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Acoustic Beam Modeling of
Ultrasonic Transducers and Arrays
Using the Impulse Response and the
Discrete Representation Methods

The impulse response of the velocity potentialtheddiscrete representation methods were
used in order to model the acoustic field radiabgdultrasonic transducers and arrays. The
first method deals with the calculation of the exawpulse response, in which solutions are
possible only for simple geometries, such as thailar piston. The second method is an
approximated solution based on the discretizatidnttee acoustic aperture in small

elementary areas, each of them radiating a spheneve. By using circular transducers,

which can be considered circular pistons, many kitrans comparing the methods were
carried out. The relation between the computaticc@dt and the precision was analyzed,
thus establishing the time and space discretizdtosls. The simulations were made using
the Matlab software and the results were compaoeeixperimental measurements showing
good agreement. The experimental results were mddaiusing a scanning system. The
acoustic field radiated from a 1 MHz circular trahger was measured as well as a 3.5 MHz
array of 16 elements both immersed in water. Theustic field radiated by the array

was simulated and measured with focalization omaius of 30 mm with deflections of

05508-030 Sao Paulo, SP, Brazil 0° and 20°.

Keywords. acoustic field, ultrasonic transducer, array, inbgei response, discrete
representation method

Introduction

Acoustic beam modeling of ultrasonic transducemssists of
the determination of the acoustic pressure at atpwia region in
front of the radiating surface. By the study anglementation of
mathematical models, wave propagation is analyzed
nondestructive testing in order to optimize degigmameters, such
as geometry, focus depth, acoustic beam width @medtibity. The
acoustic beam generated is mainly dependent ontrémsducer
geometry, the properties of the propagating mediand the
excitation pulse form.

The acoustic beam generated by an ultrasonic waesdan be
modeled using the Rayleigh and Rayleigh-Sommerégjdations
(Goodman, 2004), which describe the acoustic praijiay
phenomenon in an integral form. From the Rayleighi®erfeld
equations, two methods for calculating the acoubtam were
developed. The first method is an exact solutiorefeertures with a
simple geometrical shape and the second one is maenual
approximation that allows the analysis of arbityarshaped
apertures.

The most used method to calculate the exact saligibased on
the temporal impulse response of the velocity paibThis method
permits to calculate, in the time domain, the atioupressure
induced in the medium by the transducer in an ranlyit spatial
point. The method was initially proposed in acasstiby
Stephanishen (Stephanishen, 1971) and, in ordabttin the exact
solution of the impulse response, it is necessarycalculate
complex integrals, only possible in the simplesbrgetry cases:
circular pistons (Lockwood and Willette, 1973; Dehh and
Baboux, 1992), rectangular transducers (San Emeterd Gomez-
Ullate, 1992), triangular apertures (Jensen, 199@)ring segments
(Martinez et al., 2001).

In the complex geometry cases, a relevant methtieeigliscrete
representation proposed by Piwakowski and Delan(iy89),
which consists in dividing the irradiating surfacgo small area
elements, each of them irradiating a semi-sphevieale (Huygens
principle). The superposition of all semi-spheriwalves approaches
the exact solution when the area elements beconalesmThe
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discrete method permits to analyze different traned geometries
(Jensen and Svendsen, 1992) and inherent probliethe acoustic
beam generation (Piwakowski and Sbai, 1999). Marothe
method can be used to investigate acoustic beamsn wh
transmission and reflection phenomena are invo(Bedochi et al.,
P2004; Belgroune et al., 2008).

The acoustic beam generated depends on the emitiesl type
(Weight, 1984). Excitation can be in continuous @y using an
electrical sine signal or in transient mode by nseahan electrical
pulse of short duration. Both excitation modes barapplied in the
simulations of the acoustic beam by using the ispuésponse and
discrete representation methods. However, in thiskwonly the
transient excitation was used due to its imporigplications in
nondestructive testing by ultrasound.

Ultrasonic transducers can be either mono-elementualti-
element. The mono-element transducers have only axtve
element generally made of a piezoelectric mateffdle mono-
element transducer is widely used in nondestructesting and
characterization of solids and liquids. That trarcst has a fixed
focus that has to be translated to generate aneimahe plane
piston transducer has a natural focus in a sppbait that is a
function of its operation frequency and its radilisat natural focus
can be modified by acoustic lens. The multi-elentertsducer is an
array of active elements working independently. Thain
advantage of the ultrasonic arrays consists ingdreeration of an
image avoiding the transducer translation. Thigoissible due to the
capability of deflecting the acoustic beam and tiynamic
modification of the focus. It is thus possible teoi the complex
mechatronic system required for controlling the@sducer position.

