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A Comparative Study of the 
Application of Differential Evolution 
and Simulated Annealing in Radiative 
Transfer Problems  
The radiative transfer phenomenon is modeled by an integro-differential equation known 
as Boltzmann equation. This equation describes mathematically the interaction of the 
radiation with the participating medium, i.e., a medium that may absorb, scatter and emit 
radiation. In this sense, this work presents a study regarding the estimation of radiative 
properties in a one-dimensional participating medium by using two optimization heuristic 
methods, namely Simulated Annealing and Differential Evolution. First, a review of these 
two optimization techniques is presented. The direct radiative transfer problem solution, 
which is required for both optimization techniques, is obtained by using the Collocation 
Method. Finally, case-studies are presented aiming at illustrating the efficiency of these 
methodologies in the treatment of inverse radiative transfer problems. 
Keywords: inverse problem, radiative transfer, Differential Evolution, Simulated Annealing 
 
 

Introduction1 

The problem of parameter identification characterizes a typical 
inverse problem in engineering. It arises from the difficulty in 
building theoretical models that are able to represent satisfactorily 
physical phenomena under real operating conditions. Considering 
the possibility of using more complex models along with the 
information provided by experimental data, the parameters obtained 
through an inverse problem approach may then be used to simulate 
the behavior of the system for different operation conditions. 
Traditionally, this kind of problem has been treated by using either 
classical or deterministic optimization techniques (Baltes et al., 
1994; Cazzador and Lubenova, 1995). In recent years, however, the 
use of non-deterministic techniques or the coupling of these 
techniques with classical approaches, thus forming a hybrid 
methodology, became very popular due to the simplicity and 
robustness of evolutionary techniques (Wang et al., 2001; Silva 
Neto and Soeiro, 2002; Silva Neto and Soeiro, 2003; Silva Neto and 
Silva Neto, 2003). 

The increasing interest on inverse problems (IP) is due to the 
large number of practical applications in scientific and technological 
areas such as tomography (Kim and Charette, 2007), environmental 
sciences (Hanan, 2001) and parameter estimation (Souza et al., 
2007; Alvarez Acevedo et al., 2010), to mention only a few.  

When the parameters of the model (radiative properties) are 
known, it is possible to solve the so-called direct problem. Recently, 
the application of Monte Carlo Methods and new variations of the 
Discrete Ordinate Methods, as proposed by Chalhoub et al. (2007a), 
have opened new possibilities in this field. A review of other 
methods proposed in the literature can be found in Hansen and 
Travis (1974) and Lenoble (1977). 

The inverse problem consists in the determination of radiative 
parameters through the use of experimental data for minimizing the 
residual between experimental and calculated values of the radiation 
intensity. The solution of inverse radiative transfer problems has 
been obtained by using different methodologies, namely 
deterministic, stochastic and hybrid methods. As examples of 
techniques developed for dealing with inverse radiative transfer 
problems, the following methods can be cited: Levenberg-
Marquardt method (Silva Neto and Moura Neto, 2005); Simulated 
Annealing (Silva Neto and Soeiro, 2002; Souza et al., 2007);  
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Genetic Algorithms (Silva Neto and Soeiro, 2002; Souza et al., 
2007); Artificial Neural Networks (Soeiro et al., 2004; Oliveira et 
al., 2010); Ant Colony Optimization (Souto et al., 2005); Particle 
Swarm Optimization (Becceneri et al., 2006); Generalized Extremal 
Optimization (Souza et al., 2007); Interior Points Method (Silva 
Neto and Silva Neto, 2003); Particle Collision Algorithm (Knupp et 
al., 2007); Monte Carlo Method and Three Variations of the 
Discrete Ordinates Method (Chalhoub et al., 2007a); Artificial 
Neural Networks and Monte Carlo Method (Chalhoub et al., 2007b); 
Epidemic Genetic Algorithm and the Generalized Extremal 
Optimization Algorithm (Cuco et al., 2009); Epidemic Genetic 
Algorithm and Simulated Annealing Algorithm (Galski et al., 2009); 
Hybrid Approach with Artificial Neural Networks, Levenberg-
Marquardt and Simulated Annealing Methods (Lugon et al., 2009). 

