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Nonlinear Instabilities on a Granular 
Bed Sheared by a Turbulent Liquid 
Flow 
The granular media is of great importance in our quotidian, and their transport by a fluid 
flow is frequently found in nature and in industry. When the shear stresses exerted by the 
fluid flow on a granular bed are bounded to some limits, a mobile granular layer known as 
bed-load takes place in which the grains stay in contact with the fixed part of the granular 
bed. Under these conditions, a flat granular bed may be unstable, generating ripples and 
dunes. In a recent article (Franklin, 2010), the mechanisms of this instability were 
explained and a linear stability analysis was presented, in which a scaling between the 
fluid flow conditions and the typical length of the initial bed-forms was proposed. The 
present paper proposes a nonlinear stability analysis (weakly nonlinear approach) 
applicable to sheared granular beds, shedding light on the evolution of the bed-forms after 
their initial phase. The scope of the nonlinear analysis is the same as that of Franklin 
(2010): granular beds under turbulent liquid flows and in the presence of bed-load. It is 
shown here that, in this case, the initial instabilities saturate (supercritical bifurcation). 
Also, a discussion is made on some published experimental data. 
Keywords: two-phase flow, granular bed, bed-load, nonlinear instabilities, pattern formation 
 
 
 

Introduction1 

The granular media is of great importance in our quotidian. We 
can account for their importance by considering some figures: (i) 
arid regions (soil composed of sand and of other solid fragments) 
occupy 20% of Earth’s emerged surfaces; (ii) the world annual 
production of grains and aggregates is approximately ten billion 
metric tons; and (iii) the processing of granular media consumes 
roughly 10% of all the energy produced worldwide (Duran, 1999). 
The transport of granular matter entrained by a fluid flow is 
frequently found in nature and in industry. It is present, for example, 
in the erosion of river banks, in the formation of dunes and in 
hydrocarbon pipelines conveying sand. 

When shear stresses exerted by the fluid flow on the granular 
bed are able to move some grains, but are relatively small compared 
to the grains weight, the flow is not able to transport grains as a 
suspension. Instead, a mobile layer of grains known as bed-load 
takes place in which the grains stay in contact with the fixed part of 
the granular bed. Under water, the thickness of this mobile layer is a 
few grain diameters (Bagnold, 1941; Raudkivi, 1976). 

An initially flat granular bed may become unstable and give rise 
to bed-forms when submitted to a fluid flow. These forms, initially 
two-dimensional, may grow and generate patterns such as dunes. In 
nature, some examples affecting human activities are the aeolian and 
the aquatic dunes. The migrating aeolian dunes are one of the 
mechanisms of the expansion of deserts (Bagnold, 1941). The 
aquatic dunes observed on the bed of some rivers create a 
supplementary friction between the bed and the water, affecting the 
water depth and being related to flood problems. In cases where 
their size is comparable to the water depth, water flows can 
experiment strong depth variations, seriously affecting navigation 
(Engelund and Fredsoe, 1982). In industry, examples are mostly 
related to closed-conduit flows conveying grains, such as 
hydrocarbon pipelines conveying sand. In such cases, the bed-forms 
generate supplementary pressure loss, but also pressure and flow 
rate transients (Kuru et al., 1995; Franklin, 2008). 

A balance between the local erosion and deposition of grains 
determines the stability of a granular bed. If there is erosion at the 
crests of the granular bed, the amplitude of initial bed undulations 
decreases and the bed is stable. On the contrary, the bed is unstable. 
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If there is neither erosion nor deposition at the crests, there is neutral 
stability (Franklin, 2010). 

In a recent article (Franklin, 2010), the mechanisms of this 
instability were explained and a linear stability analysis was 
presented. It was seen that the basic mechanisms are three: the fluid 
flow perturbation by the shape of the bed, which is known to be the 
unstable mechanism (Jackson et al., 1975; Hunt et al., 1988; Weng 
et al., 1991), the relaxation effects related to the transport of grains 
and the gravity effects, which are the stable mechanisms (Valance 
and Langlois (2005) and Charru (2006) in the case of viscous flows, 
Franklin (2010) in the case of turbulent flows). The linear stability 
analysis of Franklin (2010) showed that the length-scale of the 
initial bed-forms varies with the fluid flow conditions. 

