilistic fracture parameter. A key feature of the Beremin 
approach is that wσ  follows a two-parameter Weibull distribution 
(Weibull, 1951; Mann et al., 1974) in terms of the Weibull modulus, 
m, and the scale parameter, . Further idealization postulates that 
parameter m represents a material property in this model (Mudry, 
1987) possibly dependent on temperature but invariant of loading 
history, which provides a means to correlate fracture toughness for 
varying crack configurations under different loading conditions. 
When implemented in a finite element code, the Beremin model 
predicts the evolution of the Weibull stress with applied load to 
define conditions leading to (local) material failure. Previous 
research efforts to develop a transferability model to elastic-plastic 
fracture toughness values rely on the notion of the Weibull stress as 
a crack-tip driving force (Ruggieri and Dodds, 1996a, 1996b; 
Ruggieri, 2001a, 2001b). The central feature in this methodology 
adopts the simple axiom that unstable crack propagation (cleavage) 
occurs at a critical value of the Weibull stress; under increased 
remote loading (as measured by J), differences in evolution of the 
Weibull stress reflect the potentially strong variations of near-tip 
stress fields and crack-tip constraint. 

uσ

This work describes an engineering methodology incorporating 
the statistics of microcracks and a probability distribution of the 
(local) fracture stress to assess the effects of constraint loss and 
weld strength mismatch on crack-tip driving forces. One purpose of 
this investigation is to establish a definite fracture assessment 
framework capable of providing robust correlations between 
toughness data measured using small, laboratory specimens to large, 
complex structural components with varying crack configurations 
and loading modes (tension vs. bending). Another purpose is to 
verify the effectiveness of the proposed methodology building upon 
a local fracture parameter, here characterized by the Weibull stress 
( ), in structural integrity assessments of cracked components 
including steel weldments. Overall, the exploratory applications 
conducted here lend strong support to use Weibull stress based 
procedures in defect assessments of cracked structures. 

wσ

Probabilistic Modeling of Cleavage Fracture 

Description of Scatter in Fracture Toughness Values 

Fracture testing of ferritic steels in the DBT region consistently 
reveal large scatter in the measured values of cleavage fracture 
toughness. It is now widely known that such scatter in toughness 
data is essentially associated with the random location and 
orientation of fracture-triggering microcracks near the 
(macroscopic) crack tip (Anderson, 2005). The connection between 
the local (cleavage) fracture process and extreme value statistics 
plays the key role in describing the scatter in fracture toughness 
values. A continuous probability function derived from weakest link 
statistics conveniently characterizes the distribution of toughness 
values, , in the form (Weibull, 1951; Mann et al., 1974). cJ
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which is a three-parameter Weibull distribution with parameters 
( )thJJ ,, 0α . Here, α  denotes the Weibull modulus (shape 
parameter),  defines the characteristic toughness (scale 
parameter) and  is the threshold fracture toughness. In 
particular, parameter 

0J

thJ
α  represents a measure of the scatter in the 

toughness data; the larger this value, the less scattered is the 
toughness distribution (Mann et al., 1974). 

The threshold fracture toughness is often set equal to zero, 
so that the Weibull function given by Eq. (1) assumes its 

more familiar two-parameter form in terms of parameters 
0=thJ

( )0, Jα  as 
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The above limiting distribution remains applicable for other 

measures of fracture toughness such as  or CTOD (IcK cδ ). A central 
feature emerging from the weakest link distribution expressed by Eq. 
(2) is that, under SSY conditions, the scatter in cleavage fracture 
toughness data is characterized by 4=α  for -distributions (Wallin, 
1984b; Anderson, 2005) or 

IcK
2=α  for  or -distributions (Minami 

et al., 1992; Anderson, 2005). 
cJ cδ

There is still some debate as to whether a two-parameter or 
three-parameter Weibull distribution should be adopted to describe 
fracture toughness data. Anderson (2005) provides some objections 
against Eq. (2) by making formal arguments in favor of nonzero 
threshold toughness. He notes that the crack driving force must be 
increased to a certain limit to initiate unstable crack propagation 
following some amount of plastic work dissipated in breaking 
atomic bonds and crossing randomly oriented grain boundaries. He 
also points out that a three-parameter function generally fits better 
cleavage toughness data. While the merits of such arguments are 
valid, there also exist some points of criticism to the use of a three-
parameter Weibull function. A major drawback is associated with 
unreliable estimates of the threshold toughness when a conventional 
statistical procedure, such as the maximum likelihood method, is 
used to determine parameter  (Ruggieri, 1989). For a given set 
of cleavage toughness values, however, differences in failure 
probability for both distributions are small. Consequently, the 

thJ
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present work proceeds by adopting more conventional and simpler 
two-parameter Weibull distribution throughout the analyses. 

The Weibull Stress for Cracked Solids 

To extend the previous methodology to multiaxially stressed,   
3-D crack configurations, research efforts have been focused on 
probabilistic models coupling the micromechanical features of the 
fracture process (such as the inherent random nature of cleavage 
fracture) with the inhomogeneous character of the near-tip stress 
fields. Motivated by the specific micromechanism of transgranular 
cleavage, a number of such models (most often referred to as local 
approaches) employ weakest link arguments to describe the failure 
event. The overall fracture resistance is thus controlled by the 
largest fracture-triggering particle that is sampled in the fracture 
process zone ahead of crack front. A convenient statistical 
description of microcracks then provides the connection between 
the microregime of fracture and macroscopic (global) behavior to 
yield a statistical distribution for the (cleavage) fracture stress. 