The main goal of this paper is to compare the solutions of 
inverse radiative transfer problems by using two evolutionary 
techniques: Simulated Annealing and Differential Evolution. These 
techniques are used as optimization tools to deal with the inverse 
problem. The Collocation Method is used for solving the 
corresponding direct problem.  

This work presents a review about Heuristic Optimization 
Methods focusing on the algorithms of Simulated Annealing and 
Differential Evolution. The direct radiative transfer problem and the 
formulation of the associated inverse problem are presented. 
Afterwards, the methodology used in this work is described and 
applied to four illustrative examples. Finally, the conclusions and 
suggestions for future work are outlined.  

Nomenclature 
a  = Lower limit of independent variable 
A1 = Intensity of the isotropic external source of radiation 

incident at τ = 0 
A2 = Intensity of the isotropic external source of radiation 

incident at τ = τo 
b      = Upper limit of independent variable 
CR      = Crossover constant 
cputime  = Computational time 
D      = Perturbation rate 
DE      = Differential Evolution 
g      = Auxiliary function 
GA      = Genetic Algorithm 
I      = Intensity of the radiation field 
IP      = Inverse Problem 
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Kb = Boltzmann constant 
m = Number of dependent variables 
n = Number of experimental data points 
N = Population size 
NF = Number of function evaluations 
Nt = Number of temperature levels 
Ntemp  = Cooling number 
p = Parameter 
P = Boltzmann probability 
Q = Objective function 
r = Random number  
Res = Difference between experimental and calculated 

values of the exit radiation intensities 
S = Auxiliary function  
SA = Simulated Annealing   
T = Temperature 
x = Dependent variable 
y = Independent variable  

Greek Symbols  

∆E = Energy variation 
τo = Optical thickness 
τ = Optical variable 
μ = Cosine of the polar angle 
ω = Albedo for a single scattering 
σ = Standard deviation of the experimental error 
Λ = Hemispherical reflectivity 
Γ = Transmissivity 

Subscripts  

i, j, k       Initial 
f       Final 
cal       Calculated 
exp       Experimental 
 

Heuristic Methods 

It is well known that the solution of optimization problems 
through a deterministic approach requires the objective and 
constraint functions as well as their derivatives to be continuous. 
Besides, the optimum solution obtained is dependent on the initial 
configuration provided. Deterministic methods invest the whole 
computational effort in a single point (Vanderplaats, 1999; Edgar et 
al., 2001) that evolves along successive iterations. On the other 
hand, non-deterministic techniques are based on heuristics that are 
related to natural processes and genetics of populations or, 
alternatively, they are formulated according to structural 
approaches. These methods do not make use of gradient information 
for updating the search direction. However, they demand a high 
number of evaluations of the objective function (Coelho, 2003). In 
general terms this aspect can make the procedure time-consuming. 

In the following, a concise presentation of the main 
characteristics of the two evolutive optimization methods used in the 
present contribution will be made. 

Simulated Annealing 
The Simulated Annealing Algorithm (SA) belongs to the same 

class of methods such as Neural Networks and Genetic Algorithms 
in the sense that they all seek to mimic nature skills in providing 
optimal solutions. The method is inspired in the thermodynamic 
process of cooling (annealing) of molten metals to attain the lowest 
free energy state (Kirkpatrick et al., 1983). Metropolis et al. (1953) 
introduced a simple numerical method for representing the state of a 
set of atoms in equilibrium at a given temperature. Consequently, 

this optimization method uses an analogy with the annealing process 
from metallurgy. Annealing means that the metal is heated to a high 
temperature, bringing the atoms to a higher level of internal and 
kinetic energy. If the metal is cooled rapidly, the microstructure may 
be locked into a random unstable state. However, if the temperature 
is cooled slowly the atoms tend to fall into patterns that are 
relatively stable for the temperature considered. 

