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Parametric Analysis of a 
Phenomenological Model for Vortex-
Induced Motions of Monocolumn 
Platforms 
Phenomenological models are an important branch in VIV (Vortex-Induced Vibrations) 
and in VIM (Vortex-Induced Motions) studies to complement the results achieved via 
CFD (Computational Fluid Dynamics), as the latter tool is not presently a suitable tool 
for intense use in engineering analysis, due to high computer power requirements. A 
phenomenological model for evaluating the VIM on monocolumn platforms is presented 
and its results are compared with experimental ones. The main objective is to present a 
parametric analysis, focusing on the physical significance of the modifications in 
parameter values. The following parameters are varied: aspect ratio (L/D), structural 
damping ( ), fluid damping ( ) and Strouhal number (S). The results are presented in 
terms of: non-dimensional amplitudes of motion (AX/D and AY/D), added mass 
coefficient (Ca) and periods of motion (TX and TY). The phenomenological model is 
based on a time-domain, two degree-of-freedom structural model coupled with van der 
Pol wake oscillators. The governing equations are solved through fourth-order Runge-
Kutta schemes. 
Keywords: vortex-induced motions (VIM), phenomenological model, van der Pol wake 
oscillator, two degree-of-freedom, monocolumn platform 
 
 
 
 
 

Introduction
1
 

A numerical tool based on a phenomenological model is 

presented; it is adapted to represent the fluid-structure interaction of 

monocolumn platforms during the occurrence of VIM (Vortex-

Induced Motions). A parametric analysis is performed comparing 

the results with data from the VIM tests carried out with the 

MonoBR (monocolumn platform) presented in Gonçalves et al. 

(2010). 

The model is composed of a linear two degree-of-freedom 

(DOF) oscillator representing the structural dynamic and a non-

linear oscillator based on the van der Pol equation representing the 

effect of the vortex shedding. Similar approaches have been taken 

by Furnes (2000), Facchinetti et al. (2004), among others. 

The approach considered is to systematically study the effects of 

varying the parameters which are important to the phenomenon so 

as to gain an insight into it. 

The work herein presented is being developed in the context of a 

large effort to study the VIM phenomenon both numerically and 

experimentally. It is at a very early stage of development as the 

model is still quite simple. However, it is based on a structured line 

of work in which each improvement is implemented carefully and 

compared with experimental results. During this process, both 

approaches, numerical and experimental, are expected to interact 

and be improved. With these aspects in mind, the work was 

structured in such a way that useful conclusions can be easily 

drawn. 

The second section of this paper briefly presents the formulation 

of the model with theoretical aspects. In the third section, the 

geometry and parameter values for the model are presented. The 

results of a parametric analysis are presented in the fourth section, 

with comparisons and discussion. Finally, the last section presents 

an overview of the results with a brief conclusion. 
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Nomenclature 

     = reduced in-line displacement 

     = reduced cross-flow displacement 

   = coupling amplification drag parameter 

   = coupling amplification lift parameter 

Ca = potential added mass coefficient 

   = drag coefficient for fixed cylinder 

       = amplified drag coefficient related to the stall 

parameter 

   = drag coefficient 

   = lift coefficient 

    = vortex shedding lift coefficient for fixed cylinder 

    = vortex shedding drag coefficient for fixed cylinder 

  = diameter 

   = coupling parameter between in-line and cross-flow 

force 

  = immersed length 

  = Strouhal number 

   = natural period of oscillation in still water  

TX = period of in-line motion  

TY = period of cross-flow motion  

    = flow velocity  

        = reduced velocity in still water 

   = fluid damping  

   = structural damping  

   = mass ratio 

   = potential added mass  

   = structural mass  

   = reduced drag coefficient 

   = reduced lift coefficient 

  = stiffness  

  = in-line displacement  

  = cross-flow displacement  

Greek Symbols 

   = Strouhal frequency  
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   = natural frequency of the system 

  = fluid damping coefficient (stall parameter) 

   = damping coefficient for in-line oscillator 

   = damping coefficient for cross-flow oscillator 

  = structural damping coefficient 

  = fluid density  

  = frequency of oscillation 

Formulation of the Model 

In the phenomenological model, a two DOF elastically 

supported rigid cylinder with low aspect ratio was considered, 

according to details found in Rosetti et al. (2009). It is allowed to 

oscillate in both directions: stream (x-axis) and cross-wise (y-axis). 

