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Model Uncertainties of Flexible
Structures Vibrations Induced by Internal
Flows

In many situations analysts use incomplete models to design a system, detoecsions.
These models are incomplete due to unmodeled phenomena, which thatseme
features are not included in the model (either because it was not psyithought about
or because it would be too expensive to include). These uncertaintiésdetathe model
are difficult to take into account. In this paper, the nonparametric prdisiic approach

is used to investigate model uncertainties in the problem of structures exgitedernal

flow. A reference model is constructed, where an Euler-Bernoullmbisaused to model
the structure, and the fluid is added to the model by means of a constast damping
and stiffness. Then, an incomplete model of the reference model isl@@us In it the

influence of the fluid stiffness is not taken into account, hence, the uimtgitarelated to

this unmodeled feature (fluid stiffness). The incomplete model is then e with

the nonparametric probabilistic approach to infer the behavior of the refs@emodel.
Beﬂd;as, a procedure is proposed to calibrate the dispersion paramwietiee probabilistic

model.

(UFRJ), Brazil Keywords: fluid-structure interaction, stochastic dynamical model, inverse stdichas

problem, model uncertainties

Introduction inertia and damping of the structure are also uncertain, since there is
a correlation among these quantities. The present paper focuses the
The application analyzed in this paper is the flexible-structurgnalysis on only one uncertain aspect, such that the modeling error
vibrations induced by internal flows. The dynamics of structuresan be controlled and better analyzed.
with internal axial flow has many technological applications, e.g., There are few strategies found in the literature to cope with model
drill-strings (Ritto et al. (2009)) heat-exchanger tubes, microscaléncertainties. There is the info-gap model uncertainty (Ben-Haim
resonators (Rinaldi et al. (2010)), nuclear fuel elements, towg@006)), where a non-probabilistic strategy is pursued and nested sets
flexible cylinders for water transportation, etc. In the present analysige considered. There is the nonparametric probabilistic approach
the fluid-structure interaction is modeled as done by PaidoussiSoize (2000)), where a probabilistic strategy is pursued and the
(1998), where the Euler-Bernoulli beam theory is used to model thandom matrix theory is applied (Mehta (1991)). There is the strategy
structure, and the system is discretized by means of the finite eleméoitind in Beck and Katafygiotis (1998), where the output prediction
method. errors include model uncertainties (output prediction errors is the
Uncertainties related to structures excited by internal flow havgifference between numerical and real system outputs). Recently,
not got the attention it deserves. Curling and Paidoussis (2008)odel uncertainty is being called model form uncertainty. Roy
investigate cylinders subjected to turbulent axial flow, and analyticaind Oberkampf (2011) take into account model form uncertainty
approximations for the lateral fluid forcing functions have beemppending an area validation metric to the sides of the p-box
presented, where these excitations are random. For a gengg@hsemble of cumulative density functions).
perspective on modeling uncertainties, see Ayyub and Klir (2006) and The nonparametric probabilistic approach (Soize (2000)) is
Caers (2011). appealing, since it is the only strategy implemented at the operator
The interest of the present investigation is on model uncertaintieigvel of the model. Therefore, in the present work it will be used to
i.e., modeling errors due to incomplete information and unmodeletiodel uncertainties. The procedure adopted in this paper is similar
phenomena.  For the present analysis, a reference model tisthe one followed by Ritto et al. (2008), where the nonparametric
constructed, and a computational incomplete model is considergstobabilistic approach was employed to the problem of a beam
where the influence of the fluid stiffness is not taken into accountyith uncertainty on the boundary conditions. However, the type
i.e., the unmodeled phenomenon is the fluid stiffness (which is nef uncertainty analyzed now is very different and here a calibration
included in the incomplete model). It should be noted that this choigsrocedure is proposed (inverse stochastic problem).
is arbitrary, the incomplete model considered could be another one, The main contributions of this paper are the following: 1)
e.g., the fluid mass, or the damping, etc. The question that arisedrigestigation of model uncertainties in structures excited by internal
the following: is there a strategy to generate good predictions usifgw using the nonparametric probabilistic approach, 2) proposition
the incomplete model? When analyzing complex systems, incomple¢ a calibration procedure for the dispersion parameter of the
models are always used to predict the response of the real systgirobabilistic model, and 3) benchmark for other analyses related to
By controlling the model uncertainty, as proposed in this work, it isnodel uncertainties. Concerning point three, it should be remarked
possible to know exactly what the unmodeled phenomenon is antiat the simple system considered in the present work is well suited for
hopefully, to gain some confidence in using incomplete models.  comparisons of different strategies for modeling uncertainties within
It should be noted that a careful analysis of uncertainties for thiéae model.
system analyzed in the present work will be the subject of a future This article is organized as follows. In the first section
work. For instance, if the stiffness is uncertain it is likely that thehe deterministic problem is presented, the dynamic equations are
introduced, and the discrete system is obtained by means of the finite
element method. In the second section the reduced-order model,
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constructed with the normal modes of the structure, is presented. The

