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µ-Synthesis for Unmanned Underwater 
Vehicles Current Disturbance 
Rejection 
This note focuses attention on a novel approach to disturbance rejection when the µ-
synthesis control procedure is applied to Unmanned Underwater Vehicles (UUVs). 
Environmental external disturbances simplify to ocean current for a totally submerged 
vehicle and greatly contributes for hydrodynamical loads and the tether cable disturbance. 
Our case scenario deals with the incorporation of the sea current disturbance to the plant 
model employed for control design. In the proposed design method, we substitute the 
structured unmodeled dynamics uncertainty, which is generally difficult to come up with 
and eventually utilized to represent external disturbances, by parametric uncertainty, 
relatively easier and straightforward to come by. The sea-current load parameters are, 
therefore, treated as parametric uncertainty and fit in the µ design framework. Assuming 
that both vehicle motion and current direction lie in the horizontal plane, the incoming (to 
vehicle) current vector sets a horizontal circumference sector in which it may vary. When 
in the 3D space, current uncertainty renders a cone in space. For validation purposes, the 
linear controller is simulated with the nonlinear vehicle model. 
Keywords: mobile robots, robust control, nonlinear control systems 
 
 
 

 
Introduction1 

The success of controlling a dynamical system is directly 
connected to the designer's ability on determining the relevancy of 
present uncertainty and on obtaining, thereafter, an estimate of what 
is not or is poorly known. The resulting uncertainty model if 
unstructured may yield conservative designs by leaving out desired 
performance. Obtaining an uncertainty model can be an exhaustively 
difficult task in general, even for structured uncertainty. 

Unmanned Underwater Vehicles (UUV) have been extensively 
utilized over the years due to increasing interest in the underwater 
environment. One variant of such vehicles, the Autonomous 
Underwater Vehicles (AUV), is endowed with features which 
enable them to work autonomously from human assistance. Earlier 
results on UUV control design, such as those in Campa et al. (1998), 
point out relevant issues in regard to structured uncertainty 
modeling for AUVs and compare sliding-mode and µ-synthesis 
control results. Some uncertainty modeling details, however, remain 
unclear. An integrated guidance and gain-schedule control design 
strategy for AUVs was addressed in Fryxell et al. (1996). In a recent 
study (Feng and Allen, 2004), reduced order robust SISO controllers 
were designed for AUV speed, heading, and depth control via the 
LMI approach. Souza et al. (2004), the LQG/LTR robust 
multivariable linear control technique, applied for AUV dynamical 
positioning, considered unmodeled dynamic uncertainty and 
parametric plant perturbation dealt with by the same control 
specification, which could render a conservative design. In addition, 
specifying unmodeled dynamics, even if structured, may not prove 
to be an easy task. To overcome this difficulty, this note focuses 
attention on transforming what could be considered external 
disturbance into “easily” modeled parametric perturbation.  

The following developments below will restrict attention to 
AUV class systems, for which no tether cable to the surface is 
present as seen on Remotely Operated Vehicles, or ROVs. In this 
case, given a totally submerged vehicle, and for adequate buoyancy 
and gravity compensation, the environmental external disturbances 
simplify to the hydrodynamical loads induced by ocean current. The 
µ-synthesis control method is applied for vehicle velocity control. 
Disturbance rejection is exchanged to plant model perturbation 

                                                           
Paper received 1 April 2009. Paper accepted 18 January 2010. 
Technical Editor: Paulo Miyagi 

through the incorporation of the sea current disturbance to the plant 
model employed for control design. 

In the proposed design approach we substitute the structured 
uncertainty due to unmodeled dynamics, which is generally difficult 
to come up with and eventually utilized to represent external 
disturbances, by structured parametric uncertainty, relatively easier 
and straightforward to come by. The sea-current load parameters 
are, therefore, treated as parametric uncertainty and fit in the µ 
design framework. Two principal case studies are discussed; one of 
which is implemented. System sensitivity with respect to the 
underlying uncertainty parameter spaces may be verified according 
to these two cases. For validation purposes, the linear controller is 
simulated with the nonlinear vehicle model.  