The free-stream velocity is V, diameter is D and the immersed 

length is L.  

Considering this system, the equation for modeling the 

structural dynamics can be represented by a pair of linear oscillators, 

as follows: 

 

                

                
(1) 

 

As usual, the inertia and damping forces are both composed of 

structural and fluid terms, and the stiffness of the system is 

represented by a linear term proportional to the displacement. The 

mass of the system,  , is then expressed in the following way: 

 

        (2) 

 

The fluid component of the inertia,   , corresponds to the 

potential effects, then the potential added mass reads: 

 

       
      (3) 

 

where the potential added mass coefficient can be considered as 

    . 

The damping component, c, is linear and also composed of a 

structural term, cs, (viscous dissipation of the support system) and 

by a fluid damping term, cf: 

 

        (4) 

 

The structural damping term reads: 

 

 

         (5) 

 

where term    is the angular natural frequency         and   is 

the structural damping coefficient. 

During the oscillations, the fluid damping term simulates the 

fluid viscous dissipation of the energy, which is not provided by 

vortex shedding. Following Blevins (1990), the fluid damping term 

reads: 

 

         
  (6) 

 

where   (usually called stall parameter) is a function of the 

oscillation amplitude, related to the amplified average drag 

coefficient obtained from cross-flow oscillations. This parameter is 

assumed constant herein, as done by Facchinetti et al. (2004), 

among others. 

Parameter    is a reference angular frequency, here taken as the 

Strouhal frequency: 

      
 

 
   (7) 

  

where   is the Strouhal number. 

The effects caused by vortex shedding are modeled by the term 

on the right-hand side of the dynamic equations. These terms read: 

 

   
 

 
        

   
 

 
        

  (8) 

 

 

As mentioned, the oscillatory nature of the motions caused by 

the interaction between vortex shedding and structure is modeled 

through van der Pol equations. Both cross-flow and in-line 

directions have their own oscillators and the coupling between the 

two DOF is presented as follows. The fluid oscillator equations are: 

 

        
    

          
    

  

 
   

 
  (9) 

        
    

           
    

  

 
         (10) 

 

The terms on the right-hand side of Eqs. (9) and (10) are the 

coupling between the fluid oscillator and the structure oscillator. 

Such terms are functions of the body acceleration, as recommended 

by Facchinetti et al. (2004). The counterpart of the coupling 

between the oscillators occurs through the lift and drag coefficients: 

 

           (11) 

  

           
           (12) 

 

The constants     and     are vortex shedding lift and drag 

coefficients for a fixed structure,    is the drag coefficient for a 

fixed cylinder and   is a constant determined by fitting the data with 

the experiments. 

Basic Geometry and Parameter Values 

The experimental test was carried out with a circular structure 

with low aspect ratio. The dimensions of the small-scale model also 

employed in the numerical model are L = 0.21m and D = 0.54 m. The 

immersed length L refers to the full draft configuration of the real 

system. The aspect ratio of this system is, therefore, around L/D = 0.4 

(in full draft configuration), which is the feature that makes this 

structure somewhat peculiar, as far as VIM-subjected systems are 

concerned. The details of the MonoBR tests, such as geometry of the 

hull and test conditions, were presented in Fujarra et al. (2009) and 

Gonçalves et al. (2010). The geometric and experimental 

configuration therein presented will be the reference for the present 

analysis and variations are performed according to that reference 

configuration. 

