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Acoustic Beam Modeling of 
Ultrasonic Transducers and Arrays 
Using the Impulse Response and the 
Discrete Representation Methods 
The impulse response of the velocity potential and the discrete representation methods were 
used in order to model the acoustic field radiated by ultrasonic transducers and arrays. The 
first method deals with the calculation of the exact impulse response, in which solutions are 
possible only for simple geometries, such as the circular piston. The second method is an 
approximated solution based on the discretization of the acoustic aperture in small 
elementary areas, each of them radiating a spherical wave. By using circular transducers, 
which can be considered circular pistons, many simulations comparing the methods were 
carried out. The relation between the computational cost and the precision was analyzed, 
thus establishing the time and space discretization levels. The simulations were made using 
the Matlab software and the results were compared to experimental measurements showing 
good agreement. The experimental results were obtained using a scanning system. The 
acoustic field radiated from a 1 MHz circular transducer was measured as well as a 3.5 MHz 
array of 16 elements both immersed in water. The acoustic field radiated by the array 
was simulated and measured with focalization on a radius of 30 mm with deflections of 
0° and 20°. 
Keywords: acoustic field, ultrasonic transducer, array, impulse response, discrete 
representation method 
 

 
Introduction1 

Acoustic beam modeling of ultrasonic transducers consists of 
the determination of the acoustic pressure at a point or a region in 
front of the radiating surface. By the study and implementation of 
mathematical models, wave propagation is analyzed in 
nondestructive testing in order to optimize design parameters, such 
as geometry, focus depth, acoustic beam width and directivity. The 
acoustic beam generated is mainly dependent on the transducer 
geometry, the properties of the propagating medium and the 
excitation pulse form. 

The acoustic beam generated by an ultrasonic transducer can be 
modeled using the Rayleigh and Rayleigh-Sommerfeld equations 
(Goodman, 2004), which describe the acoustic propagation 
phenomenon in an integral form. From the Rayleigh-Sommerfeld 
equations, two methods for calculating the acoustic beam were 
developed. The first method is an exact solution for apertures with a 
simple geometrical shape and the second one is a numerical 
approximation that allows the analysis of arbitrarily shaped 
apertures. 

The most used method to calculate the exact solution is based on 
the temporal impulse response of the velocity potential. This method 
permits to calculate, in the time domain, the acoustic pressure 
induced in the medium by the transducer in an arbitrary spatial 
point. The method was initially proposed in acoustics by 
Stephanishen (Stephanishen, 1971) and, in order to obtain the exact 
solution of the impulse response, it is necessary to calculate 
complex integrals, only possible in the simplest geometry cases: 
circular pistons (Lockwood and Willette, 1973; Djelouah and 
Baboux, 1992), rectangular transducers (San Emeterio and Gómez-
Ullate, 1992), triangular apertures (Jensen, 1996) and ring segments 
(Martínez et al., 2001). 

In the complex geometry cases, a relevant method is the discrete 
representation proposed by Piwakowski and Delannoy (1989), 
which consists in dividing the irradiating surface into small area 
elements, each of them irradiating a semi-spherical wave (Huygens 
principle). The superposition of all semi-spherical waves approaches 
the exact solution when the area elements become smaller. The 
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discrete method permits to analyze different transducer geometries 
(Jensen and Svendsen, 1992) and inherent problems of the acoustic 
beam generation (Piwakowski and Sbai, 1999). Moreover, the 
method can be used to investigate acoustic beams when 
transmission and reflection phenomena are involved (Buiochi et al., 
2004; Belgroune et al., 2008).  

The acoustic beam generated depends on the emitted wave type 
(Weight, 1984). Excitation can be in continuous mode by using an 
electrical sine signal or in transient mode by means of an electrical 
pulse of short duration. Both excitation modes can be applied in the 
simulations of the acoustic beam by using the impulse response and 
discrete representation methods. However, in this work, only the 
transient excitation was used due to its important applications in 
nondestructive testing by ultrasound. 