In this approach, a small random displacement of an atom is 
performed and the variation of the energy, ΔE, is calculated. If ΔE < 0 
the displacement is accepted and the configuration corresponding to 
the displaced atom is used as the starting point for the next step. On 
the other hand, if ΔE > 0, the new configuration can be accepted 
according to Boltzmann probability: 

 

( ) exp
b

EP E
K T

⎛ ⎞Δ
Δ = −⎜ ⎟

⎝ ⎠
 (1)  

 
A uniformly distributed random number r in the interval [0, 1] 

is then calculated and compared with P(ΔE) by using the 
Boltzmann constant (Kb). The Metropolis criterion establishes that 
the new configuration is accepted if r < P(ΔE); otherwise, it is 
rejected and the previous configuration is used again as a starting 
point. The design variables are perturbed randomly, being stored 
the best value of the objective function to each perturbation. The 
temperature is then reduced and new attempts are executed. Such 
procedure continues, avoiding the local minima, and, hopefully, at 
the end of the process the global minimum is obtained (Metropolis 
et al., 1953). 

 If T has a magnitude much higher than the standard deviation 
of the function in the interval, almost all the points are accepted. 
On the other hand, if T tends to zero, the method becomes a 
random search of the minimum. Thus, Ti is adopted as being the 
value of the standard deviation of the objective function in the 
studied interval and Tf is the expected precision of the optimal 
point (Corana et al., 1987).  

The main control parameters of the SA (cooling procedure) are 
the initial temperature, Ti, the cooling rate, Ntemp, the number of 
times the procedure is repeated before the ‘‘temperature’’ is 
reduced, Nt, and the number of points of minimum (one for each 
temperature) that are compared and used as the stopping criterion. 

Some successful applications of SA methodology can be 
mentioned: optimization of mechanical systems (Saramago et al., 
1999); estimation of the phase function of anisotropic scattering 
(Silva Neto and Soeiro, 2002); and estimation of radiative properties 
in an inverse radiative transfer problem (Souza et al., 2007). 

Differential Evolution 
The Differential Evolution (DE) is a structural algorithm 

proposed by Storn and Price (1995) for optimization problems. This 
approach is an improved version of Goldberg’s Genetic Algorithm 
(GA) (Goldberg, 1989) for faster optimization and presents the 
following advantages: simple structure, easiness of use, speed, and 
robustness (Storn and Price, 1995).  

Basically, DE generates trial parameter vectors by adding the 
weighted difference between two population vectors to a third 
vector. The key parameters of control in DE are the following: N, 
the population size, CR, the crossover constant, and D, the weight 
applied to random differential (scaling factor). Storn and Price 
(1995) have given some simple rules for choosing key parameters of 
DE for any given application. Normally, N should be about 5 to 10 
times the dimension (number of parameters in a vector) of the 
problem. As for D, it lies in the range 0.4 to 1.0. Initially, D = 0.5 
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can be tried, and then D and/or N is increased if the population 
converges prematurely. 

DE has been successfully applied to various fields such as 
digital filter design (Storn, 1995), batch fermentation process (Chiou 
and Wang, 1999), estimation of heat transfer parameters in a bed 
reactor (Babu and Sastry, 1999), synthesis and optimization of heat 
integrated distillation system (Babu and Singh, 2000), optimization 
of an alkylation reaction (Babu and Gaurav, 2000), parameter 
estimation in fed-batch fermentation process (Wang et al., 2001), 
optimization of thermal cracker operation (Babu and Angira, 2001), 
engineering system design (Lobato and Steffen, 2007), economic 
dispatch optimization (Coelho and Mariani, 2007), identification of 
experimental data (Maciejewski et al., 2007), apparent thermal 
diffusivity estimation during the drying of fruits (Mariani et al., 
2008), besides other applications (Storn et al., 2005). 
 
