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Flow

Bed Sheared by a Turbulent Liquid

The granular media is of great importance in oupfidian, and their transport by a fluid

flow is frequently found in nature and in industy/hen the shear stresses exerted by the
fluid flow on a granular bed are bounded to somet, a mobile granular layer known as
bed-load takes place in which the grains stay intact with the fixed part of the granular
bed. Under these conditions, a flat granular bedyrha unstable, generating ripples and
dunes. In a recent article (Franklin, 2010), the cmenisms of this instability were
explained and a linear stability analysis was presé, in which a scaling between the
fluid flow conditions and the typical length of thetial bed-forms was proposed. The
present paper proposes a nonlinear stability analy@veakly nonlinear approach)
applicable to sheared granular beds, shedding lg/hthe evolution of the bed-forms after
their initial phase. The scope of the nonlinear lggs is the same as that of Franklin
(2010): granular beds under turbulent liquid flowsd in the presence of bed-load. It is
shown here that, in this case, the initial instdigié saturate (supercritical bifurcation).
Also, a discussion is made on some published erpatal data.
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I ntroduction

The granular media is of great importance in owtiglian. We
can account for their importance by considering esdigures: (i)
arid regions (soil composed of sand and of othéd soagments)
occupy 20% of Earth’s emerged surfaces; (ii) theldvannual
production of grains and aggregates is approximpateh billion
metric tons; and (iii) the processing of granulagdia consumes
roughly 10% of all the energy produced worldwideuf@n, 1999).
The transport of granular matter entrained by adflfiow is
frequently found in nature and in industry. It iegent, for example,
in the erosion of river banks, in the formation adiines and in
hydrocarbon pipelines conveying sand.

When shear stresses exerted by the fluid flow engtanular
bed are able to move some grains, but are relgtsrabll compared
to the grains weight, the flow is not able to tors grains as a
suspension. Instead, a mobile layer of grains knewrbed-load
takes place in which the grains stay in contach whie fixed part of
the granular bed. Under water, the thickness sfitbile layer is a
few grain diameters (Bagnold, 1941; Raudkivi, 1976)

An initially flat granular bed may become unstaatel give rise
to bed-forms when submitted to a fluid flow. Thésemns, initially
two-dimensional, may grow and generate patterns asadunes. In
nature, some examples affecting human activitiestsr aeolian and
the aquatic dunes. The migrating aeolian dunesoae of the
mechanisms of the expansion of deserts (Bagnold1)19The
aquatic dunes observed on the bed of some riveeatecra
supplementary friction between the bed and the nvaféecting the
water depth and being related to flood problemscdses where
their size is comparable to the water depth, wdlews can
experiment strong depth variations, seriously aiffigcnavigation
(Engelund and Fredsoe, 1982). In industry, examples mostly
related to closed-conduit flows conveying graingjchs as
hydrocarbon pipelines conveying sand. In such ¢cakeded-forms
generate supplementary pressure loss, but alsesyseesind flow
rate transients (Kuru et al., 1995; Franklin, 2008)

A balance between the local erosion and deposiifograins
determines the stability of a granular bed. If ¢hier erosion at the
crests of the granular bed, the amplitude of ihtied undulations
decreases and the bed is stable. On the conth@nped is unstable.
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If there is neither erosion nor deposition at thests, there is neutral
stability (Franklin, 2010).

In a recent article (Franklin, 2010), the mechasisofi this
instability were explained and a linear stabilitpalysis was
presented. It was seen that the basic mechanisnthrae: the fluid
flow perturbation by the shape of the bed, whickriewn to be the
unstable mechanism (Jackson et al., 1975; Hunit,e1388; Weng
et al., 1991), the relaxation effects related ® titansport of grains
and the gravity effects, which are the stable meisinas (Valance
and Langlois (2005) and Charru (2006) in the cdsasaous flows,
Franklin (2010) in the case of turbulent flows).eTimear stability
analysis of Franklin (2010) showed that the lerggthle of the
initial bed-forms varies with the fluid flow condihs.