In the structural oscillator, the structural mass in air is m = 

45.71 kg; the structural damping coefficient is a given parameter 

estimated as   = 4.4% and the stiffness constant is k = 4.05 N/m. 

Concerning the latter value, it is important to emphasize that it 

refers to the stiffness obtained from the decay test in still water, 

which means that this is not the stiffness observed with a flow 

velocity different from zero. It is obvious that each velocity presents 

a respective stiffness that determines the equilibrium point around 

which oscillations occur.  
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The model tests occurred in the Reynolds range        
    and, as usual, the reference vortex shedding lift coefficient     

is taken as         as in Blevins (1990), Facchinetti et al. (2004) 

and Furnes (2000). 

The work by Fox and West (1993) presented results of drag 

coefficients for a stationary cylinder in a range of Reynolds similar 

to our work, testing many aspect ratios. They showed that, below 

aspect ratio 13, drag coefficient varies dramatically. Corroborating 

this data, the results obtained from the model tests in Gonçalves et 

al. (2009a) were also different from the usual value (      ). 

According to this, the reference drag    is taken as       , which 

was obtained from the experiments reported in Gonçalves et al. 

(2010). 

The same work by Fox and West (1993) showed that, despite a 

range of Reynolds being usually associated with a Strouhal number 

equal to 0.2, for low aspect ratios (below 13) this number falls 

dramatically. The experiments performed in 2008 and reported in 

Gonçalves et al. (2010) corroborated this result by presenting 

       . The Strouhal number is a very important parameter for 

the present study and will be discussed later. 

Following Furnes and Sorensen (2007), parameter     was 

chosen as        . This value is probably also a function of the 

aspect ratio; however, there is no public data available for the aspect 

ratio of the present system. 

In order to be coherent when using such parameters, all the 

values should not only apply for the same Reynolds range but also 

for the same aspect ratio. However, there are no available data with 

all parameters required by the model. 

As presented before, parameter   was derived by Blevins 

(1990), as follows: 

 

  
      

   
 (13) 

 

where        is the drag coefficient for fixed cylinders, 

amplified due to cross-flow oscillations. It is a function of 

oscillation amplitude; however, it is here taken as constant. In the 

phenomenological model, the values are not defined per unit length. 

Therefore, this parameter would be       . In order to be 

consistent with other authors, for example: Blevins (1990) and 

Facchinetti et al. (2004), parameter   is re-defined as: 

 

  
      

   
  (14) 

The result        is used in the model. Parameters       

(respectively, cross-flow and in-line amplification factors),       

(respectively, cross-flow and in-line “damping” values), K 

(parameter that couples cross-flow and in-line motions) are obtained 

by fitting the experiments. Therefore,                     

             . Notice that the ratios     are kept equal to 40, 

as Facchinetti et al. (2004) obtained from least-square 

approximation with experimental data. All these parameters refer to 

the basic set, according to which all the following results were 

obtained. 

Results and Discussion 

All the results from experiments are plotted as X or * to be 

compared with the results from the phenomenological model. 

Definition of analyzed cases 

As this study is a branch of a combined experimental-numerical 

study, some aspects which are considered important to the 

understanding of the phenomena involved were here investigated in 

terms of the related parameters, in order to give some insight of the 

physics involved. This approach aims to build a more extensive 

body of knowledge about the VIM on monocolumn platforms or, 

more generally, the VIV on cylinders with low aspect ratio. More 

details about the relevant aspects of VIM phenomenon were 

explained in Gonçalves et al. (2009b). Furthermore, by investigating 

the effects of varying such parameters, one tries to identify the right 

questions and, through suitable experiments, might be able to 

answer them.  

The parameters investigated are presented in Table 1. 

Variation of aspect ratio 

The first parameter varied in this study was the aspect ratio. The 

premises of this study were to keep the mass ratio (      
    ) close to unity and keep the same natural period for all the 

runs. 