Mathematical Formulation and Solution of the Radiative 
Transfer Problem 

 
Consider a one-dimensional gray homogeneous participating 

medium of optical thickness τo, with transparent boundary surfaces 
that are subjected to external radiation. The mathematical 
formulation for such a problem considering no emission inside the 
medium and azymuthal symmetry is given by an integro-differential 
equation, known as Boltzmann equation (Özişik, 1973; Silva Neto 
and Moura Neto, 2005; de Abreu, 2005): 

 
1

1

( , ) ( , ) ( , ') '
2

I I I dωμ τ μ τ μ τ μ μ
τ

−

∂
+ =

∂ ∫  (2)  

 
with 0 < τ < τo and –1 ≤ μ ≤ -1 and subject to the boundary 
conditions: 
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In this equation, I(τ,μ) is the intensity (radiance) of the radiation 

field, τ  the optical variable, μ  the cosine of the polar angle, ω the 
single scattering albedo, and A1 and A2 are the intensities of the 
isotropic external sources of radiation incident at τ = 0 and τ = τo, 
respectively, according to Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. One-dimensional participating medium. 

 
In order to solve the direct problem, the Collocation Method 

(Villadsen and Michelsen, 1978; Wylie and Barrett, 1985) was used. 
In this methodology, the general Boundary Value Problem (BVP) is 
described as:  

 
( , , ),      y f x y p a x b= ≤ ≤&&  (4)  

 
where x is the independent variable, y is a vector of dependent 
variables and p is a vector of unknown parameters. This BVP, 
subject to general nonlinear, two-point boundary conditions 

 
( ( ), ( ), ) 0g y a y b p =  (5)  

 
is approximated by a polynomial function (S(x)) on each subinterval 
[xn, xn+1] of a mesh a = xo <  x1 < ... < xN  = b. This approximation 
should satisfy the boundary conditions 

 
( ( ), ( )) 0g S a S b =  (6)  

 
and satisfies the differential equations at both ends, and at the 
midpoints of each subinterval 
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In the context of this work, the integral terms found in the right 

hand side of Eq. (2) were substituted by Gauss-Legendre 
Quadratures (Wylie and Barrett, 1985). The Collocation Method is 
formally derived by evaluating the governing integro-differential 
equation at the collocation points, which results in a system of 
nonlinear ordinary differential-algebraic equations describing the 
evolution of the solution at the collocation points. This methodology 
is very attractive due to its easiness of implementation, even when 
the problem to be solved is highly nonlinear (Villadsen and 
Michelsen, 1978; Wylie and Barrett, 1985). 

It should be emphasized that 20 points were used for the 
approximation of the variable μ and 10 collocation points were 
taken into account to solve the direct problem. All case studies were 
solved by using a personal computer with a 3.2 GHz PENTIUM IV 
processor and 2 GB of RAM. Both algorithms were executed 10 
times for obtaining the values presented in the tables. 

Mathematical Formulation of the Inverse Problem 
The inverse problem is devoted to the determination of the 

parameters ω, τo, A1 and A2 that minimize the difference between the 
experimental and calculated values for the radiation intensities, 

cal
iI  and exp

iI , respectively, as given by 

 

( )2exp

1 1
( , ) ( , )

m n
cal
i k ki

k i
Q I Iτ μ τ μ

= =

= −∑ ∑  (10)  

 
where m represents the number of points considered for the 
discretization of the angular domain, i.e., the variable μ, and n 
represents the number of points considered for the discretization of 
the spatial domain, i.e., the variable τ. In all test case results 
presented in this work a total of 400 experimental data are 
considered, i.e., m = 20 and n = 20 in Eq. (10). For the solution of 
the inverse problem just described, both the SA and DE algorithms 
have been used.  