This paper presents a nonlinear stability analysithe same
scope of Franklin (2010): the specific case ohgtar beds sheared
by turbulent boundary-layers of liquids. The apptoased here is
the weakly nonlinear analysis (Landau and Lifchit®94; Schmid
and Henningson, 2001; Drazin and Reid, 2004; Cha0Qa7). The
main purpose of this analysis is to find if thetiadi instabilities
saturate or not, explaining the length-scale ofaeatic dunes and
ripples found in nature. Figure 1, reproduced fieranklin (2010),
presents the dimensions involved in the studiedlpro.
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Figure 1. Granular bed sheared by a fluid flow. U is the mean velocity of
the fluid, Up is the mean velocity of grains, h is the height of the fixed bed,
€ is thickness of the moving bed, c is the celerity of the bed-forms, Ais the
wavelength of the bed-forms and & is the boundary-layer thickness. In the
present paper, ¢ << Up << U, £ << h, Re 5= & u/ v > 10% and, if n is the
amplitude of the bed-forms, n/A << 1 and n/é << 1. u-is the friction velocity
(defined in the following sections) and v is the kinematic viscosity.
Reproduced from Franklin (2010).
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The next two sections present a summary of theliseability Symmary of the Linear Stability M odel

analysis of Franklin (2010) and a nonlinear analysthe same scope of

Franklin (2010), respectively. The following sentidiscusses some
previously published experimental data. A conclusiection follows.

Nomenclature

>

= amplitude, m

= constant

constant

constant

= constant

= phase velocity, mi's

= mean grain diameter, m

= acceleration of gravity, m%

= channel height, m

= local height of the granular bed, m

= imaginary number

= wave-number, h

= length-scale, m

= volumetric flow rate of grains by unit of gl in the
basic state, fs*

= local volumetric flow rate of grains by uoitwidth, ni.s*
= fluid velocity, m3

= shear velocity, m’s

= grain settling velocity, m’s
= mean grain velocity, m’s

= Reynolds numb({;{ze: HLy)
2
= friction Reynolds numbe(rRe _a;,/)
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t =time, s

X = horizontal (longitudinal) coordinate, m
y = vertical coordinate, m

Yo  =rugosity height, m

Greek Symbols

= boundary-layer thickness, m

= thickness of the moving bed, m

small parameter used in gauge functions
amplitude of the initial instabilities, m
=von Karman constant

= Landau constant

= wavelength of the initial instabilities, m
= dynamic viscosity, Pa.s

= density, kg.ni

= growth rate, st

= shear stress, Pa

= kinematic viscosity, frs*

= integration variable, m

= frequency, $
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Subscripts

d =relative to deposition

g =relative to the acceleration of gravity

i = relative to the imaginary part

max = relative to the most unstable (amplified) mode
0  =relative to the basic state

p  =relative to grains

r = relative to the real pa

S = relative to settling

sat = relative to the saturated regime
Superscripts

n = perturbation

* = complex conjugate
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Franklin (2010) presented a linear stability anialys the initial
bed-forms on a granular bed sheared by a turbudiguaid flow,
without free-surface effects. The analysis presenteas two-
dimensional, which is justified by taking into caheration the
Squire’s Theorem for parallel flows (Drazin and &Re2004): the
most unstable modes in parallel flows are two-disiemal.

The stability analysis of Franklin (2010) was based four
equations, and a brief description is given belBlease, refer to
Franklin (2010) for more details concerning theeéin stability
analysis. The four basic equations employed iratfedysis describe
the fluid flow perturbation by the shape of the béd. (1), the
gravity effects (modeled in the previous equatidhg transport of
granular matter by a fluid flow, Eq. (4), the redéion effects related
to the transport of grains, Eqg. (5), and the massservation of
granular matter, Eq. (6).