Ultrasonic transducers can be either mono-element or multi-
element. The mono-element transducers have only one active 
element generally made of a piezoelectric material. The mono-
element transducer is widely used in nondestructive testing and 
characterization of solids and liquids. That transducer has a fixed 
focus that has to be translated to generate an image. The plane 
piston transducer has a natural focus in a spatial point that is a 
function of its operation frequency and its radius. That natural focus 
can be modified by acoustic lens. The multi-element transducer is an 
array of active elements working independently. The main 
advantage of the ultrasonic arrays consists in the generation of an 
image avoiding the transducer translation. This is possible due to the 
capability of deflecting the acoustic beam and the dynamic 
modification of the focus. It is thus possible to avoid the complex 
mechatronic system required for controlling the transducer position. 

In this work, the acoustic beams generated by a mono-element 
transducer, with central frequency of 1 MHz and diameter of 19 mm 
and immersed in water, were simulated. The results were compared to 
measurements made using a computer-controlled scanning system. 
That system controls the position of a hydrophone that measures the 
wave amplitude in a set of points in front of the acoustic aperture. 
Additionally, simulations and measurements of the acoustic beam 
generated by an 8x8 mm and 16 elements array were made. Two cases 
were studied: focalization in a radius of 30 mm with deflections of 0° 
and 20°. 
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Nomenclature 

a = plane piston radius, m  
aj = impulse response of the velocity potential generated by 

each elementary surface 
A = apodization function, dimensionless 
c = propagation velocity, m/s 
e = root mean square error factor 
f = frequency, Hz 
h = impulse response of the velocity potential 

h  = temporal mean of the discrete impulse response 
p = pressure, Pa 
r = distance between the point P and a specific point on the 

aperture surface, m 
R = distance from the center of the array to the focus, m 
S = total acoustic aperture area, m2 
t = time, s 
T = delay function, s 
v = particle velocity, m/s 
xn = distance from the center of the array to the element, m 

Greek Symbols 

α = boundary conditions coefficient 
δ = Dirac’s delta function 
φ = deflection angle, degree 
Φ = velocity potentia, l 
λ = wave length, m 
ρ = density, kg/m3 
θ = angle between the vector and the normal vector to the 

emitter surface, degree 
Ω = angles of the arcs on the piston surface, degree 

Subscripts 

a,P = spatial points 
d = discrete representation 

Theoretical Background 

Rayleigh and Rayleigh-Sommerfeld equations 

 
Figure 1. Geometry and notation used in the Rayleig h and Rayleigh-
Sommerfeld equations. 

 
By considering the acoustic wave propagation in an adiabatic 

medium and supposing small particle displacements, the linear 
equation of the instantaneous pressure (p) in an isotropic, non-
viscous, homogeneous and perfectly elastic medium is 
(Stephanishen, 1971):  

 

( ) ( )
t

t,rΦ
ρ=t,rp P

P ∂
∂ r

r  (1)  

 

where pr
r

 is the position vector of the point P where the pressure is 

calculated, as shown in Fig. 1, ρ is the medium density and ( )t,rΦ P

r

 
is the velocity potential defined as: 
 

( ) ( )t,rΦ=t,rv PP
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where ( )t,rv P

rr

 is the particle velocity.  
When the acoustic aperture is surrounded by a rigid baffle, the 

space-time dependence of the acoustic beam can be modeled by the 
Rayleigh integral (Stephanishen, 1971). That integral represents the 
velocity potential in a point of the acoustic beam as the sum of the 
infinite contributions of individual acoustic sources of area dS, each 
of them irradiating a semi-spherical wave into the medium 
(Huygens’ principle):  
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where r is the distance between point P in the acoustic beam and the 