θ  

0μ >  0μ <  

θμ cos=  

0μ =  

1μ = − 1μ =

τ
0τ τ=  0τ =  

Y  Y
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Illustrative Examples 
As in any experimental procedure, there are uncertainties 

associated to the measured values. This aspect is taken into account 
in this work by adding noise to the calculated solution. The radiative 
properties are known in this case. The standard deviation of 
experimental errors, σ, is included in the following equation: 

 
 calI I Rσ= +  (11)  

 
where R is a pseudo-random number, generated with a zero mean 
Gaussian distribution and standard deviation equal to one, Ical is a 
vector containing the calculated values for the radiation intensity 
obtained by using the unknowns that are to be estimated in the 
inverse problem. 

In order to evaluate the performance of the methods of 
Simulated Annealing and Differential Evolution for the 
simultaneous estimation of both the single scattering albedo, ω, and 
the optical thickness, τo, of the layer, and also the intensities A1 and 
A2 of the external sources at τ = 0 and τ  = τo, respectively, of a 
given one-dimensional plane-parallel participating media, the four 
test cases listed in Table 1 have been performed. 

 

 
Table 1. Parameters used to compose the illustrative examples. 

Case # Parameter Meaning 1 2 3 4 

ω Single scattering  
albedo 0.1 0.1 0.9 0.9 

τo 
Optical thickness  
of the layer 0.5 5.0 0.5 5.0 

A1 
Intensity of external  
source atτ = 0 1.0 1.0 1.0 1.0 

A2 
Intensity of external  
source atτ = τo 

0.0 0.0 0.0 0.0 

 
The parameters used for the two algorithms are presented in 

Table 2.  These parameters are derived from previous contributions 
found in the literature (Angira and Babu, 2005; Storn et al., 2005; 
Kirkpatrick et al., 1983; Saramago et al. 1999). 

 

 
 
 
 

Table 2. Parameters used in the two evolutionary algorithms. 

Parameter  SA DE  

Generation number Ngen 100 100  
Population size N - 10  
Crossover 
probability CR - 0.8  

Perturbation rate D - 0.8  
Strategy - - DE/rand/1/bin  
Temperature 
number Ntemp 50 -  

Iterations number  
for each 
temperature 

Nt 10 - 
 

Temperature  
initial/final Ti /Tf 0.5/0.01 -  

Case #1 [0.25 0.25 0.5 0.5] 0 ≤ ω ≤ 1; 0 ≤ τo ≤ 1; 1 ≤ A1 ≤ 1.5; 0 ≤ A2 ≤ 1 
Case #2 [0.25 0.45 0.5 0.5] 0 ≤ ω ≤ 1; 3 ≤ τo ≤ 5; 1 ≤ A1 ≤ 1.5; 0 ≤ A2 ≤ 1 
Case #3 [0.75 0.25 0.5 0.5] 0 ≤ ω ≤ 1.4; 0 ≤ τo ≤ 1; 1 ≤ A1 ≤ 1.5; 0 ≤ A2 ≤ 1 

Initial estimate 

Case #4 [0.75 0.45 0.5 0.5] 

Randomly generated 

0 ≤ ω ≤ 1.4; 3 ≤ τo ≤ 5; 1 ≤ A1 ≤ 1.5; 0 ≤ A2 ≤ 1 
 
In this table, it should be emphasized that the initial estimates 

used by the SA algorithm in each case study were chosen inside of 
the design space. For the DE algorithm the initial estimate of the 
population is generated randomly inside the design space. 

The present case studies are intended to observe the performance 
of evolutionary algorithms for different levels of noise with standard 
deviation of experimental errors of 0%, 0.5% and 5%. For all test case 
results presented in this section the inverse problem algorithm was run 
ten times, showing then the worst, average and best results obtained. 

 

In Table 3 the results obtained for case #1 are presented. In 
this table, NF is the number of function evaluations and cputime is 
the running time, given in minutes. It can be observed that when 
using σ = 0 (without noise) both algorithms presented good 
estimates for the unknown parameters. However, if noise is 
increased, it can be observed that the estimates become poorer. 
The same behavior was observed for test cases #2-4 whose results 
are presented in Tables (4)-(6), respectively. The results obtained 
can be considered satisfactory. 
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Table 3. Results obtained for case #1. 