This text is organized as follows. At first, system modeling is 
addressed. A brief overview of the µ-synthesis control strategy is 
then presented. In the following section, a few controller design 
issues are considered and some synthesis results are depicted. A 
quick discussion on fundamental issues such as stability, 
performance and computational implementation is also made. 
Simulation results are presented. Finally, concluding remarks are 
drawn based on what has been presented, and a short review for 
future implementations is presented. 

Nomenclature 

G = linearized dynamic system model 
K = linear controller 
M = generalized mass matrix 
P(s) = augmented plant transfer function 
F(i)(A,B)  = LFT of A and B. i = {l(lower), u(upper)}. 

Greek Symbols 

η = position/attitude vector in inertial coordinate frame, 
Tzyx ],,,,,[ ψθφη =  

ν = velocity vector in body coordinate frame 
6],,,,,[ Rrqpwvu T ∈=ν  

νc = current velocity vector in body coordinate frame 
τ = system input vector in body coordinate frame 

6],,,,,[ RNMKZYX T ∈=τ  
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Subscripts 

A = relative to Added mass dynamics 
RB = relative to Rigid Body dynamics 
c = relative to current 

System Modeling 

Underwater vehicle modeling 

The model used in the following discussion is based on the 
MURS 300 Mark II ROV (Ishidera et al., 1986). Although our 
discussions are AUV oriented, control design is realized with the 
MURS 300 vehicle model due to its complete hydrodynamical drag 
coefficient data available. This assertion is supported by the fact that 
we will be restricting our model based control design to relatively 
low velocities and, so, ROV and AUV dynamics can be considered 
similar, when neglecting ROV tether cable loads. The MURS 300 
vehicle is nearly neutrally buoyant and controllable on all six 
degrees-of-freedom (dof). It is propelled by six thrusters distributed 
longitudinally two-by-two on each body axis. A full order 
mathematical model has been developed, i.e., all six dof are 
considered. The underwater vehicle nonlinear and coupled dynamics 
can be modeled by the following expression (Kalske and Happonen, 
1991; Fossen, 1994; Souza, 2003):  

 
ττηννν +=+++ crD GvFCM )()()(& , (1) 

 
νηη )(J=&  (2) 

 
where 
 

ARB MMM +=  and ARB CCC +=  (3) 

 
The generalized mass matrix M accounts for vehicle inertia 

matrix MRB and the added (A) mass inertia matrix MA, taken as 
diagonal. It is important to note that added mass coefficients may be 
considered constant for a totally submerged vehicle at depths where 
the influence of waves is minimal. Likewise, the centripetal and 
Coriolis forces matrix C is computed from the rigid body centripetal 
and Coriolis forces matrix CRB, derived from rigid body (RB) 
dynamical expressions, and from the corresponding added mass 

forces matrix CA, which derives from Kirchhoff's equations, see 
Fossen (1994). The term FD(νr) stands for nonlinear hydrodynamic 
damping action, or drag. Observe from Eq. (1) that the 
hydrodynamic drag is a function of the relative velocity νr, which is 
obtained by the vehicle orientation with respect to fluid motion or 
current νc. That is: 

 

Cr ννν −=  (4) 

 
The hydrodynamic coefficients in FD(νr) also vary with the vehicle 
state and current orientation. Lift force components are considered 
negligible for non-wing like vehicles and when restricted to 
operation with moderate velocity profiles. Restoring forces and 
moments are accounted for in G(η), comprising gravitational weight 
and buoyancy components. Unrelated drag, current disturbance is 
given by τc and other environmental phenomena are not considered. 
For neutrally buoyant vehicles with homogeneously distributed 
mass, Eq. (1) may be rewritten with respect to the relative velocity 
νr by switching τc to the left side of the equation and plugging it to 
the vehicles dynamics into ν&M and C(ν)ν. System input is denoted 
by the τ force vector. The J matrix indicates when coordinate 
transformation is made between the inertial and mobile reference 
frames, see Fig. 1. 

