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Model Uncertainties of Flexible
Structures Vibrations Induced by Internal
Flows
In many situations analysts use incomplete models to design a system, or to make decisions.
These models are incomplete due to unmodeled phenomena, which meansthat some
features are not included in the model (either because it was not previously thought about
or because it would be too expensive to include). These uncertainties related to the model
are difficult to take into account. In this paper, the nonparametric probabilistic approach
is used to investigate model uncertainties in the problem of structures excitedby internal
flow. A reference model is constructed, where an Euler-Bernoulli beam is used to model
the structure, and the fluid is added to the model by means of a constant mass, damping
and stiffness. Then, an incomplete model of the reference model is considered. In it the
influence of the fluid stiffness is not taken into account, hence, the uncertainty is related to
this unmodeled feature (fluid stiffness). The incomplete model is then used together with
the nonparametric probabilistic approach to infer the behavior of the reference model.
Besides, a procedure is proposed to calibrate the dispersion parameterof the probabilistic
model.
Keywords: fluid-structure interaction, stochastic dynamical model, inverse stochastic
problem, model uncertainties

Introduction

The application analyzed in this paper is the flexible-structure
vibrations induced by internal flows. The dynamics of structures
with internal axial flow has many technological applications, e.g.,
drill-strings (Ritto et al. (2009)) heat-exchanger tubes, microscale
resonators (Rinaldi et al. (2010)), nuclear fuel elements, towed
flexible cylinders for water transportation, etc. In the present analysis
the fluid-structure interaction is modeled as done by Paidoussis
(1998), where the Euler-Bernoulli beam theory is used to model the
structure, and the system is discretized by means of the finite element
method.

Uncertainties related to structures excited by internal flow have
not got the attention it deserves. Curling and Paidoussis (2003)
investigate cylinders subjected to turbulent axial flow, and analytical
approximations for the lateral fluid forcing functions have been
presented, where these excitations are random. For a general
perspective on modeling uncertainties, see Ayyub and Klir (2006) and
Caers (2011).

The interest of the present investigation is on model uncertainties,
i.e., modeling errors due to incomplete information and unmodeled
phenomena. For the present analysis, a reference model is
constructed, and a computational incomplete model is considered,
where the influence of the fluid stiffness is not taken into account,
i.e., the unmodeled phenomenon is the fluid stiffness (which is not
included in the incomplete model). It should be noted that this choice
is arbitrary, the incomplete model considered could be another one,
e.g., the fluid mass, or the damping, etc. The question that arises is
the following: is there a strategy to generate good predictions using
the incomplete model? When analyzing complex systems, incomplete
models are always used to predict the response of the real system.
By controlling the model uncertainty, as proposed in this work, it is
possible to know exactly what the unmodeled phenomenon is and,
hopefully, to gain some confidence in using incomplete models.

It should be noted that a careful analysis of uncertainties for the
system analyzed in the present work will be the subject of a future
work. For instance, if the stiffness is uncertain it is likely that the
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inertia and damping of the structure are also uncertain, since there is
a correlation among these quantities. The present paper focuses the
analysis on only one uncertain aspect, such that the modeling error
can be controlled and better analyzed.

There are few strategies found in the literature to cope with model
uncertainties. There is the info-gap model uncertainty (Ben-Haim
(2006)), where a non-probabilistic strategy is pursued and nested sets
are considered. There is the nonparametric probabilistic approach
(Soize (2000)), where a probabilistic strategy is pursued and the
random matrix theory is applied (Mehta (1991)). There is the strategy
found in Beck and Katafygiotis (1998), where the output prediction
errors include model uncertainties (output prediction errors is the
difference between numerical and real system outputs). Recently,
model uncertainty is being called model form uncertainty. Roy
and Oberkampf (2011) take into account model form uncertainty
appending an area validation metric to the sides of the p-box
(ensemble of cumulative density functions).