This paper presents a nonlinear stability analysis in the same 
scope of Franklin (2010):  the specific case of granular beds sheared 
by turbulent boundary-layers of liquids. The approach used here is 
the weakly nonlinear analysis (Landau and Lifchitz, 1994; Schmid 
and Henningson, 2001; Drazin and Reid, 2004; Charru, 2007). The 
main purpose of this analysis is to find if the initial instabilities 
saturate or not, explaining the length-scale of the aquatic dunes and 
ripples found in nature. Figure 1, reproduced from Franklin (2010), 
presents the dimensions involved in the studied problem. 

 
 

 
Figure 1. Granular bed sheared by a fluid flow. U is the mean velocity of 
the fluid, UP is the mean velocity of grains, h is the height of the fixed bed, 
ε is thickness of the moving bed, c is the celerity of the bed-forms, λ is the 
wavelength of the bed-forms and δ is the boundary-layer thickness. In the 
present paper, c << UP << U, ε << h, Re δ = δ u*/ ν > 102 and, if η is the 
amplitude of the bed-forms, η/λ << 1 and η/δ << 1. u* is the friction velocity 
(defined in the following sections) and ν is the kinematic viscosity. 
Reproduced from Franklin (2010). 
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The next two sections present a summary of the linear stability 
analysis of Franklin (2010) and a nonlinear analysis in the same scope of 
Franklin (2010), respectively. The following section discusses some 
previously published experimental data. A conclusion section follows. 

Nomenclature 

 A  = amplitude, m 
 B  = constant 
 BA = constant 
 Be = constant 
 Bg = constant 
 c  = phase velocity, m.s-1 
 d  = mean grain diameter, m 
 g  = acceleration of gravity, m.s-2 
 H  = channel height, m 
 h  = local height of the granular bed, m 
 i  = imaginary number 
 k  = wave-number, m-1 
 L  = length-scale, m 
 Q  = volumetric flow rate of grains by unit of width, in the 

basic state, m2.s-1 
 q  = local volumetric flow rate of grains by unit of width, m2.s-1 
 u  = fluid velocity, m.s-1 
 

*u   = shear velocity, m.s-1 

 US = grain settling velocity, m.s-1 
 Up = mean grain velocity, m.s-1 

 Re = Reynolds number ( )ν
HU=Re  

 Reδ = friction Reynolds number 






 = ν

δ
δ

*Re u  

 t  = time, s 
 x  = horizontal (longitudinal) coordinate, m 
 y  = vertical coordinate, m 
 y0  = rugosity height, m 

Greek Symbols 

δ = boundary-layer thickness, m 
ε = thickness of the moving bed, m 
ε = small parameter used in gauge functions 
η = amplitude of the initial instabilities, m 
κ = von Kármán constant 
κL = Landau constant 
λ = wavelength of the initial instabilities, m 
µ = dynamic viscosity, Pa.s 
ρ = density, kg.m-3 
σ = growth rate, s-1 
τ = shear stress, Pa 
ν = kinematic viscosity, m2.s-1 
ξ = integration variable, m 
ω = frequency, s-1 

Subscripts 

d = relative to deposition 
g = relative to the acceleration of gravity 
i = relative to the imaginary part 
max = relative to the most unstable (amplified) mode 
0 = relative to the basic state 
p = relative to grains 
r = relative to the real part 
s = relative to settling 
sat = relative to the saturated regime 

Superscripts 

^ = perturbation 
* = complex conjugate 

Summary of the Linear Stability Model 

Franklin (2010) presented a linear stability analysis of the initial 
bed-forms on a granular bed sheared by a turbulent liquid flow, 
without free-surface effects. The analysis presented was two-
dimensional, which is justified by taking into consideration the 
Squire’s Theorem for parallel flows (Drazin and Reid, 2004): the 
most unstable modes in parallel flows are two-dimensional. 

The stability analysis of Franklin (2010) was based on four 
equations, and a brief description is given below. Please, refer to 
Franklin (2010) for more details concerning the linear stability 
analysis. The four basic equations employed in the analysis describe 
the fluid flow perturbation by the shape of the bed, Eq. (1), the 
gravity effects (modeled in the previous equation), the transport of 
granular matter by a fluid flow, Eq. (4), the relaxation effects related 
to the transport of grains, Eq. (5), and the mass conservation of 
granular matter, Eq. (6). 