   ω τo A1 A2 Q (Eq. (10)) 
Exact Error in experimental data  0.1 0.5 1.0 0.0 - 

Worst 0.1003 0.5002 1.0000 0.0001 1.5578x10-6 
Average 0.0998 0.4999 0.9999 0.0000 5.7702x10-7 0.0 

Best 0.1000 0.4999 0.9999 0.0000 4.4564x10-9 
Worst 0.1015 0.4991 0.9980 0.0012 8.4403x10-4 

Average 0.1007 0.4985 0.9976 0.0010 8.4244x10-4 0.5% 
Best 0.1006 0.4983 0.9974 0.0011 8.4144x10-4 

Worst 0.0876 0.5018 0.9992 0.0058 0.0842 
Average 0.0876 0.5018 0.9992 0.0058 0.0842 

DE* 

5.0% 
Best 0.0870 0.5017 0.9990 0.0057 0.0842 

Worst 0.0994 0.4999 1.0001 0.0000 5.3920x10-7 
Average 0.0996 0.4998 0.9999 0.0000 3.4741x10-7 0.0 

Best 0.0999 0.4999 0.9999 0.0000 2.1496x10-7 
Worst 0.0944 0.4917 0.9922 0.0001 9.6060x10-4 

Average 0.0962 0.4959 0.9970 0.0000 8.5299x10-4 0.5% 
Best 0.0984 0.4976 0.9974 0.0000 8.4058x10-4 

Worst 0.0885 0.5012 0.9991 0.0059 0.0849 
Average 0.0880 0.5010 0.9990 0.0059 0.0844 

SA** 

5.0% 
Best 0.0879 0.5010 0.9989 0.0056 0.0842 

* NF = 1010, cputime = 4.18 min and ** NF = 7015, cputime = 30.21 min. 

 

 

 
Table 4. Results obtained for case #2. 

   ω τo A1 A2 Q (Eq. (10)) 
Exact Error in experimental data  0.1 5.0 1.0 0.0 - 

Worst 0.1024 4.9982 0.9988 0.0013 6.3559x10-6 
Average 0.1004 4.9976 0.9992 0.0000 2.6107x10-6 0.0 

Best 0.0998 5.0036 1.0008 0.0000 1.1856x10-7 
Worst 0.0978 4.9438 0.9844 0.0007 8.0356x10-4 

Average 0.0984 4.9470 0.9847 0.0008 8.0333x10-4 0.5% 
Best 0.0983 4.9494 0.9850 0.0010 8.0310x10-4 

Worst 0.0453 4.9678 0.9683 0.0000 0.0878 
Average 0.0454 4.9675 0.9682 0.0000 0.0878 

DE* 

5.0% 
Best 0.0455 4.9674 0.9680 0.0000 0.0878 

Worst 0.0997 5.0097 1.0026 0.0004 8.6468x10-7 
Average 0.0998 4.9981 0.9995 0.0003 7.7231x10-7 0.0 

Best 0.0994 4.9956 0.9988 0.0005 7.1664x10-7 
Worst 0.0929 4.9487 0.9789 0.0009 9.4786x10-3 

Average 0.0971 4.9256 0.9848 0.0005 8.0999x10-3 0.5% 
Best 0.0987 4.9390 0.9841 0.0004 8.0645x10-4 

Worst 0.0483 4.9578 0.9689 0.0001 0.0892 
Average 0.0484 4.9575 0.9685 0.0001 0.0890 

SA** 

5.0% 
Best 0.0485 4.9554 0.9680 0.0001 0.0888 

* NF = 1010, cputime = 21.45 min and ** NF = 8478, cputime = 62.14 min. 
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Table 5. Results obtained for case #3. 