Model linearization 

The velocity vector ν is chosen as the system new state vector x. 
The UUV linear system dynamics was obtained by classical or 
Jacobian linearization around nominal state values for linear 
velocity ν1

*  = [1.0; 0.1; 0.1] m/s and angular velocity ν2
*  = [0.1; 

0.1; 0.1] rad/s. Furthermore, as will be explained later, the current 
magnitude and direction are treated as system parameters and affect 
the linear model. For a 1 m/s magnitude current vector in the 
opposite direction to surge, the linear model found was stable. 
However, taking the current vector aligned in the surge direction, 
the linear model rendered two slightly unstable modes, given that 
current tends to accelerate the vehicle. Linearization yielded the 
state matrix A and the input matrix B used in the control framework 
detailed below. System output y was chosen to reflect the velocity 
vector ν and, hence, full state feedback is considered, making the 
system observable. The resulting linear system is minimum phase, 
and was tested and confirmed for controllability. 

 
 

 
Figure 1.  Vehicle body and inertial coordinate frames. 
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Figure 2. Two possible case studies. 

 
 
 

Variable scaling 

This procedure may be carried out by employing expected 
maximum values for the output y (= ν) and the input u (= τ) of the 
linear system model G(s) in the following manner: 

 

unorm SsGySsGsG )()()( 1−== . (5) 

 
The entries for the scaling matrices Sy and Su are usually 

obtained by employing nominal or maximum expected values for 
the output ν and the input τ variables. In this case, the scaling 
matrices are given as: 

 
},,,,,,{ maxmaxmaxmaxmaxmax rqpwvudiagSy =  (6) 

 
}.,,,,,{ maxmaxmaxmaxmaxmax NMKZYXdiaguS =  (7) 

 
A direct consequence of this normalization translates to the 

minimization of the condition number, i.e., the ratio of the system 
largest to the smallest singular values is led to a value close to one, 
for the frequency range of interest. Instead of considering variable 
scaling by maximum values, the scaling procedure was obtained by 
fully automating a search process, in the frequency domain, by 
iterating the scaling matrices. Nominal or maximum output and 
input entries may be used as a boundary condition. The search 
algorithm stops when the local minimum is found. This procedure 
was found to be more efficient than the former alternative. 

Uncertainty characterization 

The proposed approach for current disturbance rejection 
considers the modeling assumption described in the System 
Modeling section, except that instead of writing the overall vehicle 
dynamics with respect to the relative velocity νr, the current 
velocity dependent terms are considered as system parameters that 
may vary slowly in time. This enables the µ control method 
implementation for LTI systems. System state remains the vehicle 
velocity ν. By proceeding in this manner, the “external” current 
disturbance, which would initially be modeled as a frequency 
dependent unmodeled dynamics uncertainty and sometimes 

difficult to come up with, is transformed to plant parametric 
perturbation, much more easily identified by simply specifying the 
interval of coefficient variation or, in this case, of current data. 
More details are given in what follows. 

Two principal case studies are worthy of note. The first assumes 
that both vehicle motion and current vector constrained to lie in the 
horizontal plane. Hence, the uncertainty for the incoming (to 
vehicle) current vector sets a horizontal circumference sector in 
which the current Uc may vary. This circumference sector, which 
describes the uncertainty, can be parameterized by polar coordinates 
(|Uc|; φc), Fig. 2(a). The angle φc varies in the range [-∆c; ∆c] about a 
nominal value φc. The second case generalizes the first in that the 
vehicle is allowed to move freely in space, and the current 
uncertainty can be realized as cone in space. The cone subspace can 
be parameterized by spherical coordinates (|Uc|; φc; θc), Fig. 2(b). 
The angles φc and θc vary in the ranges [-∆φc ;∆φc ] and [-∆θc ;∆θc], 
respectively. Nominal values for these two coordinates are given by 

cϕ  and cθ , respectively. These parameters, along with added mass 
MA coefficients, will be termed as physical in the remainder of this 
note. 