For a hill with a height h, a surface rugosity y0 and a length 2L 
between the half-heights (total length ≈ 4L), the perturbation of the 
longitudinal shear stress (dimensionless) caused by the fluid on the 
bed can be written as (Jackson and Hunt, 1975; Hunt et al., 1988; 
Weng et al., 1991): 

 








 ∂+
−

∂= ∫ hBd
x

h
B xe

x
A ξ

ξπ
τ 1
ˆ            (1) 

 
where ξ is an integration variable and Be = B – Bg/BA (the term Bg/BA 
was included in Franklin (2010)). BA and B come from the fluid flow 
perturbation and are considered as constants as they vary with the 
logarithm of L/y0 (the variable used in the Jackson and Hunt (1975) 
gauge functions): varying L/y0 in three orders of magnitude does not 
change the orders of magnitude of B, BA and Be. Bg is a coefficient 
taking into account the weight of the grains (gravity effects) and the 
friction between them. 

If the perturbation is supposed small compared to a basic flow, 
the fluid flow over the bed can be written as the basic flow, 
unperturbed, plus the flow perturbation. For the shear stress on the 
bed surface 
 

( )τττ ˆ10 +=              (2)  

 
where τ0 is the shear stress caused by the basic flow on the bed. For 
a developed turbulent liquid flow over a granular bed, the basic flow 
is a rough turbulent boundary-layer, which near the bed has the well 
known logarithmic profile (and from which τ0 can be obtained): 
 







=

0

* log y
yuu κ

                            (3) 

 
where κ is the Kármán constant, y0 is the rugosity height, u(y) is the 
unperturbed velocity profile and u*  is the friction velocity, defined 

as 2
1

2
1

0*

−= ρτu , where ρ is the density of the fluid. 

The flow rate of grains in equilibrium with the fluid flow is 
known as “saturated flow rate of grains”. From Bagnold (1941) and 
the shear stress given by Eq. (2) 
 

( ) 2
3

ˆ1~ τ+
sat

sat
Q

q                            (4) 

 
where qsat is the saturated volumetric flow rate of grains by unit of 
width and Qsat is the saturated volumetric flow rate of grains by unit of 
width over a flat surface (basic state). If the fluid flow over the bed 
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changes, the flow rate of grains will lag some distance (or time) with 
respect to the fluid flow (relaxation effect). Charru et al. (2004) 
propose for the local volumetric flow rate of grains, by unit of width. 

 

sat

sat
x L

qq
q

−
=∂                (5) 

 

where 





=

S
dsat U

udLL *~  is a distance called “saturation 

length”, d is the mean grain diameter and Us is the typical settling 
velocity of a grain. 

Finally, the two-dimensional mass conservation of grains is 
 

0=∂+∂ qh xt
              (6) 

 
The insertion of the normal modes given by Eq. (7) in Eqs. (1), 

(4) (5) and (6): 
 

ikxtiteHtxh      ),( +−= ωσ  ; ikxtit

sat

eQ
Q

txq      1
),( +−+= ωσ            (7) 

 
where σ is the growth rate, ω is the frequency and k is the 
longitudinal wave-number, gives the solutions 
 

( )
( )( )2

2

12

3

sat

satAesat

kL

LkBBkQ

+
−

=σ  ; ( )
( )( )212

3

sat

sateAsat

kL

LkBBkQ
c

+
+

=            (8) 

 
where c = ω/k is the phase velocity. The most unstable (or 
amplified) mode is the one for which instabilities grow faster, 
corresponding to 0=∂

∂
k

σ . This gives the following results for the 

most unstable modes: 
 

sat
e

A L
B

B

2

3
max ≈λ                (9) 

 

( ) 22

3

max

1
2

9

2

sat

satA
A L

QB
B

B −≈σ             (10) 

 

sat
sat

A L
Q

B

B
c

1
max ≈              (11) 

 
Based on these results, Franklin (2010) performed a stability 

analysis and compared it to some published experimental data. The 
stability analysis showed the existence of long-wave instability, with 
the fluid flow conditions, the relaxation effects and the gravity 
effects playing an important role. The saturation length-scale Lsat, 
related to the relaxation effects, was seen to be the major 
responsible for the stabilization of small waves, also playing a role 
in the growth rate, that varies as 2

max ~ −
satLσ . On the other hand, 

gravity was seen to play a smaller role in the stabilization of small 
waves, but to strongly affect the growth rate. Changes in the fluid 
flow were seen to cause variations in the growth rate proportional to 
the shear velocity: 

*max ~ uσ . Concerning the wavelength of the 

most unstable mode, it was seen to scale with the fluid flow as 

*max ~ uλ . The scaling 
*max ~ uλ  is in agreement with the experimental 

results obtained by Kuru et al. (1995) and Franklin (2008). 
Different from previous stability analysis for turbulent regime, it 

was proposed in Franklin (2010) that the initial wavelength varies 

with the flow conditions of the carrier liquid. This explains, for the 
first time, some previous experimental results. 