Consider an arbitrarily stressed body where a macroscopic crack 
lies in a homogeneous material containing randomly distributed 
flaws as illustrated in Fig. 1(a). The fracture process zone ahead of 
the crack tip is defined as the highly stressed region where the local 
operative mechanism for cleavage takes place; this region contains 
the potential sites for cleavage cracking. For the purpose of 
developing a probabilistic model for cleavage fracture, divide the 
fracture process zone ahead of crack tip in N unit volumes 
statistically independent, , 1, 2,..., N subjected to the principal 
stress . Each unit volume, , contains a substantially number of 
statistically independent microflaws uniformly distributed. 

iV =i

1σ iV

The statistical nature of cleavage fracture underlies a simplified 
treatment for unstable crack propagation of the configuration 
represented in Fig. 1(a) based upon weakest link arguments. First, 
limit attention to the asymptotic distribution for failure of the unit 
volume and consider each  divided into small volumes uniformly 
stressed, statistically independent, 

iV

jVδ , =j 1, 2,..., n. Let p denote 

the probability of failure for the jth volume jVδ . The probability 
that k failures occur (which correspond to the fracture of k small 
volume elements Vδ ) is defined in terms of the Binomial 
distribution (Feller, 1957; Kendall and Stuart, 1967): 

 

( ) ( ) ,0,1 nkpp
k
n

kSP knk
n ≤≤−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== −  (3) 

 
where  denotes the total number of failures that occurred in n 
volume elements. When k is large and p is small, by the Poisson 
limit theorem (Feller, 1957; Kendall and Stuart, 1967), the 
distribution of the number of failures converges to a Poisson 
distribution with parameter 

nS

μ  in the form 
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where kp=μ  is the expectation (mean value) of the binomial 
distribution. In particular, the probability that at least one failure 
occurs is sought. Thus, the failure probability of the unit volume, 
denoted , has distribution 0P
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a) 

 

 
b) 

Figure 1. (a) Near-tip fracture process zone ahead a macroscopic crack 
containing randomly distributed flaws; (b) Schematic of fracture process 
zone for a macroscopic crack embedded in the weld metal. 

 
To arrive at a limiting distribution for the fracture stress of a 

cracked solid, an appropriate functional form for the mean μ  is 
required. The most widely adopted probabilistic model to describe 
fracture in brittle materials is based upon the weakest link (WL) 
theory. A central feature emerging from the WL model is the notion 
that catastrophic failure is driven by unstable propagation of a single 
critical microflaw or microcrack contained in the unit volume V 
which allows expressing the “average” number of failures, μ , as 
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where  is the microcrack size,  is the critical microcrack size 
and g represents the microcrack density function. Here, it is 
understood that the failure probability p depends on the principal 
stress level, , acting on V, i.e., . A common 
assumption adopts an asymptotic distribution for the microcrack 

l cl
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density in the form ( )ξψ llg 0)( = (Freudenthal, 1968; Evans and 
Langdon, 1976; Beremin, 1983), where ξ  and  are parameters 
of the distribution. However, previous fundamental work 
(Averbach, 1965;  Tetelman and McEvily, 1967) clearly shows the 
strong effect of plastic deformation, in the form of inhomogeneous 
arrays of dislocations, on microcrack nucleation which also 
contributes to trigger cleavage fracture at the material's microlevel. 
Based upon direct observations of cleavage microcracking by 
plastic strain made in ferritic steels at varying temperatures 
(Brindley, 1970; Lindley et al., 1970; Gurland, J., 1972), the 
microcrack density can then be further generalized in terms of 

0ψ
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where pε  is the (effective) plastic strain, γ  and β  represent 
parameters defining a power law relationship between the 
microcrack density and plastic strain as inferred in Lindley et al. 
(1970). 

Now, upon introducing the dependence between the critical 
microcrack size, , and (local) stress in the form cl ( )2

1
22 σYKl Icc = , 

where Y represents a geometry factor and  is the critical stress 
intensity factor, and substituting Eq. (7) into Eq. (6), the mean, 

IcK
μ , 

resolves to 
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where parameters 22 −= ξm  and  are related to the microcrack 
distribution with m and . Using this result in Eq. (5) enables 
defining the failure probability  for the unit volume V in the form 
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which is a Weibull distribution with parameters m and uσ . 

Further development in the adopted probabilistic framework 
requires invoking again weakest link arguments to generalize the 
previous probability distribution to any multiaxially stressed region, 
such as the fracture process zone ahead of a macroscopic crack or 
notch (see Fig. 1(a)). Here, the statistical problem of determining an 
asymptotic distribution for the fracture strength of the entire solid is 
equivalent to determining the distribution of the weakest unit 
volume V. The fundamental assumption is that the near-tip fracture 
process zone consists of N arbitrary and statistically independent, 
unit volumes V. Consequently, the failure probability of the entire 
cracked solid, P, is given by 
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Substituting Eq. (9) into the above expression and making 

, the probability distribution of the fracture stress for a 
cracked solid based upon the WL model results 

∞→N
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where  denotes the volume of the near-tip fracture process zone 
and 

Ω
0Ω is a reference volume usually taken as unit, i.e., 10 =Ω . In 

the present work, the active fracture process zone is defined as the 
loci where ysλσσ ≥1  in which 2≈λ  and ysσ  defines the 

material's yield stress; results for wσ  differ little over a relatively 
wide range of λ -values for 5.2~5.1≈λ . Such definition for the 
near-tip fracture process zone bears direct connection with the 
highly stressed and strained crack-tip region extending over 3~5 
times the crack-tip opening displacement (δ ) in which 
transgranular cleavage and microscopic separation processes occur 
(Hutchinson, 1983). 

Following the development presented previously, the Weibull 
stress, a term coined by the Beremin group (1983) is then given by 
integration of the principal stress over the fracture process zone in 
the form 
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from which the probability distribution given by Eq. (11) now takes 
the form 
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The above Eq. (13) defines a two-parameter Weibull 

distribution (Weibull, 1951; Mann et al., 1974) for the Weibull 
stress in terms of the Weibull modulus m and the scale factor . 
In the context of probabilistic fracture mechanics, the Weibull 
stress, , emerges as a near-tip fracture parameter to describe the 
coupling of remote loading with a micromechanics model based 
upon the statistics of microcracks (weakest link philosophy). A key 
feature of this methodology is that  incorporates both the effects 
of stressed volume (the fracture process zone) and the potentially 
strong changes in the character of the near-tip stress fields due to 
constraint loss. The next sections address application of the Weibull 
stress methodology to predict effects of constraint loss and strength 
mismatch on cleavage fracture toughness data. 

uσ

wσ

wσ

Toughness Scaling Methodology Based Upon the 
Weibull Stress 

A central objective in developing a probabilistic-based model to 
describe cleavage fracture lies on the prediction of unstable crack 
propagation in two different structural components for a wide range 
of crack configurations and loading modes (tension vs. bending). In 
fracture mechanics spirit, experimentally measured values of 
fracture toughness for one configuration (e.g., small laboratory 
specimens for homogeneous materials and weldments) can be 
rationally extended to predict unstable crack propagation for other 
crack configurations, including welded components, based on the 
attainment of a specified value for the probabilistic-based fracture 
parameter that triggers cleavage fracture in each specimen even 
though the corresponding J (δ )-values may differ widely. 
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This section introduces the essential features of a toughness 
scaling methodology (TSM) based upon the Weibull stress to 
correlate toughness values (  or CTOD) across crack 
configurations with varying geometries and crack-tip constraint 
levels, including weldments. The presentation begins with the 
development of a TSM strategy which appears most applicable to 
assess the effects of constraint and statistical variations on cleavage 
fracture toughness data in homogeneous materials. Subsequent 
description focuses on the extension of the TSM approach to 
bimaterial systems such as center-cracked welds. 