In this work, the acoustic beams generated by aoretement
transducer, with central frequency of 1 MHz andvditer of 19 mm
and immersed in water, were simulated. The resdte compared to
measurements made using a computer-controlled iscasgstem.
That system controls the position of a hydrophdra measures the
wave amplitude in a set of points in front of thmastic aperture.
Additionally, simulations and measurements of tlteuatic beam
generated by an 8x8 mm and 16 elements array wele.Mwo cases
were studied: focalization in a radius of 30 mmhvdeflections of 0°
and 20°.
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Nomenclature

a = plane piston radius, m

= impulse response of the velocity potential gatest by
each elementary surface

= apodization function, dimensionless

= propagation velocity, m/s

= root mean square error factor

= frequency, Hz

= impulse response of the velocity potential

= temporal mean of the discrete impulse response

= pressure, Pa

= distance between the point P and a specifiapon the
aperture surface, m

R  =distance from the center of the array to theug m

S = total acoustic aperture area’m

t =time, s

T = delay function, s

v

Xn

ST 5 TD0O0 >

= particle velocity, m/s
= distance from the center of the array to thereat, m

Greek Symbols

o  =boundary conditions coefficient

o =Dirac’s delta function

¢ =deflection angle, degree

®  =velocity potentia, |

A =wave length, m

p  =density, kg/m

6  =angle between the vector and the normal vectadnéo t
emitter surface, degree

Q =angles of the arcs on the piston surface, degree
Subscripts
a,P = spatial points

d = discrete representation
Theoretical Background
Rayleigh and Rayleigh-Sommerfeld equations

x4

Ny

g

Figure 1. Geometry and notation used in the Rayleig
Sommerfeld equations.

h and Rayleigh-

By considering the acoustic wave propagation inadiabatic
medium and supposing small particle displacemettis, linear
equation of the instantaneous pressye i@ an isotropic, non-

viscous, homogeneous and perfectly elastic medium
(Stephanishen, 1971):
J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright
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00(F, t)
ot

p(Fnt)=p @)

where Fp is the position vector of the poiRtwhere the pressure is

calculated, as shown in Fig.djs the medium density arcD(FP ,t)
is the velocity potential defined as:

V(Fo.t)= —00(F t) @

where\7(FP ,t) is the particle velocity.

When the acoustic aperture is surrounded by a hgftle, the
space-time dependence of the acoustic beam carotteled by the
Rayleigh integral (Stephanishen, 1971). That irsleggpresents the
velocity potential in a point of the acoustic beamthe sum of the
infinite contributions of individual acoustic soescof areaS each
of them irradiating a semi-spherical wave into theedium
(Huygens’ principle):

(D(Fp,t):z—ln vn(Fa,tr—r/c)
S

ds ©)

wherer is the distance between polin the acoustic beam and the
elementary aredS(Fa), c is the wave propagation velocity in the

medium, S is the active area of the transducer ‘Vn(Fa ,t) is the

normal component of the velocity at each point loa transducer
surface. The particle velocity is zero at all psioh the rigid baffle;
in this case, by using Eq. (1), the acoustic pmesatithe poinP is:

. 0 v I\, t—r/c
p(Fot)= zimfwds @)

S

When the acoustic aperture is surrounded by a Isaffie,
pressure is zero at all surrounding points, thequne at each point
into the acoustic beam can be represented by thdeiBa-
Sommerfeld integral:

" 1
!t =
p(re.t) 200 )

cod¥ 0 /.
- r’t_
- p(r,

r/ gdS ®)

where® is the angle of vectci” with respect to the normal vector

() of the irradiating area element, a p(Fa ,t) is the pressure at

each point on the acoustic aperture. It can be g&srthe acoustic
beam is a result of the superposition of waves.

Impulse response method

The impulse response method separates the efféoteéd by
the geometry from the effect induced by the timpeteent
excitation. This permits to obtain the exact solutof the Rayleigh
integral (Stephanishen, 1971). By considering avusiic aperture
(Fig. 1) surrounded by a rigid baffle, irradiatimgo an isotropic
lossless medium and supposing in-phase motiorl pbaits on the

acoustic aperture, the normal velocity in the pcl,t can be
fepresented by:

vi(Ft)= AR MY ©
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where A(ra) is the apodization factor that determines thdable 1 (Robinson et al., 1974). The piston is d#di into three

distribution of the vibration amplitudes on the #gri surface and

V(t) is the time-dependent excitation. Then, the Rghlaéntegral

can be reduced by expressing the velocity poteasia convolution
of two functions:

o(F,t)= v(t) Onh(F, t) @

where h(FP ,t) is the impulse response of the velocity potential

given by:

h(F,.t)= ijA(r;)Mds

Ty r

®)

where 5( ) is the Dirac’s delta function. The acoustic pressat
point P can be obtained by associating (1), (7) and (8).