The nonparametric probabilistic approach (Soize (2000)) is
appealing, since it is the only strategy implemented at the operator
level of the model. Therefore, in the present work it will be used to
model uncertainties. The procedure adopted in this paper is similar
to the one followed by Ritto et al. (2008), where the nonparametric
probabilistic approach was employed to the problem of a beam
with uncertainty on the boundary conditions. However, the type
of uncertainty analyzed now is very different and here a calibration
procedure is proposed (inverse stochastic problem).

The main contributions of this paper are the following: 1)
investigation of model uncertainties in structures excited by internal
flow using the nonparametric probabilistic approach, 2) proposition
of a calibration procedure for the dispersion parameter of the
probabilistic model, and 3) benchmark for other analyses related to
model uncertainties. Concerning point three, it should be remarked
that the simple system considered in the present work is well suited for
comparisons of different strategies for modeling uncertainties within
the model.

This article is organized as follows. In the first section
the deterministic problem is presented, the dynamic equations are
introduced, and the discrete system is obtained by means of the finite
element method. In the second section the reduced-order model,
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constructed with the normal modes of the structure, is presented. The
stochastic model (nonparametric probabilistic approach) is quickly
reviewed in the third section, and the resulting stochastic system
is shown in the fourth section. In the fifth section, the calibration
procedure is explained and the stochastic system is analyzed. Finally,
in the sixth section, the concluding remarks are made.

Nomenclature

E = Young Modulus, Pa
F = external force, N/m
L = length, m
I = area moment of inertia, m4

m = mass per unit length of the structure, kg/m
M f = mass per unit length of the fluid, kg/m
U = fluid velocity, m/s
u = dimensionless fluid velocity
v = transversal displacement, m
δ = dispersion parameter
v = displacement vector, m, rad
f = force vector, N, N.m
N = shape function vector
[M] = mass matrix
[Mr ] = reduced mass matrix
[C] = damping matrix
[Cr ] = reduced damping matrix
[K] = stiffness matrix
[Kr ] = reduced stiffness matrix
[Kr ] = random reduced stiffness matrix
[G] = random germ matrix
[H] = matrix of the frequency response functions

Greek Symbols

ωi = i-th natural frequency
[Φ] = normal modes matrix

Deterministic System

Figure 1 sketches the system considered in the analysis.

Figure 1. Sketch of the system considered in the analysis (the arrow
represents the internal fluid flow).

Using the Euler-Bernoulli beam theory, the partial differential
equation governing the dynamics of the structure is written as:

m
∂ 2v(x, t)

∂ t2 +EI
∂ 4v(x, t)

∂x4 = F(x, t) x∈ [0,L] , t ∈ [0,T] , (1)

wherev is the transversal displacement,L is the length of the beam,
m is the mass per unit length,E is the elasticity modulus,I is the area
moment of inertia andF is the external force. If the fluid (Paidoussis
(1998)) is included in the model, the governing equation is:

(m+M f )
∂ 2v

∂ t2 +2M fU
∂ 2v
∂x∂ t

+M fU
2 ∂ 2v

∂x2 +EI
∂ 4v

∂x4 = F , (2)

whereM f is the fluid mass per unit length andU is the constant axial
velocity of the fluid. Using dimensionless variables, we can write:

∂ 2η

∂τ2 +2β1/2u
∂ 2η

∂ζ∂τ
+u2 ∂ 2η

∂ζ2 +
∂ 4η

∂ζ4 = f , (3)

where the dimensionless quantities are:

τ = t

(

EI

(m+M f )L4

)1/2

, f = F
L2

EI
.