cJ

TSM for Homogeneous Materials 

To make contact with the correlative character of the present 
framework, the concept of a toughness scaling model based upon 
the Weibull stress enables a simplified micromechanics treatment to 
predict constraint effects on cleavage fracture toughness. As 
discussed earlier, the central feature of this methodology derives 
from the interpretation of  as the crack-tip driving force coupled 
with the simple axiom that cleavage fracture occurs when 

wσ

wσ  
reaches a critical value, cw,σ . For the same material at a fixed 
temperature, the scaling model requires the attainment of a specified 
value for cw,σ  to trigger cleavage fracture across different crack 
configurations even though the loading parameter (measured by J in 
the present work) may vary widely due to constraint loss. In the 
probabilistic context adopted here, attainment of equivalent values 
of Weibull stress in different cracked configurations implies the 
same probability for cleavage fracture. 

Figure 2(a) illustrates the procedure to assess the effects of 
constraint loss on cleavage fracture behavior needed to scale 
toughness values for different cracked configurations. The 
procedure employs J as the measure of macroscopic loading, but 
remains valid for other measures of remote loading, such as CTOD. 
Without loss of generality, Fig. 2(a) displays wσ  vs. J curves for a 
high constrained configuration (such as a deep notch three-point 
bend specimen – SE(B)), denoted as configuration A, and a low 
constraint configuration (such as surface crack specimen under 
tension loading – SC(T)), denoted as configuration B. Very detailed, 
nonlinear 3-D finite element analyses provide the functional 
relationship between the Weibull stress ( ) and applied loading 
(J) for a specified value of the Weibull modulus, . Given the 

-value for the high constraint fracture specimen, the lines shown 
on Fig. 2(a) readily illustrate the technique used to determine the 
corresponding -value. 

wσ

0mm =

AJ

BJ

TSM for Welded Materials 

TSM outlined above can be extended to assess effects of 
constraint variations due to weld strength mismatch on cleavage 
fracture toughness data by adopting the concept of a 
nondimensional Weibull stress, hereafter denoted wσ , which is 
defined as wσ  normalized by the yield stress of the material where 
fracture takes place. To facilitate development of the TSM 
incorporating effects of weld strength mismatch, it proves 
convenient to first define the mismatch ratio, , as yM
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yM
σ

σ
=  (14) 

 

where and  denote the yield stress for the base metal 
and weld metal. Consequently, the nondimensional Weibull stress 
for a bimaterial system such as a welded joint can be defined as 

BM
ysσ WM

ysσ

 

k
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k
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w
σ
σσ =  (15) 

 
where 2,1=k  corresponds to the baseplate and weld material. In 
adopting such nondimensional form for the Weibull stress, it is 
important to emphasize that the integration appearing in Eq. (12) 
must be performed over the volume of the fracture process zone for 
each material, as depicted in Figure 1(b). With the Weibull stress 
defined in this manner, material points outside the region over 
which the integration is carried out are (implicitly) assigned a zero 
probability of cleavage fracture. 

 

 
a) 

 

 
b) 

Figure 2. (a) Scaling procedure based on the Weibull stress to correct 
toughness values for different crack configurations. (b) Scaling procedure 
based on the normalized Weibull stress to correct toughness values for 
different mismatch conditions. 

 
Consider now extension of TSM for toughness correlations in 

welded components. Based upon micromechanics considerations 
outlined previously, the proposed scaling model requires the 
attainment of a specified value for the nondimensional Weibull 
stress, cw,σ , to trigger cleavage fracture in different welded 
specimens subjected to different levels of crack-tip loading. Figure 
2(b) illustrates the procedure to assess the effects of strength 
mismatch on cleavage fracture behavior needed to scale toughness 
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values for cracked configurations with different mismatch 
conditions based upon the TSM strategy. The procedure employs a 
nondimensional crack driving force defined by ( )k

ysbJJ σ= , 
where b is the remaining crack ligament as the measure of 
macroscopic loading, but remains valid for other measures of 
remote loading, such as CTOD. Without loss of generality, Fig. 2(b) 
displays wσ  vs. J  curves for a high constraint, welded 
configuration (such as a deep notch SE(B) specimen with a center-
cracked square groove) made with an evenmatch condition 
( 1 ), denoted as configuration A, and a welded structural 
component (such as surface crack specimen under tension loading) 
made with an overmatch condition ( ), denoted as 
configuration B. Again, very detailed, nonlinear 3-D finite element 
analyses provide the functional relationship between the Weibull 
stress (

=yM

1>yM

wσ ) and applied loading ( J ) for a specified value of the 
Weibull modulus, . Given a measured toughness value at 
cleavage for the high constraint, evenmatch fracture specimen 
(

0mm =

AJ ), the lines shown on Fig. 2(b) readily illustrate the technique 

used to determine the corresponding BJ -value for the structural 
welded component. 

A key assumption in the above toughness scaling methodology 
is that parameter  is independent of strength mismatch level, 

, or, at least, it can be considered a weak function of the 
mismatch ratio. For low to moderate levels of weld overmatch 
( 3 ), the adopted assumption appears consistent with 
the development pursued in this work while, at the same time, 
maintaining the relative simplicity of TSM to welded components 
given current knowledge. As will be discussed, the adopted 
engineering procedure is rather effective in predicting the failure 
strain of a 10% overmatch wide plate specimen even though its 
level of crack-tip constraint varies widely from a conventional, 
laboratory fracture specimen under bending.  

m
yM

.1~2.1≤yM

Parameter Calibration of the Weibull Modulus, m, Using 
Toughness Data 

Calibration of the material dependent m-parameter, and to a 
lesser extent parameters γ  and β  describing the potential 
influence of plastic strain on microcrack density, plays a crucial role 
in applications of the present methodology to assess effects of 
constraint and statistical variations on cleavage fracture toughness 
data. In particular, the Weibull modulus, m, strongly affects the 
shape and magnitude of the constraint correction curves upon which 
the toughness ratio for two different crack configurations is 
determined (see Fig. 2).  