   ω τo A1 A2 Q (Eq. (10)) 
Exact Error in experimental data  0.9 0.5 1.0 0.0 - 

Worst 0.8998 0.5001 1.0000 0.0000 4.0332x10-9 
Average 0.8999 0.5000 1.0000 0.0000 2.1772x10-9 0.0 

Best 0.9000 0.5000 1.0000 0.0000 2.0152x10-9 
Worst 0.9028 0.4978 0.9979 0.0001 8.9999x10-3 

Average 0.9020 0.4980 0.9984 0.0000 8.8788x10-4 0.5% 
Best 0.9018 0.4988 0.9994 0.0000 8.6296x10-4 

Worst 0.9020 0.4700 0.9864 0.0000 0.0776 
Average 0.9022 0.4790 0.9870 0.0000 0.0746 

DE* 

5.0% 
Best 0.9032 0.4807 0.9871 0.0000 0.0736 

Worst 0.8998 0.5000 1.0000 0.0001 8.3002x10-8 
Average 0.8998 0.5000 1.0000 0.0000 4.7782x10-8 0.0 

Best 0.8999 0.5000 1.0000 0.0000 2.0152x10-8 
Worst 0.9039 0.4981 0.9981 0.0000 8.7988x10-4 

Average 0.9025 0.4980 0.9986 0.0000 8.7744x10-4 0.5% 
Best 0.9021 0.4990 0.9994 0.0000 8.7014x10-4 

Worst 0.9049 0.4790 0.9859 0.0000 0.0760 
Average 0.9024 0.4792 0.9860 0.0000 0.0756 

SA** 

5.0% 
Best 0.9030 0.4800 0.9864 0.0000 0.0738 

* NF = 1010, cputime = 3.87 min and ** NF = 8758, cputime = 27.98 min. 

 

 

 
Table 6. Results obtained for case #4. 

   ω τo A1 A2 Q (Eq. (10)) 
Exact Error in experimental data  0.9 5.0 1.0 0.0 - 

Worst 0.9000 5.0002 0.9996 0.0000 2.8555x10-8 
Average 0.9000 5.0001 0.9999 0.0000 2.6683x10-8 0.0 

Best 0.9000 5.0000 0.9999 0.0000 2.6203x10-8 
Worst 0.8985 5.0043 1.0040 0.0008 7.8547x10-4 

Average 0.8990 5.0030 1.0038 0.0009 7.5553x10-4 0.5% 
Best 0.8993 5.0023 1.0028 0.0009 7.4263x10-4 

Worst 0.8999 5.0599 1.0118 0.0001 0.0844 
Average 0.8992 5.0592 1.0117 0.0000 0.0824 

DE* 

5.0% 
Best 0.8979 5.0562 1.0107 0.0000 0.0804 

Worst 0.9001 5.0003 0.9998 0.0000 3.7788x10-8 
Average 0.9000 5.0002 0.9999 0.0000 2.9988.x10-8 0.0 

Best 0.9000 5.0000 0.9999 0.0000 2.7245x10-8 
Worst 0.8988 5.0034 1.0040 0.0009 7.9877x10-4 

Average 0.8989 5.0033 1.0040 0.0009 7.7747x10-4 0.5% 
Best 0.8990 5.0033 1.0041 0.0009 7.5245x10-4 

Worst 0.8999 5.0692 1.0090 0.0001 0.0855 
Average 0.8994 5.0691 1.0189 0.0001 0.0834 

SA** 

5.0% 
Best 0.8981 5.0566 1.0179 0.0001 0.0811 

* NF = 1010, cputime = 16.39 min and ** NF = 8588, cputime = 58.98 min. 

 
 
Figures 2 to 5 present the noiseless experimental values for 

the radiation intensities, i.e., σ = 0 in Eq. (11), and the calculated 
values obtained by using the estimated radiative properties in the 
inverse problem solution. The results corresponding to 
Differential Evolution (DE) and Simulated Annealing (SA) are 

shown. The radiation intensity values are depicted for the output 
radiation at both the boundaries of the medium, i.e., at τ = 0 with 
μ < 0, and τ  = τo with μ > 0. 
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Figure 2. Radiation intensity profile for case #1 (ω = 0.1, τo = 0.5, A1 = 1 and 
A2 = 0). 
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Figure 3. Radiation intensity profile for case #2 (ω = 0.1, τo = 5.0, A1 = 1 and 
A2 = 0). 
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Figure 4. Radiation intensity profile for case #3 (ω = 0.9, τo = 0.5, A1 = 1 and 
A2 = 0). 
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Figure 5. Radiation intensity profile for case #4 (ω = 0.9, τo = 5.0, A1 = 1 and 
A2 = 0). 