ζ =
x
L

, η =
v
L

,

β =
M f

m+M f
, u=UL

(

M f

EI

)1/2

,

(4)

Making M f = 0, we get the dimensionless form of Eq. (1). Let
η= η̂exp(iωτ) and f = f̂ exp(iωτ), in whichω is the dimensionless

frequency,ω = ωrad

(

(m+M f )L4

EI

)1/2

, ωrad is the frequency in

rad/s andi =
√
−1. Substitutingη= η̂exp(iωτ) and f = f̂ exp(iωτ)

in Eq.(3) leads to:

−ω2η̂+ iω2β1/2u
∂ η̂
∂ζ

+u2 ∂ 2η̂

∂ζ2 +
∂ 4η̂

∂ζ4 = f̂ . (5)

The partial differential equation, Eq. (5), is discretized by means
of the finite element method:̂η(e)(ξ,ω) = N(ξ)v̂(e)(ω), in which
N are the shape functions (Hermitian functions),ξ is the element
coordinate, and̂v(e) is the vector with the element displacements.

After assembling the element matrices, the discretized system is
given by:

−ω2[M]v̂(ω)+ iω[C]v̂(ω)+([Kb]+ [K f ])v̂(ω) = f̂(ω) , (6)

where [M], [C], [Kb] and [K f ] ∈ Rm×m are the mass, damping and
stiffness matrices (related to the bending and to the fluid),v̂(ω)
∈ Cm is the response vector andf̂(ω) ∈ Cm is the force vector.
Matrices [M] and [Kb] are symmetric positive definite, matrix[K f ]
is symmetric negative definite and matrix[C] is not necessarily
symmetric. Equation (6) can be written as

v̂(ω) = [H(ω)]f̂(ω) , (7)

where [H(ω)] ∈ Cm×m is the frequency response function (FRF),
formally cast as:

[H(ω)] = (−ω2[M]+ iω[C]+ ([Kb]+ [K f ]))
−1 . (8)

Reduced-Order Model

A reduced-order model is used mainly for the two following
reasons. Stochastic computations are time consuming; hence, the
reduced-order model will help to save computational time in the
simulations. And it is a necessary step for the nonparametric
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probabilistic approach, because the full finite element matrices have
topological zeros, which cannot be replaced by nonzero random
variables, Soize (2000).

The basis generated by the normal modes associated conservative
system ([C] = 0) is used to construct the reduced-order model. It
should be noted that these modes do not diagonalize the damping
matrix.

The natural frequencies and the normal modes of the reference
model are computed from the following generalized eigenvalue
problem:

(−ω∗2
i [M]+ [Kb]+ [K f ])φ

∗
i = 0 , (9)

whereω∗
i is the i-th natural frequency,φ∗

i is the i-th normal mode,
and the matrix composed by the first normal modes is given by[Φ∗] =
[φ∗

1 φ∗
2 ... φ∗

n]. Note that the reference model includes[K f ] (fluid
stiffness), which depends onu; therefore, for eachu a different basis
is generated. The reduced stiffness matrix of the reference model is
written as

[K∗
r ] = [Φ∗]T([Kb]+ [K f ])[Φ∗] . (10)

As mentioned before, the unmodeled phenomenon is known to
be the fluid stiffness, and the nonparametric probabilistic model
(see next section) is going to be used together with the incomplete
computational model. The natural frequencies and normal modes of
the incomplete model are computed from the following generalized
eigenvalue problem (which does not include[K f ]-fluid stiffness):

(−ω2
i [M]+ [Kb])φi = 0 , (11)

whereωi is the i-th natural frequency,φi is the i-th normal mode,
and the matrix composed by the normal modes is given by[Φ] =
[φ1 φ2 ...φn]. The reduced stiffness matrix of the incomplete model
is written as

[Kr ] = [Φ]T [Kb][Φ] . (12)

Now, letv̂(ω) = [Φ]q̂(ω), where[Φ] ∈Rm×n is the matrix composed
by the normal modes of the system andq̂(ω) ∈ Cn. The reduced-
order model of the incomplete system can be written as

q̂(ω) = (−ω2[Mr ]+ iω[Cr ]+ [Kr ])
−1[Φ]T f̂(ω) . (13)

Thus, the system was reduced from dimensionm to n (n < m). The
reduced mass and damping matrices are constructed using[Φ] as done
in Eq. (12). The reduced-order model of the reference system canbe
written as

q̂re f (ω) = (−ω2[M∗
r ]+ iω[C∗

r ]+ [K∗
r ])

−1[Φ∗]T f̂(ω) , (14)

where the reduced mass and damping matrices are constructed using
[Φ∗] as done in Eq. (10). Hence, in physical coordinates, the response
of the reference model is given byv̂re f (ω) = [Φ∗]q̂re f (ω).