The calibration protocol scheme for parameter m adopts the 
scaling methodology previously outlined to correct measured 
toughness distributions for different crack configurations. The 
procedure extends previous work by Gao et al. (1998) and Ruggieri 
et al. (2000) to calibrate the Weibull modulus using high constraint 
(SSY) and low constraint (LSY) fracture toughness data measured 
at the same temperature and loading rate. Because each measured 

-value is corrected to its equivalent -value, the statistical 

(Weibull) distribution of -values is also corrected to an 

equivalent statistical (Weibull) distribution of -values. 
Consequently, the present scheme defines the calibrated m-value for 
the material as the value that corrects the characteristic toughness 

 (i.e., the scale parameter of previous Eq. (2)) to its equivalent 

 for two sets of fracture toughness data from different crack 
configurations and with sufficient differences in the evolution of 

A
cJ B

cJ
A
cJ

B
cJ

AJ0
BJ0

wσ  vs. J. The procedure can also be extended in straightforward 
manner to calibrate parameter m for weldments and bimaterial 
systems. 

The following steps describe the key procedures in the adopted 
calibration scheme for parameter m. The next section addresses 
application of this parameter calibration process for ferritic 
structural steels, including overmatched welds. 

Step 1 

Test two sets of specimens with different crack configurations 
(A and B) in the ductile-to-brittle transition (DBT) region to 
generate two distributions of fracture toughness data. Select the 
specimen geometries and the common test temperature to insure 
different evolutions of constraint levels for the two configurations. 
No ductile tearing should develop prior to cleavage fracture in either 
set of tests. For weldments, test two sets of specimens with different 
strength mismatch conditions (A and B) also in the region to 
generate two distributions of fracture toughness data. Ideally, 
configuration A should correspond to fracture specimens for the 
evenmatch condition ( 1=yM ). Several alternatives to obtain the 
two sets of toughness values at the same test temperature include: i) 
for homogeneous materials, test high constraint deep-notch SE(B)s 
or C(T)s specimens with 5.0≥Wa  as configuration A. To ensure 
SSY conditions at fracture, set the specimen size so that 

MbJ ysc σ≤  for each specimen, with the deformation limit, M, 
conservatively set to ≈ 60~100 (Nevalainen and Dodds, 1995). For 
configuration B, use similar size SE(B) specimens, but with 
shallow-notches, i.e., 25.0~2.0≤Wa . These will undergo 
significant constraint loss when the deep-notch values just satisfy 
the suggested deformation limit; ii) for weldments, test deep-notch 
SE(B)s or C(T)s specimens with 5.0≥Wa and different degrees of 
weld mismatch. Select the specimen geometries, mismatch 
conditions and the common test temperature to insure different 
evolutions of mismatch and constraint levels for the two 
configurations.  

Step 2 

Determine the characteristic toughness value for each data set, 
 and , using a standard maximum likelihood estimation 

procedure (Mann et al., 1974). Alternatively, the Master Curve 
procedure given by ASTM E-1921 (ASTM, 2008) can be employed 
with the fracture toughness measure, , replaced by  which 
enables defining  in the form 

AJ0
BJ0

JcK cJ

0J
 

21

1

2
,0

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=

JN

i
ic

J
J

N
J  (16) 

 
where  is the number of tested specimens for each crack 
configuration. In the above formulation, it is understood that the 
threshold fracture toughness, , is set equal to zero and the 
Weibull modulus, 

JN

thJ
α , of the corresponding Weibull distribution is 

assigned a fixed value of 2. In case limited ductile tearing does 
develop in some specimens, the corresponding toughness values can 
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be treated as censored values by manipulating the Master Curve 
procedure as above (see ASTM E-1921) in the form 

 
21

1

2
,0

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=

JN

i
icJ

r
J  (17) 

 
where r is now the number of tested specimens exhibiting no ductile 
tearing.  

Step 3 

Perform detailed, nonlinear finite element analyses in large 
geometry change (LGC) setting for the tested specimen geometries. 
The mesh refinements must be sufficient to ensure converged  

vs.  (or 
wσ

J wσ  vs. J ) histories for the expected range of m-values 
and loading levels.  

Step 4 

4.1 Assume an m-value. Compute the wσ  vs.  (or J wσ  vs. 

J ) trajectories for configurations A and B to construct the 
toughness scaling model relative to both configurations. 

4.2 Correct  (AJ0
AJ0 ) to its equivalent  (BJ0

BJ0 ), i.e., the 
corrected value of the mean toughness for the assumed m-value for 
effects of constraint loss or weld strength mismatch. Define the 
error of toughness scaling as ( ) AAA

m JJJmR 00,0)( −=  or 

( ) AAA
m JJJmR 00,0)( −= . 

4.3 If , repeat substeps 4.1-4.2 for additional m-
values. The calibrated Weibull modulus, , makes 

0)( ≠mR

0mm = 0)( =mR  
within a small tolerance. 

Numerical Procedures and Computational Models 

Finite Element Models for Homogeneous Fracture Specimens 

Three-dimensional finite element analyses are conducted on 
different crack configurations which include: (1) a conventional, 
plane sided C(T) specimen with 6.0=Wa , 25=B mm and 

mm; (2) a conventional, plane sided SE(B) specimen with 50=W
2.0=Wa , mm, mm and and (3) a bolt-

loaded surface crack SC(T) specimen with 
25=B 50=W WS 4=

25.0=ta , 3=ac and 
mm. For the C(T) and SE(B) specimens, a is the crack 

length, W is the specimen width, B is the specimen thickness and S 
is the bend specimen span. For the SC(T) specimen, a is the 
maximum depth of the surface crack, 2c is the length of the semi-
elliptical crack and t is the thickness of the cracked section. Figure 3 
shows the geometry and specimen dimensions for the analyzed 
crack configurations. Joyce and Link (1997) used these specimens 
to measure the cleavage fracture resistance of an ASTM A515-70 
pressure vessel steel. 

25=t

 
Figure 3. Geometry of tested specimens for A515-70 pressure vessel steel. 