Nonlinear Analysis 

In a stability analysis, it is considered a basic state (stationary 
solutions of order O(1)), submitted to small perturbations (of order 
O(ε), with ε << 1). If the analysis is linear, like the one in Franklin 
(2010), the products of perturbations and of their derivatives (of 
order O(ε2)) are neglected, conducting to linear equations. The 
obtained linear equations admit solutions of the kind of Eq. (7), 
called normal modes. 

The linear analysis can determine the most amplified mode in 
case of instability, but it is only valid as long as the perturbations 
remain small, so that the terms of order O(ε2) can be neglected. 
Nevertheless, the prediction of an exponential growth (see Eq. (7)) 
during the linear phase of the instability means that the domain of 
validity of the linear analysis is bounded to the very early stages of 
the instability growth. 

In some cases, the comparison of linear stability analyses with 
experimental data shows good agreement, even when the measured 
instabilities are no longer small. In those cases, how can we explain 
the agreement, if the linear analysis is out of its domain of validity? 
This question may only be answered by performing a nonlinear 
stability analysis. 

A nonlinear stability analysis is presented here, using a weakly 
nonlinear approach (Landau and Lifchitz, 1994; Schmid and 
Henningson, 2001; Drazin and Reid, 2004; Charru, 2007). It is first 
presented a description of this approach, followed by its application 
to the granular bed instability. 

The weakly nonlinear approach 

The linear analysis admits plane waves as solutions, which can 
be written as 

 

.. ˆ
2

1
),(     ccehtxh ikxtit += +− ωσ            (12) 

 
where φiehh ˆˆ =  is a complex amplitude (φ is its phase) and c.c. 

stands for complex conjugate. Taking the real part of Eq. (12), it can 
be seen that σ > 0 corresponds to amplification of perturbations 
(instability) and σ < 0 to their dumping (stability). 

It can be shown (Drazin and Reid, 2004; Charru, 2007) that the 
perturbation (Eq. (12)) can be written as 

 

( ) ( ) ( ) ( )( )xftAxftAtxh
rr **

2

1
),( +=           (13) 

 
where ( )xf

r

 describes the spatial structure of the mode and A(t) its 

temporal evolution (A(t) corresponds to the temporal evolution of 
the amplitude, )(~ tieA σφ+ ). The symbol *  corresponds to the 
complex conjugate. 

In a linear approach, the amplitude of a normal mode obeys 
 

A
dt

dA σ=              (14) 

 
because )(~ tieA σφ + and, as there is symmetry in time (time origin is 

arbitrary), teA σ~ is also solution. 
The argument of Landau and Lifchitz (1994) is that, for A small, 

Eq. (14) can be seen as a power series truncated at O(1). In order to 
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capture nonlinear effects, they proposed the expansion of this 
equation in higher order powers, that are A2, AA* , A3, A2A* , A(A*)2, + 
O(A4), but keeping only the terms that resonate with the linear one. 

An analysis of the resonances with the linear term, or an 
analysis of the symmetries, allows the exclusion of all the listed 

terms, except AAAA
2*2 =  (resonant term): this term will interact 

with the linear one, and evolve much faster than the others (which 
can then be neglected). The amplitude is then governed by the 
Landau Equation 

 

( )42
AOAAA

dt

dA
L +−= κσ            (15) 

 
where κL is complex and is known as Landau constant. Separating 
the real part from the imaginary part (for aA = , φiaeA =  and 

irL iκκκ += ), we obtain for the real part 

 

3 aa
dt

da
rκσ −=             (16) 

 
Equation (16) is the model equation for some typical 

bifurcations of the dynamics systems theory. When κr > 0, there is a 
supercritical bifurcation, with saturation of the amplitude modulus. 
When κr < 0, there is a subcritical bifurcation, without saturation. In 
this case, an analysis with higher order terms is necessary. 

Nonlinear stability of a granular bed 

The same approach is now applied to the case of a granular bed 
sheared by a turbulent liquid flow. It is worth to note here that, in 
cases where the partial differential equations governing the system 
give rise to waves with limited wave-number, the number of Fourier 
components is limited (for instance, when the large scales are 
limited by the finite dimensions of the system or by periodicity, 
when the small scales are limited by dissipative processes, etc.). 
This means that the normal modes of Eq. (13) may be written as 

 

∑
∞

−∞=

=
n

inkx
n etAtxh )(

2

1
),(            (17) 

 
where *

n
i

n AaeA == −
−

φ . 