stochastic model (nonparametric probabilistic approach) is quickly ) ) 4

reviewed in the third section, and the resulting stochastic system 97 _ 551/2 o™ p9°n 0™ _ 3
; . ) : ; > > +2B7“u 5+ 4 3
is shown in the fourth section. In the fifth section, the calibration 97 Jcor a¢c  0¢

procedure is explained and the stochastic system is analyzed. Fina\ll% . . . .
: : : ; ere the dimensionless quantities are:
in the sixth section, the concluding remarks are made.

Nomenclature

El 12 L2
T=t( ———7 , f=F—.
E = Young Modulus, Pa ((m+ Mf)L4) El
F = external force, N/m
L =length, m 5:5, n:!,
| = area moment of inertia, th L L
m = mass per unit length of the structure, kg/m M M\ 1/2
M;  =mass per unit length of the fluid, kg/m g M U= UL (4) ,
U = fluid velocity, m/s m-+ Mg El
u = dimensionless fluid velocity
Y, = transversal displacement, m (4)
) = dispersion parameter
v = displacement vector, m, rad Making M = 0, we get the dimensionless form of Eq. (1). Let
f = force vector, N, N.m n=fexp(iwt) andf = f exp(iwr), in whichw is the dimensionless
N f shape func_tion vector (M+M¢)L4 1/2 _ _
M] = mass matrix frequency,w = wyaq — , Wrad IS the frequency in
[My]  =reduced mass matrix R
[C]  =damping matrix rad/s and = v/—1. Substituting; = fiexp(iwt) andf = f exp(iwT)
[C:] = reduced damping matrix in Eq.(3) leads to:
K] = stiffness matrix
[Kr] = reduced stiffness matrix 25 o4
[Kr]  =random reduced stiffness matrix —w 17+|w251/2 +u27727 + 557 =f. (5)
[G]  =random germ matrix [z T TS
H] = matrix of the frequency response functions The partial differential equation Eqg. (5), is discretized by means
Gresk Symbols of the finite element methodf(® (&, w) = N(&)¥® (w), in which
N are the shape functions (Hermitian functions)js the element
w; = i-th natural frequency coordinate, and'® is the vector with the element displacements.
[®]  =normal modes matrix After assembling the element matrices, the discretized system is
given by:

Deterministic System

Figure 1 sketches the system considered in the analysis. —w?M]¥(w) +iw[CIU(w) + ([Kp] + [Ki)¥(w) =F(w),  (6)

[ — ] where [M], [C], [Kp] and [K;] € R™™ are the mass, damping and
/4; 4; stiffiness matrices (related to the bending and to the fluidy)
Figure 1. Sketch of the system considered in the analysis (the arrow € CMis the response vector arfdw) < CM is the force vector.