 
Figure 4 displays the finite element model constructed for the 

3-D analyses of the SC(T) specimen. Symmetry conditions enable 
analyses using one-quarter of the 3-D model with appropriate 
constraints imposed on the symmetry planes. A focused ring of 
elements surrounding the crack front in the radial direction is used 
with a small key-hole at the crack tip; the radius of the key-hole, 

0ρ , is 2.5 μ mm. The half-length of the semi-elliptical crack is 
defined by 20 elements arranged over the (one-half) crack front. 
The quarter-symmetric, 3-D model for the SC(T) specimens has 
25650 nodes and 22800 elements. The models for the C(T) and 
SE(B) specimens have similar features and similar levels of mesh 
refinement. These meshes have 10 variable thickness layers 
defined over the half-thickness ( 2B ); the thickest layer is 
defined at 0=Z with thinner layers defined near the free surface 
( 2BZ = ) to accommodate strong Z variations in the stress 
distribution. The quarter-symmetric, 3-D models for the C(T) and 
SE(B) specimens have 11800 nodes and 9800 elements. 

Finite Element Models for Welded Fracture Specimens 

Three-dimensional nonlinear finite element analyses are also 
conducted on different welded crack configurations which include: 
(1) a conventional, plane sided SE(B) specimen with 5.0=Wa , 

25=B mm, 25=W mm and  and (2) a clamped surface 
crack SC(T) specimen with 

WS 4=
=ta 0.24, =ta 8.3, 25=t mm, 

4002 =W  mm and 300=L mm. For the SE(B) specimens, a is the 
crack length, W is the specimen width, B is the specimen thickness 
and S is the bend specimen span. For the SC(T) specimen, a is the 
maximum depth of the surface crack, 2c is the length of the semi-
elliptical crack, t is the thickness of the cracked section, 2W is the 
specimen width and L is the specimen length. The weld groove 
width for both specimen configurations is 102 =h mm. Figure 5 
shows the geometry and specimen dimensions for the analyzed 
crack configurations. Minami et al. (1995) used these specimens to 
measure the cleavage fracture resistance for steel weldments made 
of an API X80 pipeline steel as described previously. 
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Figure 4. Quarter-symmetric finite element model for the bolt-loaded 
surface crack specimen. 

 
Figure 6 displays the finite element model constructed for the 

3-D analyses of the SC(T) specimen. Symmetry conditions enable 
analyses using one-quarter of the numerical model with 
appropriate constraints imposed on the symmetry planes. Again, a 
focused ring of elements surrounding the crack front in the radial 
direction is used with a small key-hole at the crack tip; the radius 
of the key-hole, , is also 50 mm with similar levels of 
refinement along the crack front that closely match the mesh 
refinement employed in the SE(B) specimen. The half-length of 
the semi-elliptical crack is defined by 16 elements arranged over 
the (one-half) crack front. The quarter-symmetric, 3-D model for 
the SC(T) specimens has ~6300 8-node, 3D elements (~7500 
nodes). This finite element model is loaded by displacement 
increments imposed on the loading points with clamped constraint 
conditions at the specimen ends. The models for the SE(B) 
specimens have similar features and similar levels of mesh 
refinement. The quarter-symmetric, 3-D meshes have 12 variable 
thickness layers with ~10000 8-node, 3D elements (~12000 
nodes) defined over the half-thickness (

0ρ

2B ); the thickest layer is 
defined at  with thinner layers defined near the free surface 
(

0=Z
2BZ = ) to accommodate strong Z variations in the stress 

distribution. 

Material Models and Computational Procedures 

The elastic-plastic constitutive models employed in all 
analyses reported here follow a  flow theory with conventional 
Mises plasticity in large geometry change (LGC) setting. The next 
section describes numerical analyses for fracture specimens 
extracted from an A515-70 pressure vessel and an API X80 
pipeline steel weld that were tested in the experimental program. 
Gao et al. (1999) describes the uniaxial stress-strain curve for the 
A515-70 pressure vessel steel at the test temperature, 

2J

7−=T °C 
and °C. Minami et al. (1995) provides the uniaxial true 

stress vs. logarithm strain curves for the API X80 pipeline steel 
(base plate and overmatch weld material) at the test temperature, 

28−=T

5−=T °C.  These curves for both materials were used in the finite 
element computations reported here. 

 

 
Figure 5. Geometries for the tested welded fracture specimens. 

 

 
Figure 6.  Finite element model for the SC(T) specimen. 

 
The numerical computations for the cracked configurations 

reported here are generated using the research code WARP3D 
(Gullerud et al., 2004). The code incorporates a Mises ( ) 
constitutive model in both small-strain and finite-strain framework 
and solves the equilibrium equations at each iteration using a very 
efficient, sparse matrix solver highly tuned for Unix and PC based 
architectures. This sparse solver significantly reduces both memory 
and CPU time required for solution of the linearized equations 

2J
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compared to conventional direct solvers. A typical 3-D analysis for 
solution of the fracture models employed in this study runs in two to 
six hours in a single-processor PC-based workstation. The finite 
element computations employ a domain integral procedure (Moran 
and Shih, 1987) for numerical evaluation of the J integral along the 
crack front. The research code WSTRESS (Ruggieri, 2001) is used 
to construct  vs.  (wσ J wσ  vs. J ) trajectories for these fracture 
specimens needed to perform the calibration of parameter m. 

Cleavage Fracture Predictions for the A515-70 Pressure 
Vessel Steel 

Fracture Toughness Testing 

Joyce and Link (1997) and Gao et al. (1999) recently reported a 
series of fracture toughness tests conducted on an ASTM A515 
Gr70 pressure vessel steel. The fracture mechanics tests include: (1) 
a conventional, plane sided C(T) specimen with 6.0=Wa , 

mm and mm; (2) a conventional, plane sided SE(B) 
specimen with 

25=B 50=W
2.0=Wa , mm, mm and 

and (3) a bolt-loaded surface crack SC(T) specimen with 
25=B 50=W

WS 4=
25.0=ta , 3=ac and mm. The material is an A515-70 

pressure vessel steel (280 MPa yield stress at °C) with relatively 
high hardening properties (

25=t
7−

2≈ysuts σσ ). Gao et al. (1999) 
provides the true stress-logarithmic strain curve at the test 
temperatures ( °C and °C) for this material used in 
the finite element analyses of the specimens. 