Figure 5 shows the block diagram for the UUV dynamics in a 
special arrangement. The blocks labeled M* , RB and HD are 
indicative of UUV inertial, rigid body and hydrodynamical forces, 
respectively. It is important to stress out that the uncertainty relative 
to the generalized mass matrix M complies real physical parameters, 
of the added mass coefficients of MA, since the uncertainty is 
relative only to the added mass coefficients and not to the vehicle's 
mass, center of mass or moments of inertia. The uncertainty with 
respect to the hydrodynamic block HD is described below. 

Most of the uncertainty modeling was realized in regard to the 
actual physical hydrodynamical parameters. More on this is 
explained in a later section. For others, however, a simpler 
alternative approach to modeling the physical parameter 
uncertainty was adopted. This alternative approach consisted in 
computing the final maximum and minimum dynamical values of 
the trigonometric functions present in some hydrodynamic terms, 
which are evaluated with respect to the physical parameters and 
their uncertainty. In other words, by considering current and added 
mass variations, the maximum and minimum values of their 
hydrodynamic dependent terms were obtained and with these, 
parametric uncertainty could be specified. 
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The µ-Synthesis Method Overview 

As stated previously, the µ-synthesis method is employed for 
the underwater vehicle velocity control. A brief overview of the µ-
synthesis control design method is made below. 

The first thing to bear in mind is that with the µ-synthesis, as 
with every robust control procedure, performance specifications 
must be defined. These are defined as pass-band designed transfer 
functions, more details are discussed in the next sections. For the 
method formulation, it is convenient to come up with a generalized 
plant P, which lumps the plant model G and the performance 
specifications. From Fig. 3(a), the design objective is to find a 
stabilizing controller K such that for all uncertainty ∆ of the closed-
loop system is robustly stable and satisfies: 

 
1]),,([]),,([ <∆=∆

∞∞
KPFFKPFF ullu . (8) 

 
However, the H∞ norm may represent a conservative measure of 

the magnitude of the robustness of a system, which may even lead to 

inconclusive assertions, when dealing with structured perturbation. 
Thus, the structured singular value, or µ, is introduced in order to 
overcome this conservativeness.  

The singular value µ is not a norm in the strict sense and, in 
general, cannot be obtained directly, but inferred from a limited 
range, given by bounding values. For a purely complex uncertainty 
∆, the µ bounds can be obtained by the following relation: 

 

)(min)()(max 1

1)(

−
∆≤∆

≤≤∆ DNDNN
D

σµρ
σ

,           (9) 

 
where σ  is the closed-loop system maximum singular value. The D 
symbol, in the µ upper bound expression, represents the matrix used 
to scale the input and output of the nominal closed-loop (control) 
system N, Fig. 4. The upper µ bound calculation is a convex 
optimization problem and may not always equal the true µ value 
(Zhou and Doyle, 1998). When only real structured uncertainty is 
present, the lower µ bound may converge to a value which is 
significantly lower than the real expected value, or it may not 
converge at all (Zhou and Doyle, 1998; Balas et al., 2001). 

 

 
Figure 3. System block diagram setup for robust control synthesis. 

 
 

 
Figure 4. Control synthesis via D-scaling matrices. 

 
 
 

For the robust performance analysis, the size of the nominal 
control system N is compared to unity for all possible uncertainty 
∆P, as shown in Fig. 3(b). Robust performance is verified when the 
system is internally stable and when N is “small” with reference to 
∆P, or, in symbols: 

 
1))((max)))(,((max <=

∆∆
ωµωµ

ωω
jNjKPF

p
l

p
, (10) 

 
where ∆P = diag{∆, ∆f} and ∆f is a fictitious uncertainty relative to 
the performance design specs. Notice that N is a function of the 
controller K, since N is a lower LFT of the augmented plant P and 

the controller K. Because a direct solution for the µ-synthesis 
problem remains unavailable, the synthesis procedure is carried out 
by an iterative process, known as the D-K iteration. This procedure 
combines H∞ synthesis and µ-analysis, see Fig. 3(b), by alternating 
the minimization of 
 

∞
−1)(minmin DKDN

DK
, (11) 

 
with respect to either the controller K or scaling D while holding the 
other fixed. Thus, the D-K iteration amounts to a sequence of scaled 
H∞ control designs. 
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Figure 5. Underwater vehicle LFT and uncertainty representations. The RB and HD blocks stand for the Rigid Body and Hydrodynamic linearized 
expressions. The RB block has no associated uncertainty. 
 