The following results are reduced: amplitudes of motions in-line 

and cross-flow, respectively presented in Fig. 1 and in Fig. 2. The 

results show an increase of the amplitudes with the increase of the 

aspect ratio. The experimental results suggest that this behavior is 

coherent. As for increasing aspect ratio, there is also an increase of 

amplitude in both directions. There is, however, a difference in in-

line direction, in which the motions increase earlier than in the 

experimental results. 

 
Table 1. Characteristics of the different surfaces and basic experimental conditions.

Cases 
Aspect Ratio 

(   ) 

Structural 

Damping ( ) 

Fluid Damping 

( ) 

Strouhal 

Number ( ) 
Mass Ratio 

(  ) 

Natural 

Frequency 

(  ) 

Aspect Ratio (   ) 

0.1 - 0.2 - 0.3 

0.4 - 0.5 - 0.75 

1.0 - 1.5 

4.4% 0.45 0.078 1.0 0.21 

Structural Damping ( ) 0.4 

0.44% - 2.2% 

4.4% - 8.8% 

44% 

0.45 0.078 1.0 0.21 

Fluid Damping ( ) 0.4 4.4% 
0.225 - 0.45 

0.9 
0.078 1.0 0.21 

Strouhal Number ( ) 0.4 4.4% 0.45 

0.05 - 0.075 

0.1 - 0.15 - 0.2 

0.25 

1.0 0.21 
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Figure 1. Cross-flow response for different aspect ratios (L/D).  

 

Figure 2. In-line response for different aspect ratios (L/D). 

 

The next plot, Fig. 3, presents the results of added mass for 

different aspect ratios. The added mass is obtained by a frequency 

domain analysis procedure as in Fujarra and Pesce (2002), as follows: 

 

      

     
        

      

 
 (15) 

  

where     is the total hydrodynamic force, including potential 

added mass and fluid damping. Therefore, the following arrives: 

 

  
     

      

   
      

     
 

 
 

(16) 

 

 

Figure 3. Added mass for different aspect ratios (L/D). 

 

Mainly in high reduced velocities, larger than 8.0, the model 

fairly well reproduces the behavior of the added mass as obtained by 

Fujarra and Pesce (2002) and by Vikestad et al. (2000). For reduced 

velocities smaller than that, it is difficult to obtain the added mass 

from the experimental data, as the amplitudes and forces are very 

small. This might explain the discrepancy between the model and 

the experimental results in that region of velocities. 

It is very interesting to notice that added mass tends to zero 

instead of –1. In this sense, the present results somewhat differ from 

common VIV results, and the experimental results presented seem 

to corroborate this tendency. At this point, it is difficult to 

understand this difference but further investigation is also being 

performed. 

The next results, Fig. 4 and Figure 5, present the period of 

oscillations cross-flow and in-line, respectively. There is a good 

correspondence between experimental and numerical results for 

reduced velocities larger than 8.0, and double-frequency (or half 

period) relation between in-line and cross-flow motions is 

preserved. For reduced velocities smaller than 8.0, the 

phenomenological model presents large periods due to the modeling 

of force caused by vortex shedding. In this range (           ), 

the vortex shedding frequency follows the Strouhal relation, Eq.   

(7), not being synchronized with the natural frequency of the 

structure. Since, for this range, the fluid velocity is fairly low (below 

0.1 m/s), the forcing frequency is also very low, though the 

amplitudes of motions and forces are very low. 

 

Figure 4. Cross-flow period of oscillation over natural period for different 
aspect ratios (L/D). 

 

Figure 5. In-line period of oscillation over natural period for different 
aspect ratios (L/D). 

Variation of structural damping 

The next plots present the results obtained by varying the 

structural damping. This parameter is not easy to be measured, 

because it would be necessary to perform a decay test in air with the 

structure supported by the springs; however, the damping is known 

to be very small. 