7−=T 28−=T

Testing of these configurations was performed at 28−=T °C 
for the C(T) specimens and °C for the SE(B) and SC(T) 
specimens; these temperatures correspond to the ductile-to-brittle 
transition behavior for the material. Figure 7(a) provides a Weibull 
diagram of the measured toughness values for both test 
temperatures. The solid symbols in the plots indicate the 
experimental fracture toughness data for the specimens. Values of 
cumulative probability, F, are obtained by ordering the -values 
and using 

7−=T

cJ
( ) ( )4.03.0 +−= JNiF , where i  denotes the rank number 

and  defines the total number of experimental toughness values. 
The straight lines indicate the two-parameter Weibull distribution, 
Eq. (1). While the Weibull slopes for the C(T) and SE(B) toughness 
distributions are very similar (

JN

2≈α  for both distributions), the 
results clearly demonstrate a strong effect of constraint level on the 
characteristic toughness,  (the -value corresponding to 63.2% 
failure probability). In contrast, the Weibull slope for the SC(T) 
specimen differ significantly (

0J J

10≈α ) from the α -value for the 
C(T) and SE(B) specimens; here, the SC(T) and shallow crack 
SE(B) specimen have similar values for the characteristic toughness. 

 
 
 

 
a) 

 

 
b) 

Figure 7. (a) Weibull plots of experimental toughness values at 
temperatures −7°C and  −28°C for the A515-70 pressure vessel steel; (b) 
Cleavage fracture predictions for the SC(T) specimen at −7°C for the 
A515-70 pressure vessel steel. 

Parameter Calibration 

The parameter calibration scheme described earlier is applied to 
determine the Weibull stress parameters for the tested pressure 
vessel steel. Here, the plastic strain correction is not adopted, so that 
=γ 0 in previous Eq. (12) defining the Weibull stress. The Weibull 

modulus, , is calibrated using the deep notch C(T) specimens and 
the shallow notch SE(B) specimens. Because the specimens were 
not tested at the same temperature, the present methodology adopts 
a simple procedure to correct the measured toughness values for 
temperature. By using the Master Curve procedure given by ASTM 
E-1921 (ASTM, 2008), the -value for the C(T) specimens at 

m

0J
28−=T °C is scaled to corresponding -value at 0J 7−=T °C. 

Moreover, since the toughness values for this specimen are below 
the limit value MEbK Jc 00σ=  with the deformation limit 

30=M given by ASTM E-1921, they are taken directly as SSY 
toughness values at 28−=T °C. The characteristic toughness values 
for the C(T) and SE(B) specimens at °C are then given as: 

 54 kJ/m

7−=T

≈)(
0

TCJ 2 and 102 kJ/m≈)(
0

BSEJ 2. 
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a) 

 

 
b) 

Figure 8. Calibration procedure for the Weibull modulus, m, using 
constraint correction curves at −7°C for the A515-70 pressure vessel 
steel: (a) C(T) specimen; (b) SE(B) specimen. 

 
With the toughness values for the C(T) and SE(B) specimens set 

at the same temperature ( °C) and using  7−=T wσ  vs.  curves 
constructed from the 3-D finite element analyses for both crack 
configurations, the calibration procedure is then applied to 
determine the -value that yields the same 

J

m wσ -value for the pair 

( , ). Figure 8 provides constraint correction curves, 

vs.  and  vs. , for both specimen 

geometries with different m -values. The calibration process is 
illustrated in the plot by solid lines which indicate the -value that 

produces a unique value  corresponding to the pair 

( , ) at °C. Here, the calibrated Weibull 
modulus for the tested A515 pressure vessel steel is 

)(
0

TCJ )(
0

BSEJ

SSYJ )T(CJ SSYJ )(BSEJ

m
SSYJ0

)(
0

TCJ )(
0

BSEJ 7−=T
≈m 8. 

Fracture Predictions 

To verify the predictive capability of the Weibull stress 
methodology adopted in the present work, this section describes 
application of the toughness scaling model based on the Weibull 
stress ( wσ ) to predict the toughness distribution for the bolt-loaded 
surface crack specimen. Very detailed 3-D, nonlinear finite element 
analyses provide crack front stress fields to generate the evolution 

of wσ  vs.  for the -value calibrated in the previous section. 
Here, because the crack front length of the SC(T) specimen equals 
1.67 times the crack front length of the 1(T) specimens (Weisstein, 
2010), the corresponding Weibull stress must be scaled to the length 
of the semi-elliptical crack front.  

J m

The Weibull probability plot in Fig. 7(b) shows the predicted 
distributions of cleavage fracture toughness for the bolt-loaded 
surface crack specimen. The solid symbols in the plot indicate the 
measured cleavage fracture toughness ( ) for this specimen. 
Values of cumulative probability, F, are obtained by ordering the 

-values and using 

cJ

cJ ( ) ( )4.03.0 +−= JNiF , where  denotes the 
rank number and  defines the total number of experimental 
toughness values. The solid line on each figure represents the 
predicted Weibull distribution generated from the distribution (not 
individual values from tested specimens) of toughness values for the 
C(T) specimen with 

i

JN

=Wa 0.6 using a Monte Carlo procedure 
(Mann et al., 1974). The dashed lines represent the 90% confidence 
bounds generated from the 90% confidence limits for the calibrated 

-value (Thoman et al., 1969). m
The effectiveness of the present model in describing general 

fracture behavior for this specimen is clear as the predicted 
distribution of fracture toughness displayed in Fig. 7(b) agrees well 
with the experimental data. Here, the 90% confidence bounds 
bracket most of the measured toughness values in the mid-region of 
the curves. The results also indicate that the predicted curves: (1) 
overpredict the failure probability in the lower tail of the plots and 
(2) underpredict the failure probability in the upper tail of the plots. 
However, it should be emphasized that the toughness distribution 
for the bolt-loaded SC(T) specimen differs significantly from the 
toughness distribution for the shallow notch SE(B) specimen even 
though both specimens have similar levels of characteristic 
toughness (recall that the Weibull slopes for the toughness 
distributions of these specimens displayed in Fig. 7(a) are very 
different). Nevertheless, the overall error appears sufficiently small 
to support application of the Weibull stress methodology in the 
fracture predictions analyzed here. 

Prediction of Failure Load in the API X80 Girth Weld 

Experimental Program 

Minami et al. (1995) reported on a series of fracture tests 
conducted on weld specimens made of an API X80 pipeline steel. 
The welding procedure and welding conditions follow closely those 
employed in girth welds made in field conditions. Figure 5 shows 
the tested weld configurations which include deeply notched SE(B) 
fracture specimens and a wide plate SC(T) specimen with a semi-
elliptical, surface center crack with varying levels of weld strength 
mismatch: evenmatch ( 1.02) and 10% overmatch 

(

=yM

=yM 1.09). The SE(B) specimens have =Wa 0.5 with thickness 

=B 25 mm, width =W 25 mm and span distance =S 100 mm. The 
wide plate specimens have thickness 25 mm, width =t =W2 400 
mm and length =L 300 mm; here, the surface crack has length 

=c2 100 mm and depth =a 6 mm ( =ta 0.24 and =ac 8.3). In 
all fracture specimens, the weld groove width, 2h, is 10 mm.  