Before inserting the form described by Eq. (17) in the model, 
Eq. (4) needs to be expanded, differently from Franklin (2010), at 
least until the first nonlinear term (in order to be coherent with a 
nonlinear model). The expansion of this equation in a Taylor series 
gives: 

 

( ) ( ) )(ˆ
8

3ˆ
2

31 32 εττ OQ
q

sat

sat +++=           (18) 

 
Equation (1), for the perturbation of the shear stress, is too 

complicated to be employed in a non-linear analysis. However, it 
can be simplified if we note that its first term, the convolution 
product, is a non-local term that varies with the shape of the bed 
(Andreotti et al., 2002). This term may then be replaced by a bed 
dimensionless shape h/L (where L is a characteristic length of the 
bed-form) multiplied by a constant 

 

hEh
L

D
x∂+~τ̂           (19) 

 

where D corresponds to BA multiplied by a constant and E 
corresponds to the product of BA and Be, so that D and E are 
considered as constants. Inserting Eq. (19) in Eq. (18), combining it 
with Eqs. (4), (5) and (6) and noting that q ~ c h (Franklin, 2008), 
the following equation can be found: 
 

( ) ( )
0654

3
2

2
2

1

=+∂++
+∂+∂++∂

BhBhB

hhBhBhBh

x

xxt         (20) 

 
where B1 to B5 involve Qsat, Lsat, E, D and L, so that B1 to B5 are 
only functions of u*  and d, and they may be treated as constants in 
an analysis of a given granular bed submitted to a given fluid flow. 
B6 is a constant, obtained from c ~ h-1 (Franklin, 2010). 

Normalizing the problem by its characteristic length (k-1), and 
inserting the normal modes of the form of Eq. (17) in Eq. (20) give 

 

( )[ ]
[ ] 0

2
1

2
1

2

1

6
)(

3

22
21

2

54

=++

+++

+




 ++

∑∑

∑

∑

∞

−∞=

+
∞

−∞=

∞

−∞=

∞

−∞=

BeiqAAB

einABBA

enAiBBA
dt

dA

q

xpqi
qp

p

n

inx
nn

n

inx
nn

n

                         (21) 

 
By inspecting Eq. (21), we can see that it is the third term in the 

equation that can resonate with the linear part (in the first term). 
This resonance will only occur if q + p = n. In this case, the third 
term in Eq. (21) can be written as 

 

[ ]∑∑
∞

−∞=
+

∞

−∞=

−
p

inx
pnp

n

eApA
iB *3

2
           (22) 

 
and, keeping in Eq. (21) only the terms that resonate with the linear 
part, we find 
 

 

[ ]∑
∞

−∞=
++=

p
pnpnn

n ApAiBA
dt

dA *
3σ            (23) 

 
where ( )54 inBBn +−=σ .  

Comparing Eq. (23) with the linear analysis (Eq. (14)), it can be 
seen that the non-linearities are in the third term. If this term is 
neglected, we find that the solution is stable for σn<0 and unstable 
for σn>0. Once the initial (linear) instability takes place, the 
perturbations grow in an exponential way and, after a time-scale 
equal to σn

-1, they can no-longer be analyzed by a linear approach: in 
the nonlinear phase, the nonlinear terms are no-longer negligible 
and they must be taken into account. However, if some of them 
resonate with the initial (linear) modes, they are expected to grow 
much faster than the other nonlinear terms, so that they are the only 
ones to be taken into account (this is the same idea developed by 
Landau and Lifchitz (1994)). The third term in Eq. (23) is the one 
that contains the nonlinear resonant part of the problem. 

In order to better understand the behavior of the nonlinear part 
of Eq. (23), we can analyze only the first three modes: 

 

( )5
1

*
12311

1 AOAiABA
dt

dA
+−= σ            (24) 
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( )4
1

2
1322

2 AOiABA
dt

dA
+−= σ            (25) 

 

( )5
121333

3 3 AOAiABA
dt

dA
+−= σ            (26) 

 
Now, observing that in the neighborhood of the instability only 

the fundamental mode is unstable (σ1 > 0 and σn < 0 for n > 1, 
where 

1σσ >>n
), we can expect a characteristic time for the 

fundamental ( 1

1

−σ ) much greater than that for the other modes 

( 1−
nσ ): there is a dominant effect of the fundamental on the onset 

of the instability. For n > 1, on the onset of the instability, the 
temporal derivatives vary with 

nnn AA σσ <<1
 (due to the 

dominant effect of the fundamental). The time derivatives may then 
be neglected for n > 1 

 