Stochastic Model

The nonparametric probabilistic approach (Soize (2000)) is used
as a strategy to model the uncertainties related to the unmodeled
physical phenomenon (fluid stiffness). Such an approach consists
in constructing a stochastic model for the stiffness operator of the
problem using intrinsic available information relative to it.

The idea of this probabilistic approach is based on the fact that
even if all the parameters of the incomplete model are modeled as
random variables, the experimental response can not be properly
described, since there are unmodeled phenomena (which means
that the incomplete model lacks important features of the behavior
of the system). To overcome this problem, instead of modeling
the parameters of the incomplete model as random variables, the
reduced-order matrix of the system is modeled as a random matrix
in such a way that a larger set of outcomes is achieved and,
hopefully, the experimental response will be within the larger set.
A simple two-degrees-of-freedom example showing the difference
between parameter and model uncertainties using the nonparametric
probabilistic approach can be found in Sampaio and Cataldo (2010).

The reduced random matrix is written as (note that the boldface is
used for the random matrices)

[Kr ] = [L]T [G][L], (15)

where [L]T [L] is the Cholesky decomposition of matrix[Kr ] (Eq.
(12)), which does not include the fluid stiffness[K f ]. Without going
into further details, the probability density function of the random
matrix [G] can be constructed using the Maximum Entropy Principle
(Jaynes (2003)) with the following available information:

1. Random matrix[G] is almost surely positive-definite,

2. E {[G]}= [ I ] ,

3. E {||[G]−1||2F}= c1 , |c1|<+∞ ,

where [ I ] is the identity matrix,E {·} denotes the mathematical
expectation and||[A]||F = (trace{[A][A]T})1/2 denotes the Frobenius
norm. The first available information says that[Kr ] is positive-
definite almost surely, which is important to guarantee the physical
characteristics of the stiffness of the system; the second available
information says that the mean value of[Kr ] is equal to its nominal
value[Kr ], which means that we supposedly trust the nominal model
(it should be noted that modeling the problem is a constructive process
and should be approached step by step; the nominal model must be
updated if it cannot be sufficiently trusted); and the third available
information guarantees that the response of the system is a second
order process (i.e., the response is bounded for bounded input).

The closed form expression of the probability density function of
[G] is given by (Soize (2000))

p[G]([G]) = 1M+
n (R)

([G])CG det([G])(n+1) (1−δ2)
2δ2 ×

×exp
{

− n+1
2δ2 tr([G])

}

,

(16)

where det(·) is the determinant, tr(·) is the trace,M+
n (R) is the set

of real positive-definite matrices of dimensionn. The normalization
constant is written as

CG =
(2π)−n(n−1)/4

( n+1
2δ2

)n(n+1)/(2δ2)

∏n
j=1 Γ

(

(n+1)/(2δ2)+(1− j)/2
) , (17)
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where Γ(z) is the gamma function defined forz > 0 by Γ(z) =
´ +∞

0 tz−1e−tdt. An important parameter used in the analysis is the
dispersion parameterδ of matrix [G], defined as:

δ =

{

1
n
E {||[G]− [I ]||2F}

}
1
2

, (18)

As δ increases, the uncertainty of the stiffness also increases. Note
that [K f ] depends on the dimensionless speedu. Therefore, ifu= 0,
then the incomplete model equals the reference model, andδ= 0. For
different values ofu, δ should be calibrated, as shown in the following
section.