 
 

In Figure 6, for case #1, the residuals (Res) between the 
experimental and calculated values of the output radiation at the 
boundaries of the medium are shown: 

 

expcalRes I I= −  (12)  
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Figure 6. Residuals observed for case #1 with experimental data of 0.5% 
and 5%. 

 
In this Fig. 6 it is not possible to observe any dependence 

between the residuals obtained by both algorithms. The same 
behavior is observed for the other cases. 

In Table 7, the values for the hemispherical reflectivity (Λ) and 
the transmissivity (Γ) calculated with Lii and Özişik (1973), and 
Özişik and Yener (1982) are shown.   
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Table 7. Comparison of the values for the transmissivity and 
hemispherical reflectivity. 

  Case #1 Case #2 

  Γ Λ Γ Λ 

 Exact 0.17059 0.45631 0.15030 0.00205 

DE 0.17091 0.45623 0.15006 0.00205 

SA 
0% noise 

0.17044 0.45636 0.14915 0.00207 

DE 0.17068 0.45634 0.14544 0.00215 

SA 
0.5% noise 

0.17044 0.45641 0.14592 0.00217 

DE 0.14441 0.45281 0.06621 0.00187 

SA 
5% noise 

0.14595 0.45335 0.07047 0.00191 

  Case #3 Case #4 

  Γ Λ Γ Λ 

 Exact 1.73085 0.65665 1.13355 0.05750 

DE 1.73084 0.65665 1.13355 0.05750 

SA 
0% noise 

1.73081 0.65666 1.13354 0.05749 

DE 1.73706 0.65752 1.13670 0.05763 

SA 
0.5% noise 

1.73711 0.65769 1.13658 0.05735 

DE 1.77045 0.65831 1.14554 0.05536 

SA 
5% noise 

1.76984 0.65830 1.14574 0.05553 

 

Conclusions 
In the present work, the effectiveness of using Differential 

Evolution and Simulated Annealing for the estimation of radiative 
properties through an inverse problem approach was analyzed. 

In this sense, four benchmark cases were studied and it was 
possible to conclude that both algorithms led to good results for an 
acceptable number of generations. It should be pointed out that the 
Differential Evolution Algorithm led to optimal values that are very 
similar to those obtained by Simulated Annealing, requiring, 
however, a smaller number of objective function evaluations. This 
result was expected, since for the Simulated Annealing Algorithm, 
for a given iteration, every “temperature” is submitted to a proper 
number of internal iterations for refinement purposes. This makes 
the evolutionary process longer, thus increasing the total processing 
time. On the other hand, as previously mentioned in the works of 
Storn and Price (1995), Storn (1999) and Angira and Babu (2005), 
the number of evaluations of the objective function resulting from 
the Differential Evolution Algorithm is smaller because the 
evolution scheme is much simpler. 

Another interesting aspect is that by adding noise to the 
synthetic experimental points results in an increase in the objective 
function values, as observed in Tables 3-6. Such a behavior was 
previously expected since noise does not permit the convergence of 
the optimization process to the real experimental values. 

Consequently, the user should be aware of this behavior when using 
real experimental data, which is always affected by noise.    

As future research work, the authors intend to analyze the 
influence of changing the parameter values of the optimization 
algorithms and observe their influence on the performance of the 
estimation procedure. The inclusion of the conduction heat transfer 
effect in the inverse problem of combined conduction and radiation 
effects in semitransparent media is also left for further studies. 
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