( )4
1

2
1

2

3
2 AOA

iB
A +=

σ
            (27) 

 

( )5
121

3

3
3

3
AOAA

iB
A +=

σ
           (28) 

 
which shows that n

nA ε~ . Inserting Eq. (27) into Eq. (24), we can 

find an equation for the fundamental similar to the Landau Equation 
(Eq. (15)): 

 

( )5
1

2

1111
1 AOAAA

dt

dA
L +−= κσ            (29) 

 

where 0
2

2
3 >−= σκ B

L
. This corresponds to a supercritical 

bifurcation (Glendinning, 1999; Charru, 2007): the nonlinear term 
resonating with the linear one will saturate the instability, so that, 
after the initial exponential growth, the instability attenuates, 
reaching a finite value for the amplitude and maintaining the same 
wavelength. 

A bifurcation diagram can be drawn in order to visualize the 
saturation of the fundamental mode A1 as a function of a control 
parameter (Glendinning, 1999). Considering the Eq. (24) and that 
there is a dominant effect of the fundamental mode on the onset of 
the instability, the control parameter here is σ1. 

From Eq. (29), it can be seen that, once instability has been 

triggered, the amplitude of the stationary points are 
Lκ

σ1± . 

Figure 2 shows the bifurcation diagram for the fundamental mode 
(dimensionless amplitude modulus |A1| versus the dimensionless linear 
growth rate σ1) for a fixed value of the Landau constant (κL = 1). The 
continuous curves correspond to stable states (attractors) and the 
dashed curve corresponds to the unstable states. 

From Fig. 2, we can see that this is a supercritical bifurcation, 
the diagram corresponding to the well known supercritical pitchfork 
bifurcation. So, after the initial exponential growth (linear phase), 
the granular bed instabilities saturate, with their amplitude following 
the bifurcation diagram of Fig. 2, but keeping the same wavelength. 

 
 

 
Figure 2. Bifurcation diagram for the fundamental mode (amplitude modulus 
|A1| versus the linear growth rate σ1, normalized by their maximum values, 
respectively). The continuous curves correspond to the stable states 
(attractors) and the dashed curve corresponds to the unstable states. This 
diagram corresponds to the well-known pitchfork bifurcation. 

Discussion of Some Available Experimental Data 

Some published experimental data concerning the development 
of ripples are examined here. The objective is to verify if the 
saturation predicted by the present nonlinear analysis is 
experimentally observed. 

As the subject of this paper is the evolution of the bed-forms 
just after their initial growth (linear phase), the experimental data to 
be examined must correspond to the formation and development of 
ripples in their early stages, i.e., after their initial growth but before 
any ripple coalescence has taken place. So, whenever the 
experimental data concern the evolution of ripples in long time-
scales, care must be taken not to use the data at the end time, where 
coalescence has already occurred. 

Kuru et al. (1995) presented a theoretical and experimental 
study of the initial instabilities on a granular bed on a horizontal 
pipe flow, which is a case without free-surface effects. Their 
experimental test section was a 31.1 mm diameter pipe, 7 m long, 
and they employed a mixture of water and glycerin as the fluid 
media and glass beads as the granular media. More details can be 
found in Kuru et al. (1995). In each experimental test, an initially 
plane granular bed was submitted to a specific flow of liquid and, 
when the ripples were visible, the tests were stopped. The 
wavelength of these ripples was then measured and associated to the 
initial instabilities. However, they reported that the amplitudes of 
the ripples were 2-3 mm (10 to 20 times the grain diameters), so that 
they correspond in fact to the early stages of the nonlinear phase. 
The fact that they didn’t notice any length-scale variation from the 
time when the ripples were first visualized to the complete stop of 
the experiment (this time interval is not negligible compared to the 
time-scale for ripples formation, of only a few seconds) means that 
these forms saturate after their initial growth, agreeing with the 
nonlinear analysis developed in this paper. 

Coleman et al. (2003) experimentally studied the granular bed 
instabilities in a closed-conduit turbulent liquid flow (without free-
surface effects). Their experimental test section was a 6 m long 
horizontal closed-conduit of rectangular cross-section (300 mm 
wide by 100 mm high), and they employed water as the fluid media 
and glass beads as the granular media. The fluid flow was in the 
range 26000 < Re < 70000 (

ν
UH=Re , H is the channel height).  
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More details can be found in Coleman et al. (2003). Contrary to 
Kuru (1995) and Franklin (2008), they found that the initial 
instabilities scale with the grains diameter, but not with the fluid 
flow. However, analyzing their data, it can be observed that after the 
initial growth, and before any coalescence takes place, the 
wavelength of these forms saturates. Again, this agrees with the 
nonlinear analysis developed in this paper. 