represents the internal fluid flow). Matrices [M] and [K,] are symmetric positive definite, matriKr]

is symmetric negative definite and matrj€] is not necessarily

symmetric. Equation (6) can be written as
Using the Euler-Bernoulli beam theory, the partial differential
equation governing the dynamics of the structure is written as:

V(@) = [H(w)f(w), ™

where [H(w)] € C™M is the frequency response function (FRF),
formally cast as:

d2v(x,t) I*v(x.t)
az TEl o

wherev is the transversal displacemehtis the length of the beam,
mis the mass per unit length, is the elasticity modulugd,is the area
moment of inertia ané is the external force. If the fluid (Paidoussis H _ 21M1 4 ~1

= (- +iw[C] + ([Kp] + [K . 8
(1998)) is included in the model, the governing equation is: [H(@)] = (=M +1w[C] + (Kol + [Ke])) ®

m =F(xt) xe[0L],te[0,T], (1)

Reduced-Order Model
0%v 0% 0% %
—2+2MfU—+M U2z 5 +El— = (2) A reduced-order model is used mainly for the two following
ot oxot ox ox4 : . . o
reasons. Stochastic computations are time consuming; hence, the
whereMs is the fluid mass per unit length ahdis the constant axial reduced-order model will help to save computational time in the
velocity of the fluid. Using dimensionless variables, we can write: simulations. And it is a necessary step for the nonparametric

(m+Mjy)
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probabilistic approach, because the full finite element matrices ha@tochastic M odel
topological zeros, which cannot be replaced by nonzero random
variables, Soize (2000). The nonparametric probabilistic approach (Soize (2000)) is used

The basis generated by the normal modes associated conserva@igea Strategy to model the uncertainties related to the unmodeled
system [C] = 0) is used to construct the reduced-order model. Iphysical phenomenon (fluid stiffness). Such an approach consists
should be noted that these modes do not diagonalize the dampifgconstructing a stochastic model for the stiffness operator of the
matrix. problem using intrinsic available information relative to it.

The natural frequencies and the normal modes of the reference The idea of this probabilistic approach is based on the fact that
model are computed from the following generalized eigenvalueven if all the parameters of the incomplete model are modeled as
problem: random variables, the experimental response can not be properly

described, since there are unmodeled phenomena (which means
that the incomplete model lacks important features of the behavior

(—wi?[M] + [Kp] + [Ki]) " = O, (9) of the system). To overcome this problem, instead of modeling

the parameters of the incomplete model as random variables, the
wherew? is thei-th natural frequencyp*; is thei-th normal mode, reduced-order matrix of the system is modeled as a random matrix

and the matrix composed by the first normal modes is givejpby= N such a way that a larger set of outcomes is achieved and,
(% @3 ... ;). Note that the reference model includés] (fluid hopefully, the experimental response will be within the larger set.

stiffness), which depends an therefore, for each a different basis A Simple two-degrees-of-freedom example showing the difference

is generated. The reduced stiffness matrix of the reference modePgWeen parameter and model uncertainties using the nonparametric
written as probabilistic approach can be found in Sampaio and Cataldo (2010).

The reduced random matrix is written as (note that the boldface is
used for the random matrices)

[K7] = [T ([Kp] + [K])[®]. (10)
K] = [L]T[G][L], (15)

As mentioned before, the unmodeled phenomenon is known to

T . e
be the fluid stiffness, and the nonparametric probabilistic moddyhere[L]"[L] is the Cholesky decomposition of matrik:] (Eq.