For a hill with a heighh, a surface rugosity, and a lengtt2L
between the half-heights (total lengthiL), the perturbation of the
longitudinal shear stress (dimensionless) causethéyluid on the
bed can be written as (Jackson and Hunt, 1975; Euat., 1988;
Weng et al., 1991):

1¢0,h
B, —|—*—=df+Bg,h
A[”JAX_&—C'C ex)

@)

~N
1

where is an integration variable afd] = B — B/B, (the termBy/B,
was included in Franklin (20103, andB come from the fluid flow
perturbation and are considered as constants gsvétrg with the
logarithm ofL/y, (the variable used in the Jackson and Hunt (1975)
gauge functions): varyinlg/y, in three orders of magnitude does not
change the orders of magnitudeB)fB, and B.. By is a coefficient
taking into account the weight of the grains (gipeffects) and the
friction between them.
If the perturbation is supposed small compared basic flow,
the fluid flow over the bed can be written as thasib flow,
unperturbed, plus the flow perturbation. For theashstress on the
bed surface
r=r1,(1+7) @)
wherery is the shear stress caused by the basic flowebeh. For
a developed turbulent liquid flow over a granuladpthe basic flow
is a rough turbulent boundary-layer, which neartteé has the well
known logarithmic profile (and from whicd can be obtained):

ool

wherek is the Karman constany is the rugosity heighty(y) is the
unperturbed velocity profile and is the friction velocity, defined

©)

asuy, = To%p‘}/z, wherep is the density of the fluid.

The flow rate of grains in equilibrium with the il flow is
known as “saturated flow rate of grains”. From Balgn(1941) and
the shear stress given by Eq. (2)

Osa ~ (1+ f)% (4)

sat
where (s is the saturated volumetric flow rate of grainsumjt of

width andQg,is the saturated volumetric flow rate of grainsubyt of
width over a flat surface (basic state). If thadiélow over the bed
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changes, the flow rate of grains will lag someatfise (or time) with with the flow conditions of the carrier liquid. Ehexplains, for the
respect to the fluid flow (relaxation effect). Charet al. (2004) first time, some previous experimental results.
propose for the local volumetric flow rate of gsiby unit of width.

Nonlinear Analysis

0.9= G — (5) In a stability analysis, it is considered a bagites (stationary
Lea solutions of orde©(1)), submitted to small perturbations (of order
O(e), with ¢ << 1). If the analysis is linear, like the one in Frimk
where | | =gfu is a distance called “saturation (2910), tr;e products of perturbationg and qf thﬁrivativgs (of
sat  d Ug order O(e9)) are neglected, conducting to linear equationse Th
obtained linear equations admit solutions of thedkef Eq. (7),
called normal modes.

The linear analysis can determine the most amglififede in
case of instability, but it is only valid as long the perturbations
remain small, so that the terms of ord2¢? can be neglected.
Nevertheless, the prediction of an exponential ¢losee Eq. (7))
during the linear phase of the instability mearst the domain of
The insertion of the normal modes given by Eq.if7iEgs. (1), validity of the linear analysis is bounded to tregwearly stages of

length”, d is the mean grain diameter abd is the typical settling
velocity of a grain.
Finally, the two-dimensional mass conservationrafrgs is

9,h+0,0=0 (®)

(4) (5) and (6): the instability growth.
In some cases, the comparison of linear stabiliglyses with
h(x,t) = H gt -iat+ic - g(x,t) =14 Qe -t %) experimental data shows good agreement, even wieemeasured

instabilities are no longer small. In those cakesy can we explain
the agreement, if the linear analysis is out ofldsain of validity?
This question may only be answered by performingoalinear
stability analysis.

A nonlinear stability analysis is presented hesngi a weakly

sat

where ¢ is the growth ratew is the frequency and is the
longitudinal wave-number, gives the solutions

2( ) k( K ) nonlinear approach (Landau and Lifchitz, 1994; Schrand
o= 3Quk(B. ~BuKLa) ;  _ 3QualK(B, *+ BJKLsy (8)  Henningson, 2001; Drazin and Reid, 2004; Charr@7R0it s first
2(1+(|<Lsa,)2) 2(1+(kga,)2) presented a description of this approach, followgdts application

to the granular bed instability.
where ¢ = w/k is the phase velocity. The most unstable (or
amplified) mode is the one for which instabilitiggow faster, Theweakly nonlinear approach
corresponding ta?%k =0- This gives the following results for the