elementary area dS ( ar
r

), c is the wave propagation velocity in the 

medium, S is the active area of the transducer and ( )t,rv an

r

 is the 
normal component of the velocity at each point on the transducer 
surface. The particle velocity is zero at all points on the rigid baffle; 
in this case, by using Eq. (1), the acoustic pressure at the point P is:  
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When the acoustic aperture is surrounded by a soft baffle, 

pressure is zero at all surrounding points, the pressure at each point 
into the acoustic beam can be represented by the Rayleigh-
Sommerfeld integral:  
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where θ is the angle of vector r

r

 with respect to the normal vector 

( n
r

) of the irradiating area element, and ( )t,rp a

r

 is the pressure at 
each point on the acoustic aperture. It can be seen that the acoustic 
beam is a result of the superposition of waves. 

Impulse response method 

The impulse response method separates the effect induced by 
the geometry from the effect induced by the time-dependent 
excitation. This permits to obtain the exact solution of the Rayleigh 
integral (Stephanishen, 1971). By considering an acoustic aperture 
(Fig. 1) surrounded by a rigid baffle, irradiating into an isotropic 
lossless medium and supposing in-phase motion at all points on the 

acoustic aperture, the normal velocity in the point ar
r

 can be 
represented by:  

 

( ) ( ) ( )tvrA=t,rv aan

rr

 (6)  
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where ( )arA
r

 is the apodization factor that determines the 
distribution of the vibration amplitudes on the emitter surface and 

( )tv  is the time-dependent excitation. Then, the Rayleigh integral 
can be reduced by expressing the velocity potential as a convolution 
of two functions:  
 

( ) ( ) ( )t,rhtv=t,rΦ PP

rr ∗
 

  (7)
  

 

where ( )t,rh P

r

 is the impulse response of the velocity potential 
given by:  
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where ( )δ  is the Dirac’s delta function. The acoustic pressure at 
point P can be obtained by associating (1), (7) and (8). 
 

Exact solution in the plane circular piston case 

 
Figure 2. Geometry and notation used in the exact s olution of the circular piston. 

 
For a uniformly excited circular piston radiating into a lossless 

medium, the Rayleigh integral can be reduced from a surface 
integral to a simple integral by using cylindrical coordinates and 
variable substitution (Robinson et al., 1974). Then, the analytic 
exact solution of the velocity potential impulse response at point P 
in front of the acoustic aperture is obtained, according to:  
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where c is the propagation velocity of the wave and ( )ctΩ  is the 
angle of the arcs centered at point P’ (the projection of point P on 
plane z = 0) limited by the piston edge, as shown in Fig. 2. The 
concentric arcs are formed by the impulsive excitation of points on 

the piston surface that reach point P at the time cr=t / , where r is 
the distance between point P and the points of the arc. It can be 

noted that 1r  and 2r  denote, respectively, the larger and smaller 

distances between point P and the piston surface. Then, cr=t /11  

and cr=t /22  are the times that limit the transient field and the 

duration of the impulse response is 12 tt − . 
In the case of a circular piston of radius a, the expressions for 

the angles of the arcs on the piston surface (( )ctΩ ) are shown in 

Table 1 (Robinson et al., 1974). The piston is divided into three 
regions: inside, on the edge and outside the piston surface, where x, 
y and z are the Cartesian coordinates of point P and the times t0, t1 
and t2 are defined as:  
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Table 1. Expressions for the angles of the arcs on the piston surface. 