The stochastic system is written as:

Q̂(ω) = (−ω2[Mr ]+ iω[Cr ]+ [Kr ])
−1[Φ]T f̂(ω) , (19)

whereQ̂(ω) is the random response, which is random because[Kr ]
is random.

Calibration Procedure and Numerical Analysis

The beam is supported in both ends (i.e.,η = 0 atζ = 0 and at
ζ = 1). It is discretized with 80 finite elements (m= 160) and the
reduced-order model is constructed withn= 10. The frequency band
analyzed is[0,30] Hz. The mass ratioβ = 0.8 is fixed andu varies
from 0 to 3. For instance, for the configurationE = 450× 106 Pa,
di = 4×10−2 m, do = 5×10−2 m,ρ= 250 kg/m3, ρ f = 1000 kg/m3,
U = 10 m/s, we haveβ = 0.88 andu= 1.24.

Deterministic response

Figure 2 depicts the absolute value of the response|v̂| of the
deterministic system atζ = 0.3 for different flow velocitiesu =
{0,1,2,3}. It can be seen that the first natural frequency is the one
that shifts the most (see Table 1).

0 5 10 15 20 25 30
10

−6

10
−4

10
−2

10
0

10
2

10
4

ω

|u
ha

t|

 

 

u=0
u=1
u=2
u=3

Figure 2. Response in frequency of the deterministic system at ζ = 0.3 for
u= {0,1,2,3}. As u increases the natural frequencies shift left.

Figure 3 shows the distance from the reference response as the
dimensionless velocity increases. It shows how the two deterministic
models get apart asu increases. The distancedist is measured by:

dist(u) =
100
nω

nω

∑
j=1

||v̂re f (ω j ,u)− v̂(ω j )||
||v̂(ω j ,u)||

, (20)

in which v̂re f is the response of the reference model (stiffness matrix
given by Eq. (12)) and̂v is the response of the incomplete model
using stiffness matrix given by Eq. (10). The frequency domain is
discretized innω (=1500) frequencies, and|| · || is the L2-norm.

0 0.5 1 1.5 2 2.5 3
0

50

100

150

u

di
st

 (
%

)

Figure 3. Percent error as a function of the flow velocity u.

Calibration of the dispersion parameter δ

As Table 1 shows, the first natural frequency is the one that shifts
the most, as the dimensionless velocityu changes. Therefore, the first
natural frequency is going to be used in the calibration procedure. Let
W1 be the random variable related to the first natural frequency of the
system; the convergence analysis is done as following:

lim
ns→∞

E {(W1ns −W1)
2}= 0, (21)

wherens is the number of Monte Carlo simulations. The mean square
convergence function (msc) is defined as:

msc(ns) =W2
1ns

, (22)

where the overline represents the empirical mean. Figure 4(a) shows
the convergence curve, and Fig. 4(b) shows the histogram ofW1 for
δ = 0.2; 10000 samples were used in the Monte Carlo simulation. In
this case, the mean value ofW1 is 1.54 and its variance is 0.0045.

The strategy for the calibration of parameterδ is the following: 1)
Construct the graphic shown in Fig. 5 using the stochastic model, 2)
computeω1(u) using the reference model (deterministic), 3) use the
graphic constructed in step 1) to associate a value ofδ for each value
of u.

Steps 1) and 3) of the analysis need to be detailed. To construct
the graphic shown in Fig. 5, a stochastic simulation is done for
different values ofδ’s (using the incomplete model together with
the nonparametric probabilistic approach, Eq. (19)). For each value
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Table 1. Comparison among the natural frequencies for different values of u.
|ω1(0)−ω1(u)|

|ω1(0)| 100 |ω2(0)−ω2(u)|
|ω2(0)| 100 |ω3(0)−ω3(u)|

|ω3(0)| 100 |ω4(0)−ω4(u)|
|ω4(0)| 100

u= 0 0.00 0.00 0.00 0.00
u= 1 5.20 1.27 0.56 0.33
u= 2 22.88 5.20 2.28 1.27
u= 3 70.32 12.13 5.20 2.89