The linear analysis admits plane waves as solutiwh&h can

most unstable modes: be written as
3B ~ I
A = 2 L, © oty =2 het @i s e (12)
ZBE ! 2
2B® 1 where = |Hei¢ is a complex amplitudey(s its phase) and.c.
Tinax = @(BA - 2)Q53172 (10) h= ‘ We P P ¢( P )
A sat stands for complex conjugate. Taking the real pBEq. (12), it can
be seen that > 0 corresponds to amplification of perturbations
_ B 1 (11) (instability) ands < 0 to their dumping (stability).
max "~ EQsatT It can be shown (Drazin and Reid, 2004; Charru,72@0at the
A sat

perturbation (Eq. (12)) can be written as

Based on these results, Franklin (2010) performestahility 1
analysis and compared it to some published expetaheata. The h(x,t) :—(A(t) f(x)+ A (t)f()”()) (13
stability analysis showed the existence of long-evimstability, with 2
the fluid flow conditions, the relaxation effectedathe gravity
effects playing an important role. The saturatiength-scald..,, Where f(x) describes the spatial structure of the modeAtyits
related to the relaxation effects, was seen to Ihe major temporal evolutionA(t) corresponds to the temporal evolution of
responsible for the stabilization of small wavdspalaying a role  the amplitude, A~ e'*®). The symbol* corresponds to the
in the growth rate, that varies @z~ Lsat_z' On the other hand, complex conjugate.

gravity was seen to play a smaller role in the ifzaion of small In a linear approach, the amplitude of a normal enoloeys
waves, but to strongly affect the growth rate. Gesnin the fluid
flow were seen to cause variations in the growté peoportional to dA _ (14)

the shear velocity:g, . ~u.. Conceming the wavelength of the dt

most unstable mode, it was seen to scale with liid flow as _ _ o ) S
Avay ~ U, - The scalingy  ~y, is in agreement with the experimentalbecauseA ~ e!”®and, as there is symmetry in time (time origin is

results obtained by Kuru et al. (1995) and Fran{@dos). arbitrary), A~ e is also solution. .
Different from previous stability analysis for tulent regime, it The argument of Landau and Lifchitz (1994) is that,A small,
was proposed in Franklin (2010) that the initialvelength varies Ed. (14) can be seen as a power series trunca®@(Latin order to
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capture nonlinear effects, they proposed the expansef this
equation in higher order powers, that AfeAA’, A%, A", A(A)?, +
O(A%), but keeping only the terms that resonate witHitrear one.
An analysis of the resonances with the linear teom,an
analysis of the symmetries, allows the exclusioralbfthe listed

terms, excepta? A’ :WZA (resonant term): this term will interact
with the linear one, and evolve much faster thandthers (which

can then be neglected). The amplitude is then gedeiby the
Landau Equation

dA

dt

=oA-«,|A* A+0[A%) (15)

wherex, is complex and is known as Landau constant. Sepgra
the real part from the imaginary part (m':a, A=a€d? and

K_ =K, +ik,), we obtain for the real part
da

—=c0a-«,a°
dt

(16)

Equation (16) is the model
bifurcations of the dynamics systems theory. Wkern 0, there is a
supercritical bifurcation, with saturation of thmpalitude modulus.
Whenk, < 0, there is a subcritical bifurcation, withoatigration. In
this case, an analysis with higher order termgeasary.

Nonlinear stability of agranular bed

The same approach is now applied to the case cdraulgr bed
sheared by a turbulent liquid flow. It is worth tiote here that, in
cases where the partial differential equations guxg the system
give rise to waves with limited wave-number, thentyer of Fourier
components is limited (for instance, when the lasgpales are
limited by the finite dimensions of the system or eriodicity,
when the small scales are limited by dissipativecesses, etc.).
This means that the normal modes of Eq. (13) mayriiten as

h(x,t) == Z A (He™ 17)

n_—oc

where A = ae’? = A

Before inserting the form described by Eq. (17Xtie model,
Eqg. (4) needs to be expanded, differently from Kian(2010), at
least until the first nonlinear term (in order te boherent with a
nonlinear model). The expansion of this equatioma ifaylor series
gives:

Osat (18)