Region on 
the piston 
surface 

( )ctΩ  Time interval 

Inside 0 
20 or t>tt<t  

(x < a) π2  10 ttt ≤≤  
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Outside 0 
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



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1

2
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Discrete representation method 

The discrete representation is an approximated method suitable 
for both mono-element apertures (Piwakowski and Delannoy, 1989) 
and arrays (Piwakowski and Sbai, 1999). The accuracy of the results 
depends strongly on the temporal and spatial resolutions used in the 
model. By considering the three contour cases: rigid baffle, soft 
baffle and free field, the impulse response function presented by 
Piwakowski and Delannoy (1989) and based on the work of Lasota 
et al. (1984) is:  

 

( ) ( ) ( ) ( )[ ]
∫

−−
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a
aP dS

r

rTcrtδ
θαrA

π
=t,rh

r

rr /

2

1
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where ( )arA
r

 is the apodization function that represents the 
amplitude of the semi-spherical wave generated by each elementary 

area dS, ( )arT
r

 is the excitation delay function defined at each point 

on the emitter surface, θ  is the angle between the vector ar
r

 and the 

normal vector to the emitter surface and ( )θα  is the contour 
conditions coefficient defined as:  
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Equation (11) is more general than Eq. (8), where the factor that 

takes into account the different cases of boundary was included, as 
well as the delay function used in the focalization of arrays. 

As shown in Fig. 3a, the emitter surface can be discretized in N 

elementary areas jjj ∆y∆x=∆S , j = 1,2...N, where  

 

j
j

S∆=S ∑ .  

 
Then, the integral in Eq. (11) can be replaced with the sum of the 
contributions of each elementary area. Those contributions are 
computed as the velocity potential generated by each elementary 
area that reaches point P at instant t, according to:  
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where ( )t,rh Pd

r

 is the discrete representation of the impulse 

response at each instant /j jt = r c T+ , jr  is the distance between 

point P and each elementary area j∆S , jA  and jT  are the discrete 

values of the functions ( )arA
r

 and ( )arT
r

, respectively, and jα  is 

the boundary conditions coefficient. 
 

 
(a) 

 
(b) 

Figure 3. a) Notation used in Eq. (13) and b) graph ic representation for aj. 

 
The discrete impulse response becomes a sequence of Dirac 

pulses, as shown in Fig. 3b. It can be seen that mint  and maxt  are, 

respectively, the smallest and largest propagation times between the 

elementary area and point P. The amplitude factor ja  represents 

the impulse response of the velocity potential generated by each 

elementary surface j∆S : 

j

jjj
j

πr

∆SαA
=a

2  
(14)

  

Then, if time is discretized using intervals with duration ∆t  and the 

temporal mean of all amplitudes ja  that reach the point P into a 

temporal window [ ]2/2,/ ∆t+t∆tt ss −  is calculated, the mean 
impulse response at the time ts is:  
 

( ) 2/2/for
1

1

∆t+t<t<∆tta
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=t,rh sjs
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=j
jsPd −∑

r

 (15)  

 

In Fig. 4, series ja , the temporal mean of the discrete impulse 

response hd and the exact impulse response h at the time ts are 
graphically shown. hd approaches the exact analytic solution h for 

the frequency spectrum maxf<f , where ∆tfmax /1<< , when the 
size of the elementary areas becomes smaller (Piwakowski and Sbai, 
1999), in such a way that: 

 

( ) ( )sPd
∆S

sP t,rh=t,rh
rr

lim
0→  

(16)
  

 

 
Figure 4. Graphic representation of hd. 

 

The temporal mean of the impulse response dh  is the 
computational approximated solution used in this work, the 

temporal and spatial samplings are ∆t  and jj ∆y=∆x , 

respectively. Then, by using Eqs. (1) and (7), the pressure at the 
point P can be calculated by: 

 

( ) ( ) ( )t,rh
t

tv
ρ=t,rp PdP

rr ∗
∂

∂
 (17)  

Linear array focalization 

Emitting focalization occurs when the waves, generated by each 
array element, arrive at a desired spatial point at the same time. At 
that spatial point, called focus, the maximum intensity of the 
acoustic beam is generated as a consequence of the constructive 
interference of each individual signal. Outside the focus, the 



    Franco et al. 

412 / Vol. XXXIII, No. 4, October-December 2011  ABCM  

intensities are smaller and even null at certain points due to 
destructive interference (Parrilla, 2004). 