(see next section) is going to be used together with the incomp|e_%2))1 which doe_s not include th_? fluid Sti_ffne[%f}-_ Without going
o further details, the probability density function of the random

computational model. The natural frequencies and normal modes 'gfo | X . e
the incomplete model are computed from the following generalize'a]atr'x [G] can be gonstructed using th_e Max_lmum E_ntrqpy Principle
eigenvalue problem (which does not incluy#ig |-fluid stiffness): (Jaynes (2003)) with the following available information:

1. Random matriXG] is almost surely positive-definite,

(—w?[M] +[Kp]) p; =0, (11) 2. &{[G]} =],
. . . . 3. &{lIG] Y|y =c1, [ea] < +oo
where w; is thei-th natural frequencygp; is thei-th normal mode, . . . ) .
and the matrix composed by the normal modes is giveridgy= where [1] is the identity matrix,&{-} denotes the mathematical

(b1 P .. ). The reduced stiffness matrix of the incomplete modegxpectation andi[A]||r = (trace{[A|[A]" })¥/2 denotes the Frobenius
is written as norm. The first available information says thi#t,] is positive-

definite almost surely, which is important to guarantee the physical

characteristics of the stiffness of the system; the second available
K] = [@]T [Kp][®]. (12) information says that the mean value[Kf;] is equal to its npminal
value[K,], which means that we supposedly trust the nominal model
(it should be noted that modeling the problem is a constructive process
and should be approached step by step; the nominal model must be
updated if it cannot be sufficiently trusted); and the third available
information guarantees that the response of the system is a second
order process (i.e., the response is bounded for bounded input).

The closed form expression of the probability density function of

[G] is given by (Soize (2000))

Now, let¥(w) = [®]q(w), where[®] € R™" is the matrix composed
by the normal modes of the system afjdv) € C". The reduced-
order model of the incomplete system can be written as

8(w) = (—w?M] +iw[Cr] + [Ke]) ] TF(w). (13)

Thus, the system was reduced from dimensioto n (n < m). The

reduced mass and damping matrices are constructed|[dging done Pie)([G]) = Ty v ([G))Ca det([(;})(”“)(lz}if) «
in Eq. (12). The reduced-order model of the reference systerbe&an N (16)
written as x exp{—Z5tr([G])},

where det) is the determinant, ¢r) is the trace M} (R) is the set

4" (w) = (M) +iw(C]+ K)o T (w) (14)  of real positive-definite matrices of dimensian The normalization
constant is written as
where the reduced mass and damping matrices are constructed using
[®*] as done in Eq. (10). Hence, in physical coordinates, the response B
of the reference model is given B (w) = [@*]§®" (w). Ce =

(2)~n(n-1)/4 (%21)“(%1)/(252)

Mi=1T ((n+1)/(26%)+(1-))/2)°

17
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wherel'(z) is the gamma function defined fa> 0 by I'(z) =

[y °t7 te tdt. An important parameter used in the analysis is the . 100 Mo |9 f (wj,u) — U(wj)||
0 , : . dist(u) = —
dispersion parametérof matrix [G], defined as: nw & [V(wj,u)]|

; (20)

1 1 in which ¥"¢f is the response of the reference model (stiffness matrix
5= {ﬁé@{H[G] - [I}H,%}} , (18) given by Eqg. (12)) and' is the response of the incomplete model
using stiffness matrix given by Eq. (10). The frequency domain is
As & increases, the uncertainty of the stiffness also increases. Ndtiscretized im,, (=1500) frequencies, arj¢l || is the Lp-norm.
that[K¢] depends on the dimensionless spaedherefore, ifu =0,
then the incomplete model equals the reference modely and. For
different values ofi, 5 should be calibrated, as shown in the following 150
section.
The stochastic system is written as:

Q(w) = (~w?Mr] +iw[C] + [Ke)) @] TF(w), (19) 100
whereQ(w) is the random response, which is random becékisk S
is random. g

[
o
T

Calibration Procedure and Numerical Analysis

The beam is supported in both ends (i5e= 0 at{ = 0 and at
¢ =1). ltis discretized with 80 finite elementsm& 160) and the
reduced-order model is constructed with- 10. The frequency band

analyzed i§0,30] Hz. The mass rati@ = 0.8 is fixed andu varies 0 0.5 1 15 2 25 3
from O to 3. For instance, for the configurati&n= 450 x 10° Pa, u
di=4x 102 m, do =5x 102 m, p =250 kg/n{”, ps = 1000 kg/rﬁ" Figure 3. Percent error as a function of the flow velocity u.