Franklin (2008) experimentally studied the initial instabilities on 
different granular beds under turbulent water flows. His 
experimental test section was a 6 m long horizontal closed-conduit 
of rectangular cross-section (120 mm wide by 60 mm high), made 
of transparent material. He employed water as the fluid media and 
glass and zirconium beads as the granular media. The fluid flow, in 
the range 13000 < Re < 24000, was measured by PIV (Particle 
Image Velocimetry) and the granular bed evolution was measured 
by a high definition camera. More details can be found in Franklin 
and Charru (2007), Franklin (2008) and Franklin and Charru (2009).  

Franklin (2008) measurements showed that the initial bed-forms 
are two-dimensional, as predicted by the linear stability analysis of 
Franklin (2010), and that, after the initial two-dimensional phase, bed-
forms evolve to three-dimensional forms, as seen in Fig. 3. The 
wavelength of the three-dimensional forms, developed during the 
nonlinear phase of the instability, is the same as that of the linear 
phase (two-dimensional ripples). This is an experimental evidence of 
the saturation of the instabilities after the linear phase, corroborating 
the nonlinear analysis developed in the preceding section. 

 

         

Figure 3. Evolution of the wavelength λ of initial ripples on a granular bed 
sheared by a turbulent water flow (top view). Flow direction is from right 
to left, Re = 19900 and the granular bed is composed of zirconium beads 
with d = 180 µm . The initial two-dimensional ripples evolve to three-
dimensional forms (during the nonlinear phase) which keep the same 
wavelength. Figure extracted from Franklin (2008). 

Conclusions 

The transport of solid particles entrained by a fluid flow is 
frequent in nature and in industry. Under some fluid flow 
conditions, a mobile granular layer known as bed-load takes place in 
which the grains stay in contact with the fixed part of the granular 
bed. In some situations, an initially flat granular bed may become 
unstable, giving rise to ripples or dunes. The formation of dunes in 
deserts, in river beds and in petroleum pipelines conveying sand are 
some examples. A better knowledge of the instabilities on a granular 
bed and of their evolution is of great importance to understand 
nature as well as to improve grains-related industrial processes. 

This paper presents a theoretical investigation of the nonlinear 
phase of the instabilities on granular beds sheared by turbulent 
liquid flows, without free-surface effects, such as those in which the 
liquid depth is many times greater than the typical height of the bed-
forms, or flows in pipes and closed-conduits. The approach adopted 
here is the weakly nonlinear analysis (Landau and Lifchitz, 1994; 
Schmid and Henningson, 2001; Drazin and Reid, 2004; Charru, 
2007), useful whenever a dominant mode can be proved to exist. 
This means that the modes resonating with this dominant one will 

grow much faster than the others, which can be neglected. The 
analysis is then made on a bounded number of modes. 

For the specific case studied in this paper, it was shown that 
there is a fundamental mode that dominates the dynamics of the 
instability and, on the instability onset, this mode comes from the 
linear phase (initial phase). It was also shown that, considering only 
the resonating terms, the instability is well described by the Landau 
Equation and that it corresponds to a supercritical bifurcation of the 
pitchfork type. So, after the initial exponential growth (linear 
phase), the granular bed instabilities saturate, i.e., they attenuate 
their growth rate and maintain the same wavelength. 

The results from the nonlinear analysis were compared to some 
published experimental data concerning the formation and 
development of ripples in closed-conduit flows, for liquids in 
turbulent regime. The works of Kuru et al. (1995), Coleman et al. 
(2003) and Franklin (2008) showed that there are evidences of 
wavelength saturation during the nonlinear phase of the ripples 
formation. Nevertheless, even after saturation, in the long time-
scales, the wavelengths of ripples may grow due to another 
mechanism: the coalescence between them (Coleman et al., 2003). 
This is a mechanism that is not related to hydrodynamic effects, and 
that usually happens after the saturation described here has been 
achieved, so that it is not treated in this paper. 

In summary, for the specific case studied, it was theoretically 
shown here that the granular bed instabilities saturate with the same 
wavelength of the initial (linear) phase, after their initial growth. To 
the author knowledge up to now there is no theoretical treatment of 
this kind, proving theoretically the saturation of those forms under the 
conditions studied here. This explains the experimental observations 
of saturation of the granular bed-forms under turbulent flows. 