In practice, focalization is obtained by adjusting the propagation 
times between each element and the focus. This principle is shown 
in Fig. 5a, where the virtual elements represent the delays in the 
propagation time. Then, the wavefront advances as generated by a 
transducer with  acoustic lens and all the semi-spherical waves reach 
the focus simultaneously. 

The geometry and the axis coordinate system used to obtain the 
delay times are represented in Fig. 5b. The transducer is placed 
throughout the x-axis, and the wave propagation along the z-axis. 
The propagation medium is considered isotropic and homogeneous 
with propagation velocity c. If the focus is located at a distance R 
from the center of the transducer and with a deflection angle φ, then:  

 

φsin222
nnx Rxx+R=L −  (18) 

 
The excitation of each element is delayed so that all waves reach 

the focus at the same time dT+cR=t / , where dT  is a positive 
arbitrary constant introduced to avoid negative delay times. Thus, 
the function that supplies the delays can be obtained from Eq. (18):  
 

( )
c

Rxx+R

c

R
+T=xT nn

dna

φsin222 −
−

                         

(19)

 

 
             (a) 

 
                             (b) 

Figure 5. Array focalization: (a) principle and (b)  geometry used in order to obtain Eq. (19). 

 

Experimental and Theoretical Results 

Plane piston 

Simulations of the waveform and the acoustic beam generated 
by a 19-mm diameter circular plane piston were carried out by 
using the Matlab software. Results obtained using the exact 
solution and the discrete representation method were compared by 
considering 6 different cases. The propagating medium is water 
(ρ = 1000 kg/m, c = 1480 m/s) and the excitation signal 
corresponds to a 1 MHz (λ = 1.5 mm) sine burst of 5 cycles. Rigid 
baffle was the boundary condition used in the models. 

In order to analyze the relative error between the exact and 
discrete solutions, a root mean square factor of the signals (pressure 
response) was calculated, as follows:  

 

( ) ( )[ ]∑ −
N

=i
DE iSiS

N
=e

1

21
 (20)  

 

where ( )iSE  and ( )iSD  are the signals calculated by the exact 
solution and the discrete representation method, respectively, and N 
is the number of temporal points used (sampling). As both signals 
are normalized to their maximum value, the error can be represented 
in percentage. 

Figure 6 compares the pressure response obtained using the 
exact solution (continuous line) and the discrete representation 

method (dashed line) at six points in plane y = 0. The origin of the 
coordinate system is in the piston center and the positive z-axis is 
the direction of the acoustic propagation, as depicted in Fig. 3. The 
pressure responses were obtained in the two different regions of the 
acoustic beam: near field and far field. Near field is the region 
straight ahead of the ultrasonic transducer and it is characterized by 
many constructive and destructive interferences. These interferences 
lead to many fluctuations in the acoustic pressure near the 
ultrasound transducer. Far field occurs in the region beyond the near 
field, and it is characterized by small fluctuations of the sound 
pressure. Figure 6a shows the results corresponding to three points 
in the near field (z = 10 mm): on the acoustic axis (x = 0 mm) and 
off the acoustic axis (x = 5 and x = 10 mm). Figure 6b shows the 
results in the far field (z = 70 mm) for the same positions. Moreover, 
the relative error between both solutions, calculated by Eq. (20), is 
plotted in the figure. In the discrete representation method a space 

discretization of 8/λ=∆y=∆x  and a time discretization of 
30/λ=∆tc  were used. 

Figure 7 shows a comparison between the pressure fields 
obtained using the exact solution and the discrete representation for 
the three different cases shown in Table 2. All pressure fields were 
normalized to its maximum value and the clearest areas represent 
the maximum peak-to-peak pressure. Small differences, mainly in 
the near field, were found. That was more notorious for the smallest 
spatial and temporal discretizations. Meanwhile, a great increase in 
CPU time was obtained with the better discretizations, as shown in 
Tab. 2. A linear increase of the CPU time as a function of the 
number of elementary areas used in the spatial discretization of the 
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transducer was found. The computer used was an Intel Pentium IV of 2.53 GHz.  
 