The weld specimens were prepared using standard GMAW 
procedure with heat inputs ranging from 0.3 to 0.9 kJ/mm according 
to the pass sequence (see details in Minami et al., 1995). 
Mechanical tensile tests extracted from the longitudinal weld 
direction provide the stress-strain data at room ( °C) and test 
temperature (

20
5− °C). At room temperature, the evenmatch weld has 
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yield stress, =ysσ 581 Mpa, and tensile strength, =utsσ 670 MPa. 

The 10% overmatch weld has yield stress, =ysσ 621 MPa, and 

tensile strength, =utsσ 691 MPa. The degree of weld strength 
mismatch is essentially similar to the mismatch level at room 
temperature. Moreover, both materials display relatively low strain 
hardening ( ≈ysuts σσ 1.11~1.15) so that effects of hardening 
mismatch are considered negligible. Other mechanical properties for 
this material include Young's modulus, =E 206 GPa and Poisson's 
ratio, =ν 0.3. Minami et al. (1995) provide further details on the 
mechanical tensile test data for this material. 

Testing of the SE(B) specimens was performed at 5−=T °C 
which is within the range of the ductile-to-brittle transition behavior 
for the material. Records of load vs. crack mouth opening 
displacements (CMOD) were obtained for each specimen using a 
clip gauge mounted on knife edges attached to the specimen surface. 
Post-test examinations established the amount of stable crack 
growth prior to final fracture by cleavage. Figure 9(a) shows the 
effect of strength mismatch on the measured -values. The 
toughness values for the 10% overmatch specimens exceed the 
evenmatch toughness by a factor of 1.5~2.0. Figure 9(b) provides a 
Weibull diagram of the measured toughness values for both sets of 
data. The solid symbols in the plot indicate the measured cleavage 
fracture toughness ( ) for this specimen. Values of cumulative 
probability, F, are obtained by ordering the -values and using 

cJ

cJ

cJ
( ) ( )4.03.0 +−= JNiF , where i  denotes the rank number and  

defines the total number of experimental toughness values. The 
straight lines indicate the two-parameter Weibull distribution, Eq. (1) 
with 0, obtained by a maximum likelihood analysis (Mann et 
al., 1974) of the data set with a fixed Weibull slope of 

JN

=thJ
=α 2.  

Fracture testing was also conducted on the wide plate specimens 
with a 10% overmatch girth weld at °C.  Records of overall 
(remote) strain, , vs. crack mouth opening displacements 
(CMOD) were obtained using 4 strain gages conveniently attached 
at a distance of 100 mm from the notch on both sides of the plate. 
The specimen failed by overload fracture after some amount of 
ductile tearing; here, the experimentally measured failure strain 
(average of the strain gage readings) is given by 

5−=T
rε

=fε 2.25% 
(Minami et al., 1995). 

 

 
a) 

Figure 9. (a) Experimental toughness values for welded deep crack SE(B) 
fracture specimens of API X80 steel with two mismatch (5°C); (b) Weibull 
distribution of toughness values for the experimental data set of the 
SE(B) fracture specimens. 

 
b) 

Figure 9. (Continued). 

Weibull Modulus Calibration for the Tested Weldment  

The parameter calibration scheme described previously is 
applied to determine the Weibull modulus for the tested weldment. 
In the present application, calibration of parameter  is conducted 
by scaling the mean value of the measured toughness distribution 
for the evenmatch SE(B) specimen (taken here as the "baseline" 
value) to an equivalent mean value of the toughness distribution for 
the 10% overmatch SE(B) specimen. The calibration process simply 
becomes a means of determining an -value that corrects the 
nondimensional characteristic toughness value for the evenmatch 
specimen, denoted 

m

m

Even
BSEJ )(,0 , to its equivalent value for overmatch 

specimen, 
Over

BSEJ )(,0 .  
As further refinement, the procedure also considers the 

influence of the plastic strain correction on the Weibull stress and, 
consequently, on the calibrated Weibull modulus for the tested 
material. For the purpose of assessing the effectiveness of Eq. (12) 
in predictions of the failure strain for the wide plated conducted 
next, the present investigation considers two sets of widely different 
parameters defining the microcrack density: i) =γ 0 (no plastic 
strain correction) and ii) =γ 1 and =β 0 which implies a simple 
linear dependence of microcrack density on the plastic strain. While 
this choice of parameters γ  and β  is somewhat arbitrary, it does 
make contact with the experimental findings of Lindley et al. (1970) 
and Gurland (1972) in ferritic steels.  

Very detailed finite element computations of these specimens 
enable construction of the Over

BSE
Even

BSE JJ )(,0)(,0 →  correction shown in 
Fig. 10(a)-(b) for varying -values. In both plots, each curve 
provides pairs of -values corresponding to the 10% overmatch 
and evenmatch SE(B) specimen that produce the same 
nondimensional 

m
J

wσ . The Weibull modulus does affect predictions 
of mismatch effects; here, changing the -value assigns a different 
weight factor to stresses at locations very near to the crack front 
thereby altering the ratio of mismatch correction. A closer 
inspection of these plots also reveals that the toughness scaling 
curves for the fracture specimens and mismatch levels considered 
display only a weak dependence on the adopted plastic strain 
correction. Because the crack geometry and degree of mismatch for 
both fracture specimens do not differ significantly, this behavior is 
not unexpected since the near-tip strain fields for both the 
evenmatch and overmatch specimens under analysis should be 
relatively similar. 

m
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The calibration scheme now proceeds by adopting a two-
parameter Weibull function given by Eq. (1) with =α 2 and 0 
to describe the toughness distribution. Here, the characteristic 
toughness values for the evenmatch and overmatch bend specimens 
are  67 kJ/m

=thJ

≈Even
BSEJ )(,0

2 and  118 kJ/m≈Over
BSEJ )(,0

2. Once the -
values for each mismatch condition is determined, the calibration 
procedure then yields the Weibull modulus of the tested material at 