 

System Control Design 

In order to employ the µ-synthesis method for control system 
design, it is important to construct the Linear Fraction 
Transformation representation of the plant model and its 
uncertainty. The purpose of LFT is to set the model matrices, 
performance weighting functions, and structured (parametric) 
system uncertainty in the appropriate format to input the synthesis 
algorithm. 

LFT representation 

Various system model blocks are defined and manipulated 
within the LFT context. In Fig. 5, M*  stands for the LFT 
construction of the inverse of the generalized mass matrix. HD 
represents LFT of all hydrodynamical forces lumped together in a 
single block. The overall plant, or perturbation, uncertainty ∆ is 
obtained by “pulling out” all the uncertainty blocks and making: 

 










∆
∆

=∆
HD

M

0

0* . (12) 

 
The generalized mass matrix uncertainty ∆M*  is composed only of 
the uncertainty of added mass matrix MA, as exemplified next. For 
the added mass matrix MA given by 
 

},,,,,{ rqpwvuA NMKZYXdiagM &&&&&&= , (13) 

 
the associated uncertainty is obtained from the uncertainty δ(.) 
relative to each of its added mass coefficients. Taking the surge 
direction, the uncertainty modeling for the first entry in MA above is: 
 

uXu
uXuu XpXX

&
&

&
&& δ+= , 1≤

uX
&

δ  (14) 

 

where uX &
 is the mean added mass value, 

uXp
&

 is the percentage 

measure of relative uncertainty, and 
uX
&

δ  is the scalar coefficient 

uncertainty. In contrast, due to the difficulty in posing a LFT 
representation for parameters that enter trigonometric and complex 
polynomial functions, the uncertainty of the hydrodynamic efforts of 
block HD was not obtained in the same manner. As already 
mentioned, the modeling procedure adopted renders a LFT of the 
general hydrodynamical HD block for every matrix element. The 
extremal values or worst case current and hydrodynamical 
uncertainty were obtained by a semi-automated algorithm, 
implemented in MATLAB, where maximum and minimum (or 
worst case) values were obtained for generalized LFT of the M*  and 
HD blocks of Fig. 5. All added mass coefficients were attributed a 
10% relative uncertainty. As stated before, in the proposed design 
method, the current is not considered as an external disturbance, but 
is treated as part of the vehicle model. Thus, the current vector also 
has a 10% variation interval relative to its magnitude. In addition, 
the current vector had a 5º uncertainty on its nominal orientation. 
Moreover, each hydrodynamic drag coefficient, which is a function 
of the vehicles velocity and current, also has an associated 10% 
relative uncertainty. Since uncertainty in this context is only 
attributed to hydrodynamical dynamics, rigid body expressions have 
no related uncertainty, and, therefore, need not have a LFT 
representation. As explained above, the system physical parameter 
uncertainty in the HD block representation was not performed 
directly due to difficulty in expressing the LFT of the complex 
hydrodynamic drag dynamical model, composed of trigonometric 
and high degree polynomial coefficient functions with respect to 
vehicle attitude in the current. 

Performance Specification 

The sensitivity performance weighting function WP, of Fig. 6, 
was obtained by considering entries of the form: 
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bs

b
pi Ms

s
swsS

ω
εω

+
+=≤

/
)(/1)(  )6,,1( K=i ,          (15) 

 
where Ms is the peak of the sensitivity function Si(s) and is a 
function of the closed-loop damping ratio, ωb is the closed-loop 
bandwidth and ε is a small value. The multivariable WP is diagonal 
where each entry equals a function wP. The system output y is 
weighted by the diagonal matrix WT whose entries are obtained 
according to the following function: 
 