=1+ 32(f)+%(f2)+0(53)

Equation (1), for the perturbation of the sheaesdr is too
complicated to be employed in a non-linear analydiswever, it
can be simplified if we note that its first ternmet convolution
product, is a non-local term that varies with thepme of the bed
(Andreotti et al., 2002). This term may then belaepd by a bed
dimensionless shapg@lL (wherel is a characteristic length of the
bed-form) multiplied by a constant

sat

; ~%m Ed.h (19)
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equation for some typica
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where D corresponds toB, multiplied by a constant ande
corresponds to the product &, and B, so thatD and E are
considered as constants. Inserting Eq. (19) in(H), combining it
with Egs. (4), (5) and (6) and noting tlgat- ¢ h(Franklin, 2008),
the following equation can be found:

9,h+B,(h)* +B,(9,h) + Bhd,h+
+B,h+B,0,h+B, =0

(20)

whereB; to Bs involve Qga, Lsay E, D andL, so thatB, to Bs are

only functions ofu. andd, and they may be treated as constants in

an analysis of a given granular bed submitted govan fluid flow.

Bs is a constant, obtained froon- ht (Franklin, 2010).
Normalizing the problem by its characteristic ldngt?), and

inserting the normal modes of the form of Eq. (ib7&q. (20) give

Z “Thoy A]B + IBjnA1i| |nx

[ph B, +B,(inA,) ]ez'”x @)

n_—oo

2> SlaAiaker s =0

p——oc g=-c0

By inspecting Eq. (21), we can see that it is thedtterm in the
equation that can resonate with the linear parttif first term).
This resonance will only occur ¢ + p = n. In this case, the third
term in Eq. (21) can be written as

23 Sla.ake

n=-co p=-oo

(22)

and, keeping in Eqg. (21) only the terms that resomath the linear
part, we find

dA1 _ (23)

oA +iB, 3 [pA, A

p=-c

where g =-(B, +inB;).

Comparing Eqg. (23) with the linear analysis (E@l)flit can be
seen that the non-linearities are in the third telfinthis term is
neglected, we find that the solution is stabledgrO and unstable
for 6,>0. Once the initial (linear) instability takes placthe
perturbations grow in an exponential way and, afteime-scale
equal tog,?, they can no-longer be analyzed by a linear amprda
the nonlinear phase, the nonlinear terms are ngelomegligible
and they must be taken into account. However, me®f them
resonate with the initial (linear) modes, they aerpected to grow
much faster than the other nonlinear terms, sothiegt are the only
ones to be taken into account (this is the same ibweloped by
Landau and Lifchitz (1994)). The third term in E83) is the one
that contains the nonlinear resonant part of tblpm.

In order to better understand the behavior of thelinear part
of Eq. (23), we can analyze only the first threede®

B =0.n-BiaA +olw) (24)

ABCM
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% = o.n - Az +0lny) @) L
B = o.n-38jAA, +OA7) (26) S ’

Now, observing that in the neighborhood of theabgity only
the fundamental mode is unstabtg ¢ 0 ando, < O for n > 1,
where ‘g’n‘>>‘g'l ), we can expect a characteristic time for the —

fundamental ‘(,1‘*1) much greater than that for the other mode:

| / |A1 maxl
]

|A

05 i
(\an\’l)i there is a dominant effect of the fundamentaltmn onset

of the instability. Forn > 1, on the onset of the instability, the

temporal derivatives vary withg, A << ‘g’n‘An (due to the _11 0‘5 0 0.5 :
dominant effect of the fundamental). The time datiixes may then ' . Yl '
be neglected fon > 1 17 71 ma

Figure 2. Bifurcation diagram for the fundamental mode (amplitude modulus
B.i |A4] versus the linear growth rate o3, normalized by their maximum values,
A2 =3 A12 + O(A14) (27)  respectively). The continuous curves correspond to the stable states
g (attractors) and the dashed curve corresponds to the unstable states. This
2 : . A )
diagram corresponds to the well-known pitchfork bifurcation.