U =10 m/s, we havgg = 0.88 andu = 1.24.

Deterministic response
Calibration of the dispersion parameter &

Figure 2 depicts the absolute value of the respdfisef the

deterministic system af = 0.3 for different flow velocitiesu = As Table 1 shows, the first natural frequency is the one that shifts
{0,1,2,3}. It can be seen that the first natural frequency is the orié@e most, as the dimensionless velocighanges. Therefore, the first
that shifts the most (see Table 1). natural frequency is going to be used in the calibration procedure. Let

W, be the random variable related to the first natural frequency of the
system; the convergence analysis is done as following:

wherens is the number of Monte Carlo simulations. The mean square
convergence function (msc) is defined as:

10
—u=0
e u=1 lim  &{(Win. —W;)?} =0, (21)
10% [l u=2|| Al &AW V)
i
TE

Py T

U

msdns) = VE, (22)

where the overline represents the empirical mean. Figure 4(a) shows
the convergence curve, and Fig. 4(b) shows the histogram ¢ér

6 =0.2; 10000 samples were used in the Monte Carlo simulation. In
this case, the mean value\df is 1.54 and its variance is.0045.

10 0 5 1‘0 1‘5 2‘0 2‘5 30 The strategy for the calibration of parametes the following: 1)
® Construct the graphic shown in Fig. 5 using the stochastic model, 2)
Figure 2. Response in frequency of the deterministic system at ¢=0.3for compgtewl(u) usmg.the reference moqel (deterministic), 3) use the
u=1{0,1,2,3}. As uincreases the natural frequencies shift left. graphic constructed in step 1) to associate a valuefof each value
of u.

Steps 1) and 3) of the analysis need to be detailed. To construct
Figure 3 shows the distance from the reference response as the graphic shown in Fig. 5, a stochastic simulation is done for
dimensionless velocity increases. It shows how the two deterministitifferent values ofé’s (using the incomplete model together with
models get apart asincreases. The distandést is measured by: the nonparametric probabilistic approach, Eq. (19)). For each value
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Table 1. Comparison among the natural frequencies for different

values of u.

[w1(0)—wa (W] [w2(0)—w, (U] [w3(0)—ws(W] [w4(0)—wa(u)]
P —— I — P — I ——
u=0 0.00 0.00 0.00 0.00
u=1 5.20 1.27 0.56 0.33
u=2 22.88 5.20 2.28 1.27
u=3 70.32 12.13 5.20 2.89
for u = {0,0.5,1,1.5,1,1.5,2.0,2.5,3.0} happens to bew; =
2.6 ; T {1.57,1.55,1.49,1.38,1.21,0.95,0.47}. Knowing these values and
using the graphic of Fig. 5, we can calibratdor differentu’s and
2.55]] b construct the graphic shown in Fig. 6. For instance,uer 2.5 we
havew; = 0.95; going right with the arrow until the curve is reached
2.5 ] and then coming down, the value ®fs 0.6, which is the calibrated
o foru=25.
g 2.45]] ]
L N— ’
2.35¢ k|
(5 20‘00 4600 6060 80‘00 10600
number of simulations (a) .
%3_.
25001 1
2000} 1
1500+ 1 ‘ ‘ \
0 0.2 0.4 0.6 0.8
1000¢ 1 ! . . 6 . ]
Figure 5. Fifth percentile ( w$%) of W; as a function of 5.
500+ 1
Figure 6 shows the calibrated dispersion paramessra function
0 3 14 15 16 17 of the flow velocityu.
First natural frequency (b)
Figure 4. (a) Mean square convergence of W, and (b) its histogram for 6 =
0.2. 0.7
0.6t p
0.5r 1

of §, the random variable related to the first natural frequehgy
has a parametep3” for which P(W; < w3%) = 5% (in words, the