The following plots, Fig. 6 and Fig. 7, are the cross-flow and in-

line motions. It is clear that the structural damping up to around 8% 

is not very representative, as motions do not increase very much. As 

of 40%, it seems to be more representative as the increase of 

motions is larger. 
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Figure 6. Cross-flow response for different structural damping values. 

 

Figure 7. In-line response for different structural damping values. 

 

Figure 8 presents the results of added mass for different 

structural damping values. Very little change is observed when 

structural damping is varied. 

 
Figure 8. Added mass for different structural damping values. 

 
Figure 9. Cross-flow period of oscillation over natural period for different 
structural damping values. 

 

Figure 9 and Fig. 10 present the period of oscillations in cross-

flow and in-line directions, respectively. Once again, very little 

change is observed when the structural damping is varied, as far as 

periods are concerned.  

 

 

Figure 10. In-line period of oscillation over natural period for different 
structural damping values. 

Variation of fluid damping 

The fluid damping instantiates effects of viscous damping 

caused by the motion of the structure, relative to the fluid while 

oscillating. It is difficult to obtain this parameter from the 

experimental model test as it is not possible to separate the damping 

effects caused by vortex-shedding from those caused by the motion 

of the body relative to the fluid. One alternative to do so, and to 

obtain a fluid damping coefficient, is to perform a decay test with 

fluid velocity. It is clear that fluid damping should be a function of 

motion amplitude. However, it is here taken as a constant for the 

sake of simplicity. 

Figures 11 and 12 present, respectively, the cross-flow and in-

line motions when fluid damping is varied. The variation of fluid 

damping causes large variation of response and, as expected, an 

increase of fluid damping causes a decrease in the motions. 

 

Figure 11. Cross-flow response for fluid damping values. 

 

Figure 12. In-line response for different fluid damping values. 

 

The following plot, Fig. 13, presents added mass for varying 

fluid damping. A large variation in added mass is also obtained 

when varying the fluid damping. 
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Figure 13. Added mass for different fluid damping values. 

 

Figure 14 and 15 present, respectively, the variation of the 

period of oscillations. It can be noticed that the periods are less 

impacted by the change in damping in comparison with the previous 

results. This fact is consistent with the model development, since the 

damping has no direct correlation with the motion frequencies 

calculation. It is clear that the double frequency relation between in-

line and cross-flow remained preserved in this case. 

 

Figure 14. Cross-flow period of oscillation over natural period for different 
fluid damping values. 

 

Figure 15. In-line period of oscillation over natural period for different fluid 
damping values. 

Variation of Strouhal number 

The Strouhal number is defined as a dimensionless constant 

proportional to the predominant vortex-shedding frequency and 

flow velocity, multiplied by the characteristic diameter of the 

cylinder. It is common to assume that the Strouhal number is a 

function of the Reynolds number. However, in accordance with 

some researchers, such as Fox and West (1993), it is possible to 

argue that, for cylinders with low aspect ratio (below 13), the 

Strouhal number is also influenced by this parameter, as also 

presented in Gonçalves et al. (2010), in which the obtained 

Strouhal number is as low as 0.078. 

So far, it is premature to state that this actually occurs, yet one 

could expect the shedding frequency not to be constant along the 

span and that 3D effects strongly influence the vortex-shedding 

patterns and, therefore, the Strouhal number. It is also possible to 

argue that the vortex shedding pattern is not constant even looking 

at one aspect ratio in a small range of reduced velocities. 

Figures 16 and 17 present, respectively, cross-flow and in-line 

motions when the Strouhal number is varied. It is clear that this 

parameter is essential for modeling the phenomenon, since 

substantial variation in motions is observed. Since the parameter is 

related to the vortex-shedding pattern, and periodicity, a thorough 

experimental investigation needs to be performed, aiming to obtain 

vortex-shedding frequencies and patterns for small aspect ratios. 

This investigation is currently being performed. 

 

Figure 16. Cross-flow response for different Strouhal numbers values. 