3B.i 5 28
o, Ak + O(A-t) (28) Discussion of Some Available Experimental Data

A3:

Some published experimental data concerning theldement
which shows thatp, ~ g". Inserting Eq. (27) into Eqg. (24), we canof ripples are examined here. The objective is énify if the
find an equation for the fundamental similar to teedau Equation Saturation predicted by the present nonlinear aflyis
(Eq. (15)): experimentally observed. . ‘

As the subject of this paper is the evolution o thed-forms
dA R just after their initial growth (linear phase), teeperimental data to
—L=gA _KLAl‘Ai‘ + O(Af) (29)  be examined must correspond to the formation aneldement of

dt ripples in their early stages, i.e., after theitiah growth but before

any ripple coalescence has taken place. So, whendwe

where :_By >0. This corresponds to a supercritical€Xperimental data concern the evolution of ripptedong time-
L ag, scales, care must be taken not to use the dat@ &nd time, where

bifurcation (Glendinning, 1999; Charru, 2007): thenlinear term coalescence has already occurred.

resonating with the linear one will saturate thstahility, so that, Kuru et al. (1995) presented a theoretical and rexeatal
after the initial exponential growth, the instalyiliattenuates, Study of the initial instabilities on a granulardben a horizontal
reaching a finite value for the amplitude and nwiting the same Pipe flow, which is a case without free-surfaceeeff. Their
wavelength. experimental test section was a 3inin diameter pipe, ™ long,

A bifurcation diagram can be drawn in order to wifze the and they employed a mixture of water and glycesntize fluid
saturation of the fundamental modg as a function of a control Mmedia and glass beads as the granular media. Madlsdcan be
parameter (Glendinning, 1999). Considering the @¢) and that found in Kuru et al. (1995). In each experimengittan initially
there is a dominant effect of the fundamental modighe onset of Plane granular bed was submitted to a specific fidviquid and,
the instability, the control parameter heresis when the ripples were visible, the tests were stdppThe

From Eg. (29), it can be seen that, once instgbiiis been Wavelength of these ripples was then measured ssutiated to the
tiiggered, the amplitude of the stationary pointe g | initial instabilities. However, they reported thile amplitudes of

' -,/ %L " the ripples were 2-3 mm (10 to 20 times the graameters), so that
they correspond in fact to the early stages ofrtbelinear phase.
The fact that they didn’t notice any length-scadeiation from the
time when the ripples were first visualized to tteemplete stop of
the experiment (this time interval is not negligildompared to the
time-scale for ripples formation, of only a few seds) means that
these forms saturate after their initial growthreming with the
nonlinear analysis developed in this paper.

Coleman et al. (2003) experimentally studied thengtar bed
instabilities in a closed-conduit turbulent ligfidw (without free-
surface effects). Their experimental test sectiaasw 6 m long
horizontal closed-conduit of rectangular crossisact(300 mm
wide by 100 mm high), and they employed water asfliid media
and glass beads as the granular media. The floid Was in the
range 2600& Re< 70000 (qezu%, H is the channel height).

Figure 2 shows the bifurcation diagram for the fameéntal mode
(dimensionless amplitude modulég||versus the dimensionless linear
growth rates;) for a fixed value of the Landau constant< 1). The
continuous curves correspond to stable statesagaits) and the
dashed curve corresponds to the unstable states.

From Fig. 2, we can see that this is a supercribdarcation,
the diagram corresponding to the well known sujitizal pitchfork
bifurcation. So, after the initial exponential gtbw(linear phase),
the granular bed instabilities saturate, with tla@plitude following
the bifurcation diagram of Fig. 2, but keeping siaene wavelength.
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More details can be found in Coleman et al. (20Q®ntrary to
Kuru (1995) and Franklin (2008), they found thake timitial
instabilities scale with the grains diameter, bat with the fluid
flow. However, analyzing their data, it can be oled that after the
initial growth, and before any coalescence takeaceyl the
wavelength of these forms saturates. Again, thieesywith the
nonlinear analysis developed in this paper.