0 2000 4000 6000 8000 10000

2.35
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2.5

2.55

2.6

number of simulations

m
sc

(a)

1.3 1.4 1.5 1.6 1.7
0

500

1000

1500

2000

2500

First natural frequency (b)
Figure 4. (a) Mean square convergence of W1 and (b) its histogram for δ =
0.2.

of δ, the random variable related to the first natural frequencyW1
has a parameterω5%

1 for which P(W1 <ω5%
1 ) = 5% (in words, the

probability of W1 to be smaller thanω5%
1 is of five percent). The

idea is to guarantee that the first natural frequencyω1(u) computed
with the reference model (deterministic) is within this limit. Note
that this value is arbitrary, one could choose for instance 10% (less
conservative, meaning that the value of the calibratedδ will be
smaller) or 1% (more conservative, meaning that the value of the
calibratedδ will be bigger). As the value ofδ increases, the value of
ω5%

1 decreases (in the same way, whenδ increases theω95%
1 increases

because the standard deviation ofW1 increases withδ).
Now that the graphic of Fig. 5 has been plotted, the response

of the reference system (with fluid stiffness) can be used for the
calibration. In a more realistic scenario, the reference response
could be some experimental one. The first natural frequency

for u = {0,0.5,1,1.5,1,1.5,2.0,2.5,3.0} happens to beω1 =
{1.57,1.55,1.49,1.38,1.21,0.95,0.47}. Knowing these values and
using the graphic of Fig. 5, we can calibrateδ for different u’s and
construct the graphic shown in Fig. 6. For instance, foru = 2.5 we
havew1 = 0.95; going right with the arrow until the curve is reached
and then coming down, the value ofδ is 0.6, which is the calibratedδ
for u= 2.5.

0 0.2 0.4 0.6 0.8

0.8

1

1.2

1.4

1.6

δ

ω
15%

Figure 5. Fifth percentile ( ω5%
1 ) of W1 as a function of δ.

Figure 6 shows the calibrated dispersion parameterδ as a function
of the flow velocityu.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u

δ

Figure 6. Dispersion parameter δ as a function of the flow velocity u.
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Stochastic response

Figure 7 shows some Monte Carlo simulations of the response
at ζ = 0.3 for δ = 0.2 together with the mean of the stochastic
simulation. Although each random response presents well defined
peaks, the mean does not have the same pattern. Figure 8 shows
the 90% confidence envelope (yellow region) and the deterministic
response of the reference model foru = 1 (dashed line). A zoom
image of the same (Fig. 8(b)) shows how the envelope includes the
response close to the first natural frequency. There are some peaks
that are not inside the 90% confidence region, which is expected. To
guarantee that all peaks are inside the confidence envelope, too many
Monte Carlo simulations would be necessary and the confidence
region would have to be constructed for a value close to one, instead
of 90% (see Fig. 9 for a comparison of different confidence regions).
Another thing that should be remarked is that even though it seems
that the stochastic response is damped because of the statistical
envelopes shown in Fig. 8, each random response happens to have
small damping, as shown in Fig. 7.

0 5 10 15 20 25 30
10

−10

10
−5

10
0

10
5

ω

ra
nd

om
 a

bs
(H

ra
nd

)

 

 

mean
random

Figure 7. Random response of the system at ζ = 0.3 for δ = 0.2: Monte Carlo
simulations and mean response of the stochastic system.

Figure 10 shows the same graphic of Fig. 8 forδ= 0.5 andu= 2.
At this point the confidence envelope is already too large, given results
that might be of no relevance.