Exact solution in the planecircular piston case

Figure 2. Geometry and notation used inthe exacts  olution of the circular piston.

For a uniformly excited circular piston radiatingad a lossless
medium, the Rayleigh integral can be reduced fronsugace
integral to a simple integral by using cylindricaordinates and
variable substitution (Robinson et al., 1974). Theére analytic
exact solution of the velocity potential impulsspense at poinP
in front of the acoustic aperture is obtained, adiog to:

h(ft)= 2%Q(ct) it <t<t, ©)

0 otherwise

wherec is the propagation velocity of the wave eQ(Ct) is the
angle of the arcs centered at pdmt(the projection of poin® on
planez = 0) limited by the piston edge, as shown in FigTBe
concentric arcs are formed by the impulsive excitabf points on

regions: inside, on the edge and outside the pistioface, where,
y andz are the Cartesian coordinates of pdtnand the timesy, t;
andt, are defined as:

t,=1zlc

c

J@+x?+2722

C

tl = (10)

2

Table 1. Expressions for the angles of the arcs on the piston surface.

Region on Qlct) Time interval
the piston
surface
Inside 0 t<t, or t>t,
(x<a) 2 t,st<st,
2c051(02t2—22+x2—a2j t,<tst,
2x/c? - 22
On the 0 t<t, or t>t,
edge
(x=a) T t=t, or t=t,
peost c%?-27 t, <ts<t,
cos’| ——
2a
Outside 0 t<st, or t>t,
(x>a) ZCOSl(cz’[2 -7+ —azj t,<tst,
2xcA? - 22

Discrete representation method

The discrete representation is an approximated adeshitable
for both mono-element apertures (Piwakowski ancababy, 1989)
and arrays (Piwakowski and Sbai, 1999). The acgusathe results
depends strongly on the temporal and spatial résokiused in the
model. By considering the three contour casesd rizaffle, soft
baffle and free field, the impulse response fumctwesented by
Piwakowski and Delannoy (1989) and based on th& wbt.asota
et al. (1984) is:

)= = Aoy TG g

r 1)

the piston surface that reach pdat the timet = r/c, wherer is  Where Alr,) is the apodization function that represents the
the distance between poiRt and the points of the arc. It can beamplitude of the semi-spherical wave generateddzh €lementary

noted thatl; and I, denote, respectively, the larger and smalleareadS T(Fa) is the excitation delay function defined at eaonp

distances between poiRtand the piston surface. Thet; = ,/C  on the emitter surfac @ is the angle between the vecT, and the

andt,=r,/C are the times that limit the transient field ahe t normal vector to the emitter surface aa(0) is the contour
duration of the impulse responset, —t; . conditions coefficient defined as:

In the case of a circular piston of rad@asthe expressions for
the angles of the arcs on the piston surf;Q(Ct)) are shown in

410 / Vol. XXXIll, No. 4, October-December 2011 ABCM
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a0)= (1 Rigid baffle
cod6) Softbafle
[1+ cos(@)] 12 Fresfield

(12)

Equation (11) is more general than Eq. (8), whieesfactor that
takes into account the different cases of bounday included, as
well as the delay function used in the focalizatdmrrays.

As shown in Fig. 3a, the emitter surface can berefzed inN

elementary arec 4S5, = 4X,4Y; ,j = 1,2..N, where
S=>4S,-
j

Then, the integral in Eq. (11) can be replaced whth sum of the
contributions of each elementary area. Those dartidns are
computed as the velocity potential generated by edementary
area that reaches poitat instant, according to:

h, (F.t)= ii Aa, 5[t_rir/C_TJ]A5j

j i

(13)

where hy (fp it

response at each instet=r;/c +T; , r

point P and each elementary a1 4S;, Ay andT; are the discrete

values of the function A(Fa) andT(Fa), respectively, ani; is
the boundary conditions coefficient.