°C for the two cases considered in the present study: i) 
13.5 for 

m

5−=T
=m =γ 0 (no plastic strain correction) and ii) =m 15.0 for 
=γ 1 and =β 0 (linear plastic strain correction). Figure 10 recasts 

the calibration strategy into a graphical procedure for both cases 
considered to determine parameter  using the scaling curves 
displayed in that plot. Again, these calibrated -values are similar 
and exhibit a relatively minor dependence on the adopted plastic 
strain correction. 

m
m

Failure Strain Prediction for the Welded Plate  

To verify the predictive capability of the Weibull stress 
methodology adopted in the present work, this section describes 
application of the toughness scaling model based on the 
nondimensional Weibull stress ( wσ ) incorporating effects of weld 
strength mismatch and plastic strain to predict the failure strain for 
the clamped surface crack SC(T) specimen with 10% overmatch. 
Very detailed nonlinear finite element analyses provide the crack 
front stress fields to generate the evolution of  wσ vs. J  for the 

-values calibrated in the previous section. Here, the -value at 

failure for the tested  SC(T) specimen, 

m J
Over

TSCJ )(,0 , and the 
corresponding failure strain are predicted using the measured deep 
crack toughness values for the evenmatched SE(B) specimen 
translated in terms of the (nondimensional) characteristic toughness, 

Even
BSEJ )(,0 . 

Figures 11(a)-(b) show the computed evolution of wσ  under 

increasing values of J  for the SE(B) and SC(T) configurations 
using the plastic strain correction model with the calibrated -
values. Figure 12 displays the mechanical response of the SC(T) 
specimen characterized in terms of the evolution of remote applied 
strain,  , with increased (nondimensional) crack-tip loading, 

m

rε J . 
These curves provide the quantitative basis to predict the failure 
strain for the surface crack specimen with 10% overmatch. Here, 
because the crack front length of the SC(T) specimen is 4  times the 
crack front length of the SE(B) specimen (Weisstein, 2010), the 

wσ -values for the bend specimen must be scaled to the length of 
the semi-elliptical crack front for the wide plate specimen to 
guarantee that similar volumes of the (near-tip) fracture process 
zone are included into the computation of the Weibull stress for 
each crack configuration (see Eq. (12)). 

 

 
a) 

 
b) 

Figure 10. Toughness correction using the TSM methodology based upon 
the nondimensional Weibull stress with varying Weibull moduli for the 
tested welded SE(B) fracture specimens. 

 

 
a) 

Figure 11. Nondimensional Weibull stress trajectories with nondimensional 
J for the evenmatch SE(B) and the overmatch SC(T) specimen for the 
calibrated m-values. 
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b) 

Figure 11. (Continued). 

 

 
Figure 12. Evolution of remote applied strain with increased 
nondimensional J for overmatch SC(T) specimen. 

 
Using again the TSM procedure outlined previously, prediction 

of the failure strain for the SC(T) specimen proceeds as follows. 
First, the characteristic 0J -value for the 10% overmatch SC(T) 

specimen is determined based upon the 0J -value for the evenmatch 
SE(B) specimen. The failure strain is then evaluated by means of 
the computed strain-crack driving force relationship for the wide 
plate specimen. As a further refinement, the 90% confidence limits 
for the 0J -value of the evenmatch SE(B) specimen are also 
employed to estimate the corresponding 90% confidence bounds for 
the failure strain of the SC(T) specimen. 

Consider first the nondimensional Weibull stress trajectories 
with no plastic strain correction displayed in Fig. 11(a). While  wσ  
for the evenmatch SE(B) specimen shows a marked increase with 
J , the Weibull stress for the SC(T) specimen rises at a much lower 

rate with increased levels of crack-tip loading. Given the expected 

toughness ratio (
Over

TSC
Even

BSE JJ )(,0)(,0 ) of ≈10~15 for these two data 
sets, the analysis clearly fails to predict the failure strain for the 
SC(T) specimen. Consider now the evolution of wσ  vs. J  
incorporating the effect of plastic strain displayed in Fig. 11(b). 
With the introduction of the adopted plastic strain correction, a 
different picture now emerges which can be summarized as follows: 

1) The wσ  vs. J  trajectory for the evenmatch SE(B) specimen 
increases rapidly in the initial stage of crack-tip deformation and 
then more slowly as crack-tip deformation continues and 2) The 
overmatch SC(T) specimen also displays a slowly rising Weibull 
stress curve, but which is now fully consistent with the toughness 
ratio for the analyzed data sets. Based upon the wσ  vs. 

J trajectories displayed in Fig. 11(b) and the plot of vs. rε J  
displayed in Fig. 12, the predicted failure strain, predε , and 
corresponding 90% confidence bounds (Thoman et al., 1969) are 

=predε 2.27% (1.2%; 3,6%). Even though Minami et al. (1995) 
report only a single value for the experimental failure strain, the 
ability of the present model in describing the fracture behavior for 
the overmatch SC(T) specimen seems evident as the predicted 
failure strain and the 90% confidence bounds agree very well with 
the experimental data. 

Summary and Conclusions 

This work describes the development of a probabilistic 
framework and a toughness scaling methodology incorporating the 
effects of constraint loss and weld strength mismatch on crack-tip 
driving forces. The approach builds upon a micromechanics 
description of the cleavage fracture process using the Weibull stress, 

, as a near-tip driving force coupled to a convenient description 
of the toughness scaling model. For the same material at a fixed 
temperature, the scaling model requires the attainment of a specified 
value for  to trigger cleavage fracture across cracked 
configurations, including weldments, even though the 
corresponding J (

wσ

wσ

δ )-values may differ widely. A key feature of this 
methodology is that  incorporates both the effects of stressed 
volume (the fracture process zone) and the potentially strong 
changes in the character of the near-tip stress fields due to constraint 
loss (and weld strength mismatch). The procedure is naturally suited 
for implementations coupled with finite element codes so that 
different constitutive properties as well as strain rate and thermal 
effects can easily be addressed. Application of the methodology to 
predict cleavage fracture behavior in pressure vessel steel tested in 
the transition region agrees well with experimental data. Moreover, 
extension of the procedure to predict the failure strain for an 
overmatch girth weld made of an API X80 pipeline steel clearly 
demonstrates the effectiveness of the micromechanics approach. 
Overall, the results lend strong support to use a Weibull stress based 
procedure in defect assessments of structural components. 

wσ
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