It should be noticed that the value ofδ used in the analysis
depends on the dimensionless fluid velocityu, and also on the strategy
employed for the calibration procedure. For instance, other natural
frequencies could be used to calibrate the dispersion parameterδ,
leading to different values. If the fourth natural frequency was usedin
the calibration procedure, the statistical envelope would be tighter in
the region of the fourth natural frequency; however, the consequence
would be that the first natural frequency would not be included in the
statistical envelope.

As a practical application for these results, an information that
is used in the design of a structure are the values of its natural
frequencies; there should not be an exciting force with frequency
close to the natural frequency of the structure. In this sense, how
can the stochastic model be used? Figure 11 shows the spread of
the statistical envelope near the natural frequencies. Note that all∆’s
increase with the natural frequency (0.3 Hz (for the 1st nat freq), 1.0
Hz (for the 2nd nat freq), 2.0 Hz (for the 3rd nat freq), 3.0 Hz (for

ω
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(b)
Figure 8. Random response of the system at ζ = 0.3 for δ = 0.2. The filled
region corresponds to the 90% confidence envelope and the dashed line
corresponds to the deterministic response for u= 1. (a) absolute value and
(b) zoom close to the first natural frequency.
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Figure 9. Random response of the system at ζ = 0.3 for δ = 0.2 for different
confidence regions (90%, 95% and 99%); the dashed line correspon ds to
the deterministic response for u= 1.

the 4th nat freq)). If the frequency band of interest is, for instance,
[0,5]Hz, the band [1.4,1.7]Hz (near the first natural frequency) should
be avoided. On the other hand, if the frequency band of interest
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Figure 10. Random response of the system at ζ = 0.3 for δ = 0.5. The filled
region corresponds to the 90% confidence envelope and the dashed line
corresponds to the deterministic response for u= 2. (a) absolute value and
(b) zoom close to the first natural frequency.

is [10,15]Hz, the band [13,15]Hz (near the third natural frequency)
should be avoided, which is a worse scenario. If one is interested
in the low frequencies, andu is not big (which means thatδ is also
not big), then the stochastic model (incomplete model together with
the nonparametric approach) is robust (thin confidence region) and the
stochastic model could be used as a prediction tool. If one is interested
in the medium to high frequencies, then the stochastic model is not
robust (wide confidence limit), and its use is not recommended.

Concluding Remarks

This paper has analyzed the dynamics of a structure excited
by internal flow, where there are model uncertainties related to
the stiffness of the system due to unmodeled phenomena (the fluid
stiffness). This unmodeled phenomenon was chosen arbitrarily, such
that model uncertainties could be analyzed. Uncertainties within
the model (modeling errors or model form uncertainty) are very
challenging to take into account; and it is still a fruitful domain of
research.

In the present work, these uncertainties have been modeled with
the nonparametric probabilistic approach, and the stochastic system
has been investigated using a simple, but non-trivial example. First,
a procedure has been proposed to calibrate the dispersion parameter
related to the stochastic model. Next, the spectrum of the response
has been analyzed, showing how the confidence envelope changes for
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Figure 11. Random response of the system at ζ = 0.3 for δ = 0.2. The filled
region corresponds to the 90% confidence envelope and the dashed line
corresponds to the deterministic response for u= 1. The arrows show how
wide is the statistical envelope near the natural frequencies.

different values of the dispersion parameter.
If one thinks of the solutions of the incomplete and the reference

problem as points in an abstract metric space they are a certain
distance apart from each other, since they are different. The strategy
of the nonparametric probabilistic approach is to make a discretization
of the operators random. With this, one generates a variety of
solutions for the incomplete model, one for every realization. The
idea is to find a sequence of realizations of the incomplete model
whose solutions converge to the solution of the reference model,
hence reducing the distance among the variety of solutions of the
incomplete and the reference model. Now, the distance of the set
of solutions of the incomplete model and the solution of the reference
model is zero.