probability of Wy to be smaller tharwi% is of five percent). The 04

idea is to guarantee that the first natural frequesgyu) computed 0.3l |
with the reference model (deterministic) is within this limit. Note

that this value is arbitrary, one could choose for instance 10% (le 0.2t i

conservative, meaning that the value of the calibrafedill be

smaller) or 1% (more conservative, meaning that the value of tf 0.1

calibrateds will be bigger). As the value of increases, the value of

w3 decreases (in the same way, wiencreases the){°” increases 06 ; ‘ ‘ ‘

because the standard deviationéfincreases witld). 0 0.5 1 15 2 2.5
Now that the graphic of Fig. 5 has been plotted, the respon: u

of the reference system (with fluid stiffness) can be used for the Figure 6. Dispersion parameter § as a function of the flow velocity  u.

calibration. In a more realistic scenario, the reference response

could be some experimental one. The first natural frequency
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Stochastic response

Figure 7 shows some Monte Carlo simulations of the respons:
at ¢ = 0.3 for 6 = 0.2 together with the mean of the stochastic
simulation. Although each random response presents well define
peaks, the mean does not have the same pattern. Figure 8 sho
the 90% confidence envelope (yellow region) and the deterministic
response of the reference model fore= 1 (dashed line). A zoom
image of the same (Fig. 8(b)) shows how the envelope includes th
response close to the first natural frequency. There are soms pea
that are not inside the 90% confidence region, which is expected. T
guarantee that all peaks are inside the confidence envelope, too ma
Monte Carlo simulations would be necessary and the confidenc

region would have to be constructed for a value close to one, instee 0 5 1b 1‘5 2‘0 2}3

of 90% (see Fig. 9 for a comparison of different confidence regions w (@)
Another thing that should be remarked is that even though it seemr

that the stochastic response is damped because of the statistic ;2 [

envelopes shown in Fig. 8, each random response happens to he
small damping, as shown in Fig. 7.

] 10
10 —_
©
o
=
10°
—
=)
c 0
© 10
I
N
%]
o i i i i i
@ 0.5 1 15 2 25
: @ b
° 10-5 Figure 8. Random response of the system at ¢ = 0.3 for § =0.2. The filled
% region corresponds to the 90% confidence envelope and the dashed line
= corresponds to the deterministic response for u= 1. (a) absolute value and
(b) zoom close to the first natural frequency.
-10
lo 1 i i i i
0 5 10 15 20 25 30 4
w 10
Figure 7. Random response of the system at ¢ =0.3for § = 0.2: Monte Carlo - - —reference
simulations and mean response of the stochastic system. — (0%
2
10" ¢ 95% b

Figure 10 shows the same graphic of Fig. 8fe£ 0.5 andu = 2.

At this point the confidence envelope is already too large, given resu
that might be of no relevance.

It should be noticed that the value éfused in the analysis
depends on the dimensionless fluid velocitand also on the strategy
employed for the calibration procedure. For instance, other natur
frequencies could be used to calibrate the dispersion paraeter
leading to different values. If the fourth natural frequency was ursed
the calibration procedure, the statistical envelope would be tighter
the region of the fourth natural frequency; however, the conseguen
would be that the first natural frequency would not be included in th
statistical envglope. L . . Figure 9. Random response of the system at ¢ = 0.3 for § = 0.2 for different

As a practical application for these results, an information thafnfidence regions (90%, 95% and 99%); the dashed line correspon  ds to
is used in the design of a structure are the values of its naturif deterministic response for  u=1.
frequencies; there should not be an exciting force with frequency
close to the natural frequency of the structure. In this sense, how
can the stochastic model be used? Figure 11 shows the spread of
the statistical envelope near the natural frequencies. Note thiEsall the 4th nat freq)). If the frequency band of interest is, for instance,
increase with the natural frequency (0.3 Hz (for the 1st nat fref), 1[0,5]Hz, the band [1.4,1.7]Hz (near the first natural frequgstypuld
Hz (for the 2nd nat freq), 2.0 Hz (for the 3rd nat freq), 3.0 Hz (fo be avoided. On the other hand, if the frequency band of interest
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uhat

@ ]
10 i i i i i
0 5 10 15 20 25
W
Figure 11. Random response of the system at ¢ = 0.3 for § =0.2. The filled
region corresponds to the 90% confidence envelope and the dashed line

corresponds to the deterministic response for u=1. The arrows show how
wide is the statistical envelope near the natural frequencies.

different values of the dispersion parameter.