(a)                                                                     (b) 

 

 

 
Figure 6. Pressure response comparison for the exac t solution (solid line) and the discrete representa tion method (dashed line) in the regions: (a) near 
field ( z = 10 mm) and (b) far field ( z = 70 mm). 

 
 

Table 2. Spatial and temporal discretization used a nd the CPU time required to calculate the fields sh own in Fig. 7. 

Case ∆y=∆x  (mm) tc∆  (mm) CPU Time (s) 

Exact - 120/λ  2 

1 16/λ  120/λ  1240 

2 2/λ  120/λ  21 

3 8/λ  15/λ  52 
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Figure 7. Comparison between the pressure fields ob tained using the exact solution and the discrete re presentation for the three different cases shown 
in Table 2. (The clearest areas represent the maxim um peak-to-peak pressure). 

 
Figure 8. Acoustic field (a) experimental, (b) calc ulated by the discrete representation method and (c ) calculated by the exact solution. (The clearest 
areas represent the maximum peak-to-peak pressure).  

 
The acoustic beam irradiated in water by a circular 19-mm 1 

MHz ultrasonic transducer was experimentally measured. A 0.4-mm 
diameter hydrophone was used as the receiver. A computerized 
system automatically scanned the field and saved the data in a 
suitable format for further processing. The pressure amplitude, 
measured and simulated, at each point in the field was taken as the 
peak-to-peak value of the obtained wave. 

Figure 8 compares the experimental field measured to the 
theoretical ones obtained with the exact and discrete solutions. The 
amplitude values of each field were normalized to its maximum 
value. The exact solution was calculated with a temporal 
discretization of 30/λ=∆tc  and the approximated solution with 
the same temporal discretization and a spatial discretization of 

8/λ=∆y=∆x . Figure 9 shows the pressure amplitude profiles of 
the acoustic experimental, exact and approximated fields calculated 
in the near field (z = 10 mm) and in the far field (z = 70 mm). 

As it can be seen, the computational methods show a good fit 
when compared to the experimental field. Some differences can be 
explained by the excitation wave, which was measured by the 
hydrophone at 5 mm from the transducer surface, where only the 
component of the plane wave was used. Nevertheless, those models 
are appropriate to determine the acoustic field generated by a plane 
piston transducer. 

Transducer arrays 

Experimental and theoretical results were obtained with a 
linear array of 8x8 mm and 16 rectangular elements immersed in 
water. Geometry is an important factor in the performance of any 
array. The width of each element must be smaller than λ/2 
(Parrilla, 2004) in order to avoid the sprouting of spurious lobes of 
high intensity in other directions. Those lobes are undesired and 
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become greater when the deflection angle grows. Thus, for a 
frequency f0 = 3.5 MHz and propagation velocity of 1480 m/s in 
water, the wavelength is λ = 0.423 mm and the array element 
width is of the same order (d≈λ/2). 

 
 

 
 

 
Figure 9. Comparison of the experimental, exact sol ution and discrete 
representation pressure amplitudes in (a) z = 10 mm and (b) z = 70 mm for 

| | 10≤x  mm. 

 
Figure 10(a) shows the waveform used in the simulation as the 

excitation input. It is an asymmetric ultrasonic pulse of 3.5 MHz 
with normalized amplitude. 

The surface of each element was discretized by square elementary 
areas of ∆S = 0.01 mm. The temporal discretization was 1/18 times 
the period of the excitation waveform; therefore, the sampling 

frequency was 6318 0 =f=f s  MHz, which is sufficient to embrace 

all the excitation waveform spectra. The choice of ∆S and sf  is an 
important task because coarse discretizations can lead to poor results 
and fine discretizations lead to excessive processing time. In addition, 
the selection of the number of points of the calculated field is also 
important. In order to obtain a good resolution in the acoustic field, 
8000 points were used, 80 points being in the x direction and 100 in 
the propagation direction (z). Experimental fields were measured with 
smaller resolution: 30 points in the x direction and 133 in the z 
direction, totalizing 3990 points. 