Franklin (2008) experimentally studied the inifia$tabilities on
different granular beds wunder turbulent water flowslis
experimental test section was a 6 m long horizatitsded-conduit
of rectangular cross-section (120 mm wide by 60 high), made
of transparent material. He employed water as lifid fnedia and
glass and zirconium beads as the granular medafl@itd flow, in

Erick de Moraes Franklin

grow much faster than the others, which can beecégll. The
analysis is then made on a bounded number of modes.

For the specific case studied in this paper, it wlaswn that
there is a fundamental mode that dominates the migsaof the
instability and, on the instability onset, this reodomes from the
linear phase (initial phase). It was also shown, th@nsidering only
the resonating terms, the instability is well désenl by the Landau
Equation and that it corresponds to a supercrib@akcation of the
pitchfork type. So, after the initial exponentiatogth (linear
phase), the granular bed instabilities saturate, they attenuate
their growth rate and maintain the same wavelength.

The results from the nonlinear analysis were coeghan some
published experimental data concerning the formatiand

the range 13000 Re < 24000, was measured by PIV (Particledevelopment of ripples in closed-conduit flows, fiquids in

Image Velocimetry) and the granular bed evoluticasvmeasured
by a high definition camera. More details can henfbin Franklin
and Charru (2007), Franklin (2008) and Franklin @mérru (2009).

Franklin (2008) measurements showed that the lifigd-forms
are two-dimensional, as predicted by the lineabiliia analysis of
Franklin (2010), and that, after the initial twordinsional phase, bed-
forms evolve to three-dimensional forms, as seerFigy 3. The
wavelength of the three-dimensional forms, developering the
nonlinear phase of the instability, is the samehas of the linear
phase (two-dimensional ripples). This is an expenital evidence of
the saturation of the instabilities after the linphase, corroborating
the nonlinear analysis developed in the precediotics.

t=17,2s 32,25

t=22,2s
t=37,2s

t=27,2s

Figure 3. Evolution of the wavelength A of initial ripples on a granular bed
sheared by a turbulent water flow (top view). Flow direction is from right
to left, Re = 19900 and the granular bed is composed of zirconium beads
with d = 180 um. The initial two-dimensional ripples evolve to three-
dimensional forms (during the nonlinear phase) which keep the same
wavelength. Figure extracted from Franklin (2008).

Conclusions

The transport of solid particles entrained by adfliow is
frequent in nature and in industry. Under some dflflow
conditions, a mobile granular layer known as bextttakes place in
which the grains stay in contact with the fixedtpafrthe granular
bed. In some situations, an initially flat granuleed may become
unstable, giving rise to ripples or dunes. The fafion of dunes in
deserts, in river beds and in petroleum pipelir@s/eying sand are
some examples. A better knowledge of the instaslion a granular
bed and of their evolution is of great importanoeunderstand
nature as well as to improve grains-related inéalgtrocesses.

This paper presents a theoretical investigatiothefnonlinear
phase of the instabilities on granular beds shednedurbulent
liquid flows, without free-surface effects, suchtlasse in which the
liquid depth is many times greater than the typimght of the bed-
forms, or flows in pipes and closed-conduits. Thpraach adopted
here is the weakly nonlinear analysis (Landau aifichitz, 1994;
Schmid and Henningson, 2001; Drazin and Reid, 2@CHarru,
2007), useful whenever a dominant mode can be groweexist.
This means that the modes resonating with this dantione will
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turbulent regime. The works of Kuru et al. (1996pleman et al.
(2003) and Franklin (2008) showed that there arelezees of

wavelength saturation during the nonlinear phasehef ripples

formation. Nevertheless, even after saturationth@ long time-

scales, the wavelengths of ripples may grow dueatother

mechanism: the coalescence between them (Colemaln €003).

This is a mechanism that is not related to hydradyic effects, and
that usually happens after the saturation descriteré has been
achieved, so that it is not treated in this paper.

In summary, for the specific case studied, it wasotetically
shown here that the granular bed instabilitiesratguwith the same
wavelength of the initial (linear) phase, afteritheitial growth. To
the author knowledge up to now there is no themaktreatment of
this kind, proving theoretically the saturationtiedse forms under the
conditions studied here. This explains the expertaieobservations
of saturation of the granular bed-forms under tlamflows.
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