Acknowledgements 

The author is grateful to Petrobras for the financial support to 
write this article (contract number 0050.0045763.08.4). 

References 

Andreotti, B., Claudin, P. and Douady, S., 2002, “Selection of dune 
shapes and velocities. part 2: a two-dimensional model”, Eur. Phys. J. B, 
Vol. 28, pp. 341-352. 

Bagnold, R.A., 1941, “The physics of blown sand and desert dunes”, Ed. 
Chapman and Hall, London, United Kingdom, 320 p. 

Charru, F., Mouilleron-Arnould, H. and Eiff, O., 2004, “Erosion and 
deposition of particles on a bed sheared by a viscous flow”, J. Fluid Mech., 
Vol. 519 pp. 55-80. 

Charru, F., 2006, “Selection of the ripple length on a granular bed 
sheared by a liquid flow”, Physics of Fluids, Vol. 18 (121508). 

Charru, F., 2007, “Instabilités hydrodynamiques”, Ed. EDP Sciences, 
Les Ulis, France, 386 p. 

Coleman, S., Fedele, J. and Garcia, M.H., 2003, “Closed-conduit bed-
form initiation and development”, J. Hydraul. Eng., Vol. 129, No. 12, pp. 
956-965. 

Drazin, P.G. and Reid, W.R., 2004, “Hydrodynamic stability”, Ed. 
Cambridge University Press, Cambridge, United Kingdom, 605 p. 

Duran, J., 1999, “Sands, powders and grains: an introduction to the 
physics of granular materials”, Ed. Springer, New York, United States of 
America, 232 p. 

Engelund, F. and Fredsoe, J., 1982, “Sediment ripples and dunes”, Ann. 
Rev. Fluid Mech., Vol. 14, pp. 13-37. 

Franklin, E.M., 2008, “Dynamique de dunes isolées dans un écoulement 
cisaillé”, (in French), Ph.D. Thesis, Université de Toulouse, Toulouse, 
France, 166 p. 

Franklin, E.M., 2010, “Initial instabilities of a granular bed sheared by 
a turbulent liquid flow: length-scale determination”, J. Braz. Soc. Mech. Sci. 
Eng., Vol. 32, pp. 460-467. 

Franklin, E.M. and Charru, F., 2007, “Dune migration in a closed-
conduit flow”, Proceedings of the 6th International Conference on Multiphase 
Flow, Leipzig, Germany. 



Nonlinear Instabilities on a Granular Bed Sheared by a Turbulent Liquid Flow 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM July-September 2011, Vol. XXXIII, No. 3 / 271 

Franklin, E.M. and Charru, F., 2009, “Morphology and displacement of 
dunes in a closed-conduit flow”, Powder Technology, Vol. 190, pp. 247-251. 

Glendinning, P., 1999, “Stability, instability and chaos: an introduction 
to the theory of nonlinear differential equations”, Ed. Cambridge University 
Press, Cambridge, United Kingdom, 388 p. 

Hunt, J.C.R., Leibovich, S. and Richards, K., 1988, “Turbulent shear 
flows over low Hills”, Quart. J. R. Met. Soc., Vol. 114, pp. 1435-1470. 

Jackson, P.S. and  Hunt,  J.C.R., 1975, “ Turbulent wind flow over a low 
hill”, Quart. J. R. Met. Soc., Vol. 101, pp. 929-955. 

Kuru, W.C.,  Leighton, D.T. and McCready, M.J., 1995, “Formation of 
waves on a horizontal erodible bed of particles”, Int. J. Multiphase Flow, 
Vol. 21, No. 6, pp. 1123-1140. 

Landau, L.D. and Lifchitz, E.M., 1994, “Physique théorique: mécanique 
des fluides”, Ed. Ellipses (traduction française), Poitiers, France, 752 p. 

Raudkivi, A.J., 1976, “Loose boundary hydraulics”, Ed. Pergamon, 
Oxford, United Kingdom, 397 p. 

Schmid, P.J. and Henningson, D.S., 2001, “Stability and transition in 
shear flows”, Ed. Springer, New York, United States of America, 556 p. 

Valance, A. and Langlois, V., 2005, “Ripple formation over a sand bed 
submitted to a laminar shear flow”, Eur. Phys. J. B, Vol. 43, pp. 283-294. 

Weng, W.S., Hunt, J.C.R., Carruthers, D.J., Warren, A., Wiggs, G.F.S., 
Livingstone, I., and Castro, I., 1991, “Air flow and sand transport over sand-
dunes”, Acta Mechanica, pp. 1-21. 

 