 

Figure 17. In-line response for different Strouhal numbers. 

 

Figure 18 presents the added mass obtained from varying the 

Strouhal number. There is a large variation in the added mass 

caused by variation in Strouhal number. It is important to notice 

that, once the Strouhal approaches 0.2, the added mass approaches 

the value –1, a common result for infinite cylinders, see Vikestad 

et al. (2000). On the other hand, the added mass approaches 0 

when the Strouhal number is below 0.1. This is also a subject that 

requires further experimental investigation, i.e., added mass of low 

aspect ratio cylinders. 

 
Figure 18. Added mass for different Strouhal numbers. 
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Figure 19. Cross-flow period of oscillation over natural period for different 
Strouhal numbers. 

 

Figure 20. In-line period of oscillation over natural period for different 
Strouhal numbers. 

 

In Fig. 19 and Fig. 20, the periods of oscillation when the 

Strouhal number varies are presented. 

This was the only parameter capable of substantially influencing 

the period of oscillations, suggesting that it is strongly related to the 

physics of the phenomenon. Experimental data relating the Strouhal 

number to the aspect ratio will be very useful in order to model the 

phenomenon correctly.  

Conclusions 

A systematic investigation of the VIM within a range of 

meaningful parameters was performed and the results compared and 

discussed. The aim was to draw some conclusions about the 

phenomenological modeling itself, identifying merits and 

deficiencies in order to improve it, along with drawing some 

conclusions about some characteristics of the phenomenon, 

identifying the aspects which are not profoundly understood and 

pointing out the direction for further experimental investigations. 

Firstly, the aspect ratio was investigated. This subject was raised 

by the research team during experiments with a monocolumn 

platform which presents low aspect ratio (L/D < 1). There is a strong 

belief that the aspect ratio has great influence on the phenomenon 

mainly due to 3D effects caused by the vortices shed at the bottom 

of the structure and the interaction with the vortices shed along the 

span. Experimental and numerical results show that larger aspect 

ratios cause an increase in the motions. Added mass is also strongly 

influenced by the aspect ratio as the asymptotic limit is no longer –1 

as in common VIV (great aspect ratio cylinders), but 0 instead. 

Coherently, the added mass for shorter structures drops more slowly 

than for the longer ones, inducing smaller motions. The periods of 

oscillations, however, display similar behavior in all cases. 

After that, an investigation was performed on the structural and 

fluid damping components. This approach was important to 

highlight some aspects of the modeling and experiment, such as the 

small influence of the structural damping on the motions of the 

structure and, on the other hand, the large effect of the fluid 

damping on them. As commented before, the fluid damping is a 

function of the amplitude of motion, but it was here taken as a 

constant. Perhaps, better results would be achieved if such modeling 

was performed. 

The last parameter investigated was the Strouhal number. This 

parameter is related to the characteristics of the vortex-shedding. 

Considering low aspect ratio cylinders, the parameter showed to be 

essential to the understanding of the phenomenon and in this 

particular situation the usual 0.2 value may be incorrect. The group 

has concluded that the parameter should be a function of the aspect 

ratio due to the 3D effects and, perhaps also it may not be constant 

within the range of synchronization, because of the tri-

dimensionality and interaction between the body and the wake. 

During the experiments with the monocolumn platform presented in 

Gonçalves et al. (2010), a 0.078 Strouhal number was reported, but 

this was indirectly calculated during the peak response, in which the 

shedding frequency is considered equal to the oscillating frequency. 

It is important to obtain the actual shedding frequency over a larger 

domain through direct measuring. This is currently being perfomed. 

Due to its simplicity and easiness to use, the van der Pol 

equations showed to be practical to model VIM and to provide some 

insight about the phenomenon, identifying important aspects to 

observe during experiments. According to that, fundamental 

experiments are being performed aiming to obtain more information 

on the subject and shall be important to answer some of the 

questions raised. 
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