TT

T
Ti Ms

s
swsT

/
)(/1)(

ω
ωε

+
+=≤  )6,,1( K=i , (16) 

 
where MT is the low-frequency maximum gain of the 
complementary sensitivity function Ti(s) and specifies the closed-
loop system damping ratio, ωT is the system bandwidth. Likewise, 
the controller output u can be weighted by a diagonal matrix Wu 
whose entries are similar to those in WT. When all uncertainty 
parameters were treated as real scalars, the lower µ bound showed to 
be very discontinuous, despite the complex sensitivity performance 
specification. On the other hand, when considering only the 
generalized mass uncertainty as complex, the lower µ bound 
function was found to be “smooth” or continuous over the entire 
frequency range, similar to results obtained when only complex 
uncertainty was considered. 

 

 
Figure 6. Augmented control system. The input signal d stands for arbitrary external disturbance. 

 
 
 

Table 1. Summary of some design results for the AUV µ-control system. 

 
 
 
 
 
 
 
 
 
 

The obtained controllers K were stable, minimum-phase, and 
achieved robust performance. Table 1 summarizes the number of 
iterations and controller order based on the design performance 
specification of Fig. 6. Figures 7 display the obtained closed-loop 

)( ωσ j  and )( ωµ j  plots. Observe that these plots are in accord 
with peak values found in Table 1. 

Design schemes with other performance specifications were 
tested, such as those with reference command and signal 
measurement noise specifications. However, because tuning of the 
performance weights functions requires some time and many design 
iterations1, we will delay these results to a forthcoming presentation. 

The design procedure may result in a controller possessing 
prohibitive high order which renders it unsuited for practical 
implementations. This is certainly a major method drawback2. On 
completion of design iterations, we verified how much of the 

                                                           
1 The designer should bear in mind and evaluate the satisfactory closed-loop 
system performance and design effort trade-offs. 
2 Since the controller order equals the sum of the augmented plant's order 
with that of both scaling D(jω) matrices. 

controller order could be reduced while still maintaining robust 
performance, i.e., checking whether µ∆P (N) < 1 would still hold. 

One approach to find a smaller order controller is to override the 
automatic pre-fitting algorithm used to compute the scaling matrices 
D(jω) and manually limit their order. This process was tested with 
some success, making it possible to lower the controller order from 
78 to 70, for the unstable system, at the cost of minimal degraded 
performance. Reduced order designs are not considered here, but 
may overcome this issue and render smaller order designs; refer to 
Zhou and Doyle (1998), Skogestad and Postlethwaite (1996) and the 
references therein. 

Simulation Results 

The obtained controllers K rendered the linear closed-loop system 
stable and were simulated with the linear and nonlinear AUV models. 
These simulations evaluate the system capacity to compensate for 
parametric variation during system stabilization from off-nominal 
velocity state values. For both controller designs, a planar current 
scenario with a sector uncertainty region was considered. 

System Stable (Uc = −1m/s) Unstable (Uc = +1m/s) 
D Scaling Auto-Fit. full  semi full  semi 

Iterations 17 18 17 18 
Peak )( ωµ j  0.976 0.988 1.010 1.017 

Peak )( ωσ j  0.990 0.992 0.994 0.991 

Controller K order 70 68 78 70 
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Figure 7. Closed-loop system singular values σ  and strutucture singular values µ. 

 
 
 
The system was simulated with input reference velocity 

trajectories in the vicinity of the nominal velocities used in the 
linearization. The velocity trajectories are given by pre-filtering step 
inputs for each system dof. These pre-filters are first order functions 
of time constants approximately close to 5 s. The nominal set-point 
velocities were initially given by [1.0; 0.1; 0.1] m/s and [0.05; 0.05; 
0.05] rad/s for linear and angular dof respectively. The angular 
velocity set-points were simultaneously brought to zero 30s into the 
simulation. A set of “perturbation” reference velocity trajectories 
was then applied over the velocity set-points and simultaneously to 
all dof 20 s later, as depicted in Fig. 8. In addition, perturbation on 
the magnitude of the current of 0.1 m/s was considered around a 
constant mean value of Uc = ±1.0 m/s from the simulation start-up. 
The current profile was defined on the inertial frame system. Some 
simulation results are shown in Fig. 8. 