If one thinks of the solutions of the incomplete and the reference
problem as points in an abstract metric space they are a certain
distance apart from each other, since they are different. The strategy
of the nonparametric probabilistic approach is to make a discretization

(b) of the operators random. With this, one generates a variety of
Figure 10. Random response of the system at = ¢ =03 for 5=05. Thefilled g4 tions for the incomplete model, one for every realization. The
region corresponds to the 90% confidence envelope and the dashed line . . . L .
corresponds to the deterministic response for ~ u= 2. (a) absolute value and idea is to find a sequence of realizations of the incomplete model
(b) zoom close to the first natural frequency. whose solutions converge to the solution of the reference model,
hence reducing the distance among the variety of solutions of the
incomplete and the reference model. Now, the distance of the set
of solutions of the incomplete model and the solution of the reference
is [10,15]Hz, the band [13,15]Hz (near the third natural frequencymodel is zero.
should be avoided, which is a worse scenario. If one is interested Of course, there is no perfect model. Some aspects of the real
in the low frequencies, andis not big (which means thatis also  structure are not modeled and this strategy seems to give a way
not big), then the stochastic model (incomplete model together witle approximate the reference model even if one does not know the
the nonparametric approach) is robust (thin confidence region) and thinmodeled aspects. One drawback is that one randomizes one of the
stochastic model could be used as a prediction tool. If one is interest@gproximations of the operator, a matrix, and not the operator itself.
in the medium to high frequencies, then the stochastic model is nBtit today, to randomize directly the operator is an unsolved problem
robust (wide confidence limit), and its use is not recommended.  since it is hard to define a probability space in infinite dimensions;
one can do this only in special cases.
Concluding Remarks It can be concluded that by using the incomplete computational
model together with the nonparametric probabilistic approach, it is
This paper has analyzed the dynamics of a structure excitgmssible to include the results of the reference model. As the model
by internal flow, where there are model uncertainties related toncertainty depends on the dimensionless flow velagitfyu = 0 the
the stiffness of the system due to unmodeled phenomena (the fluitomplete model gives the same results of the reference model (with
stiffness). This unmodeled phenomenon was chosen arbitrarily, sugh= 0). Asu increases, the dispersion parameiéras to increase to
that model uncertainties could be analyzed. Uncertainties withiencompass the response of the reference model. At certain values of
the model (modeling errors or model form uncertainty) are very andé, the statistical envelope gets so wide that the results might
challenging to take into account; and it is still a fruitful domain ofnot be satisfactory. But, for smalls andé’s, the incomplete model
research. together with the nonparametric probabilistic approach have shown
In the present work, these uncertainties have been modeled wighod results (if one is interested in the low frequencies).
the nonparametric probabilistic approach, and the stochastic system This is the first step of a work in progress. The present paper has
has been investigated using a simple, but non-trivial example. Firstiscussed model uncertainties in this fluid-structure system. In a next
a procedure has been proposed to calibrate the dispersion paramstep, a more precise uncertainty modeling will be developed for the
related to the stochastic model. Next, the spectrum of the respor@®blem analyzed (including uncertainties in the damping and loads,
has been analyzed, showing how the confidence envelope changeddo instance). Finally, a stability analysis will be investigated using

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright ~ © 2011 by ABCM  July-September 2011, Vol. XXXIII, No. 3 /379



T. G. Ritto

the stochastic model.
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