(a)  

(b)  

Figure 10. (a) Waveform and (b) time delays used in  the simulations. 

 
Figure 10(b) shows the delay times used in the simulation. The 

values were calculated from Eq. (19). Two cases were considered: 
focalization in R = 30 mm without deflection (φ = 0°) and 
focalization in R = 30 mm with deflection of 20 degrees (φ = 20°). 
The maximum delay time in the case with deflection is ten times 
higher than the other case. 

The experimental field was measured at the Instituto de 
Automática Industrial–CSIC, in Spain. A 0.2-mm diameter 
hydrophone, an automated system for the hydrophone positioning 
and an acquisition data system were used. 

 

 
Figure 11. Irradiated pressure field with focalizat ion in R = 30 mm without 
deflection: (a) experimental and (b) simulated. (Th e clearest areas 
represent the maximum peak-to-peak pressure). 

 
Figure 11 shows the simulated and experimental results for 

focalization at the point (R = 30 mm, φ = 0°). A good agreement 
was obtained. The small differences are due to the irregular velocity 
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distribution in the real transducers surface, that is, all the points in 
the surface do not vibrate in phase or with the same amplitude. On 
the other hand, time delays must be calculated with high precision 
and frequently that is not possible due to hardware limitations. The 
difference in the discretization used in the simulated and 
experimental cases also cause problems in the obtained fields. 
Figure 12 presents the results obtained for focalization at the point 
(R = 30 mm, φ = 20°), showing good agreement. 

 
 

 
Figure 12. Irradiated pressure field with focalizat ion on R = 30 mm and 
deflection of 20°: (a) experimental and (b) simulat ed. (The clearest areas 
represent the maximum peak-to-peak pressure). 

Conclusions 

Rayleigh and Rayleigh-Sommerfeld integral equations are 
effective for modeling the acoustic beam radiated by ultrasonic 
transducers. Exact solutions for some simple geometry are possible 
and a discrete method, based on the same equations, allows the 
computations for complex geometries. 

The exact solution for the plane piston was used in order to 
analyze the computational cost involved in the discrete solution. The 
time required by different discretization cases was compared to that 
obtained with the exact solution. As expected, high temporal and 
spatial discretizations increase the CPU time. A test is necessary to 
select the appropriate discretization; nevertheless, the discretization 
used in order to generate the pressure responses shown in Fig. 6 
should be sufficient for most cases with a moderate increase in the 
CPU time. 

The acoustic beam generated by a circular plane piston was 
measured and compared to the results obtained by the exact and 
discrete solutions. Both exact and discrete solutions provide a good 
reproduction of the experimental beam measured, although some 
slight differences can occur due to non-ideal effects, as discussed 
below. 

Array focalization is a simple concept that can be easily 
simulated by the discrete representation method. This method is 
important because it allows analyzing the incidence of the deflection 
angle and the focus depth on the acoustic beam generated. 
Moreover, the effect of geometrical parameters, bandwidth, 
excitation and some non-ideal effects can be analyzed. The 
simulations reproduced the beams measured with good accuracy. 

In both cases, plane piston and arrays, the differences between 
the simulated and measured cases are explained by non-ideal 

effects. The most important is the presence of other vibration modes 
(such as surface and radial modes) in the real transducers, causing 
an out-of-phase motion of the points on the transducer surface. 
Other non-ideal effects are the fact that the surrounding baffle is not 
perfectly rigid, as assumed in the model, and the presence of 
matching layers on the irradiating surface. All these effects distort 
the acoustic beam.  
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