Of course, there is no perfect model. Some aspects of the real
structure are not modeled and this strategy seems to give a way
to approximate the reference model even if one does not know the
unmodeled aspects. One drawback is that one randomizes one of the
approximations of the operator, a matrix, and not the operator itself.
But today, to randomize directly the operator is an unsolved problem
since it is hard to define a probability space in infinite dimensions;
one can do this only in special cases.

It can be concluded that by using the incomplete computational
model together with the nonparametric probabilistic approach, it is
possible to include the results of the reference model. As the model
uncertainty depends on the dimensionless flow velocityu, if u= 0 the
incomplete model gives the same results of the reference model (with
δ = 0). As u increases, the dispersion parameterδ has to increase to
encompass the response of the reference model. At certain values of
u andδ, the statistical envelope gets so wide that the results might
not be satisfactory. But, for smallu’s andδ’s, the incomplete model
together with the nonparametric probabilistic approach have shown
good results (if one is interested in the low frequencies).

This is the first step of a work in progress. The present paper has
discussed model uncertainties in this fluid-structure system. In a next
step, a more precise uncertainty modeling will be developed for the
problem analyzed (including uncertainties in the damping and loads,
for instance). Finally, a stability analysis will be investigated using
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the stochastic model.

Acknowledgements

The authors gratefully acknowledge the support of the Brazilian
agencies CNPq, CAPES and FAPERJ.

References

Ayyub, B.M., Klir, G.J., 2006, “Uncertainty Modeling and Analysis in
Engineering and the Sciences”, Chapman and Hall/CRC, USA.

Beck, J.L., Katafygiotis, L.S., 1998, “Updating models and their
uncertainties: Bayesian statistical framework”,Journal of Engineering
Mechanics, 124 (4), pp. 455-461.

Ben-Haim, Y., 2006, “Info-Gap Decision Theory”, Second Edition:
Decisions Under Severe Uncertainty, 2nd Edition. Academic Press.

Caers, J., 2011, “Modeling Uncertainty in the Earth Sciences”, Wiley,
USA.

Curling, L.R., Paidoussis, M.P., 2003, “Analyses for random flowinduced
vibration of cylindrical structures subjected to turbulent axial flow”, Journal
of Sound and Vibration, 264, pp. 795-833.

Jaynes, E., 2003, “Probability Theory: The Logic of Science”. Vol. 1.
Cambridge University Press, Cambridge, UK.

Mehta, M.L., 1991, “Random Matrices”, 2nd Edition. AcademicPress,
San Diego, CA.

Paidoussis, M.P., 1998, “Fluid-Structure Interactions: Slender structures
and Axial Flow”, Vol. 1, Academic Press, London, United Kingdom.

Rinaldi, S., Prabhakar, S., Vengallatore, S., Paidoussis,M.P., 2010,
“Dynamics of microscale pipes containing internal fluid flow”,Journal of
Sound and Vibration, 329, pp. 1081-1088.

Ritto, T.G., Sampaio, R., Cataldo, E., 2008, “Timoshenko beamwith
uncertainty on the boundary conditions”,Journal of the Brazilian Society
ofMechanical Sciences and Engineering, 30 (4), pp. 295-303.

Ritto, T.G., Soize, C., Sampaio, R., 2009, “Nonlinear dynamics of a drill-
string with uncertain model of the bit-rock interaction”.International Journal
of Non-Linear Mechanics, 44 (8), pp. 865-876.

Roy, C.J., Oberkampf, W.L., 2011, “A comprehensive framework
for verification, validation, and uncertainty quantification in scientific
computing”,Computer Methods in Applied Mechanics and Engineering, 200
(25).

Sampaio, R., Cataldo, E., 2010, “Comparing two strategies to model
uncertainties in structural dynamics”,Shock and Vibration, 17 (2), 171-186.

Soize, C., 2000, “A nonparametric model of random uncertainties for
reduced matrix models in structural dynamics”,Probabilistic Engineering
Mechanics, 15, pp. 277-294.

380 / Vol. XXXIII, No. 3, July-September 2011 ABCM