Discussions and Concluding Remarks 

From the results presented above it can clearly be seen that 
AUV stabilization for surge, sway, and heave linear velocities and 
roll, pitch, and yaw angular velocities was satisfactorily 
accomplished. Reference tracking to small velocity values was also 
verified for both nonlinear system models considered in the System 
Modeling section. 

The controller design for the AUV model obtained with a Uc = 
+1 m/s current must satisfy an additional lower-bound constraint 
imposed on the complementary sensitivity weighting functions wT(s) 
cut-off frequency to counteract the presence of a pair of unstable 
complex poles. 

Nominal performance and robust stability were also verified in 
addition to the obtained system robust performance. In particular, 
robust stability can be achieved with an uncertainty set as large as 
|∆| < 1.8 with the obtained controller K for the AUV stable model. 

Even though not designed for reference input tracking 
performance, the closed-loop systems with stable and unstable 
nonlinear system models were simulated with a reference input 
profile for all three translations and rotations, as described in the 
section above. Notice that a 2-dof scheme was adopted to define 
“perturbation” velocity trajectories by using a pre-filter3 to weight 
step input. This significantly contributed for a smooth trajectory 
and, therefore, time domain characteristics indicated absence of or 
small overshoot and tracking errors (< 0.005 m/s and < 0.005 rad/s). 
Steady-state error was not observed in the closed-loop system 
simulation results with the linearized plant model. 

                                                           
3
 With a cut-off frequency smaller than the closed-loop transfer function 

(CLTF) bandwidth, i.e., smaller than the cut-off frequency ωb. 
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Figure 8. Velocity tracking results. 

 
 
Once again, in the present study, we have not considered the 

controller order as a design constraint; a typical concern for practical 
implementation. In this way, one could be interested in the optimal 
performance, that is, in obtaining the limits of achievable 
performance for a specified maximum controller order. Low-order 
controller design techniques should be employed for this intent. 

Results can still be optimized for the performance of the 
nonlinear system model if operated over a large range of state 
variables4. Specifying the performance weight functions for 
controller design may play a role in this regard. Thus, many design 
iterations may be needed to determine best performance 
specification and the corresponding state bounds where they are 
satisfactorily valid. A gain scheduling scheme would then switch 
between the many designed linear controllers. 

A final comment relates to the high number set of parametric 
uncertainties for the present system model. This fact may render a 
conservative control system design, (Skogestad and Postlethwaite, 
1996). However, due to the relative high state space dimension (dof) 
of the full AUV velocity model, the control system design 
conservativeness is difficult, if not impossible in practice, to 
ascertain. 

In summary, this note focused attention on transforming what 
could be considered as external disturbance into easily modeled 
parametric perturbation. This was carried out by considering current 
and added mass dynamics as parametric dependent expressions with 

                                                           
4 A challenging task for general, high dof-number nonlinear dynamics and 
certainly a recurrent issue when using linear control methods. 

an associated uncertainty. A robust linear control design was 
performed and results were obtained with a full order nonlinear 
Underwater Vehicle model. 

Future implementation 

The present study is far from being complete and conclusive. 
Results still need to be optimized for performance and many 
questions still remain by the above considerations. Some of these 
could include comparisons of the above implementation with other 
important uncertainty modeling schemes: 

 
• Different current uncertainty modeling, such as the 

physical hydrodynamic parameter uncertainty modeling, in 
contrast to the above proposed parametric modeling; 

• Current treated as external disturbance in a mixed 
unstructured/parametric scheme, etc. 

 
Alternative design methods remain yet to be implemented to this 

robust control problem. One such method could intrinsically 
consider the computation of a reduced order controller and, 
therefore, to treat the limit to the order for K as a design constraint. 
Further evaluation of these control strategies will be possible 
through experimental tests of vehicles, currently under development, 
through pool and open sea test trials. 
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