8,,j=12,. .N}

b

(b)

Figure 3. a) Notation used in Eq. (13) and b) graph ic representation for é‘lJ

The discrete impulse response becomes a sequenbéraaf
pulses, as shown in Fig. 3b. It can be seen{,tand . are,

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright

) is the discrete representation of the impulse

is the distance between

0 2011 by ABCM

respectively, the smallest and largest propagaiines between the
elementary area and poiRt The amplitude facto@; represents
the impulse response of the velocity potential geteel by each
elementary surfac4S; :

a = Aa;4S,

! 2nr i

(14)

Then, if time is discretized using intervals withrdtion At and the
temporal mean of all amplitude@; that reach the poirf® into a
temporal window [ts—At 12t + At/Z] is calculated, the mean
impulse response at the timeés:

Hd(rp' )

Za for t,—at/2<t <t +4t/2 (15)

In Fig. 4, serie:@; , the temporal mean of the discrete impulse
responsehy and the exact impulse resporiseat the timet, are
graphically shownh, approaches the exact analytic solutiofor
the frequency spectrurf < f_., where f <</ 4t, when the

size of the elementary areas becomes smaller (Bims and Sbai,
1999), in such a way that:

h(FF”ts): Ilm hd(FP’ts) (16)
4S-0
b (7 1)
et s,
i i
i P
Lk (P,
N A7
1
| k(7 ,1)
!
|
|
1
1
s >
f AL e AL
5 2 ]
Figure 4. Graphic representation of  hg.
The temporal mean of the impulse resporhy is the
computational approximated solution used in thisrkwothe
temporal and spatial samplings ar4t and ij:ij,

respectively. Then, by using Egs. (1) and (7), phessure at the
pointP can be calculated by:

o(t)= p "’;( ) (5 0) an

Linear array focalization

Emitting focalization occurs when the waves, geteerdy each
array element, arrive at a desired spatial poirth@atsame time. At
that spatial point, called focus, the maximum istgn of the
acoustic beam is generated as a consequence aotiséructive
interference of each individual signal. Outside tfoeus, the

October-December 2011, Vol. XXXIII, No. 4 / 411



intensities are smaller and even null at certaiintpodue to
destructive interference (Parrilla, 2004).

In practice, focalization is obtained by adjustthg propagation
times between each element and the focus. Thigipkinis shown
in Fig. 5a, where the virtual elements representdblays in the
propagation time. Then, the wavefront advancesea®rated by a
transducer with acoustic lens and all the semespéal waves reach
the focus simultaneously.

The geometry and the axis coordinate system usetttn the
delay times are represented in Fig. 5b. The trazedis placed
throughout thex-axis, and the wave propagation along #exis.
The propagation medium is considered isotropic lamhogeneous
with propagation velocity. If the focus is located at a distaniRe
from the center of the transducer and with a défieangleg, then:

Wave front

.
Focus

[]
O
t]

Virtual element
[]

Array element 4

@)

Figure 5. Array focalization: (a) principle and (b)

Experimental and Theor etical Results

Plane piston

Simulations of the waveform and the acoustic beamegated
by a 19-mm diameter circular plane piston wereiedrout by
using the Matlab software. Results obtained usihg exact
solution and the discrete representation methoe wempared by
considering 6 different cases. The propagating oradis water
(p= 1000 kg/m,c = 1480 m/s) and the excitation signal
corresponds to a 1 MHa & 1.5 mm) sine burst of 5 cycles. Rigid
baffle was the boundary condition used in the madel

In order to analyze the relative error between ¢kact and
discrete solutions, a root mean square factor@ftpnals (pressure
response) was calculated, as follows:

(20)

= (£ 3I50)-S0F

where SE(i) and SD(i) are the signals calculated by the exac

solution and the discrete representation methapheatively, andN
is the number of temporal points used (sampling).bath signals
are normalized to their maximum value, the erraor loa represented
in percentage.

Figure 6 compares the pressure response obtairiad the
exact solution (continuous line) and the discredpresentation

412 / Vol. XXXIll, No. 4, October-December 2011
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L, = {R? +¢ - 2Rxsing 18)

The excitation of each element is delayed so thataves reach

the focus at the same tint=R/c+T,, where T, is a positive

arbitrary constant introduced to avoid negativeagdimes. Thus,
the function that supplies the delays can be obtefrom Eq. (18):

2 2 _ H
+B_\/R + X, - 2Rxsing

= 19
Ta(xn) Td c c ( )
Y
Q [‘W’ 2 >,

O] )

L]

]

[]

[]

v 0

(b)

geometry used in order to obtain Eq. (19).

method (dashed line) at six points in plane 0. The origin of the
coordinate system is in the piston center and thstipe z-axis is
the direction of the acoustic propagation, as degiin Fig. 3. The
pressure responses were obtained in the two ditfeegions of the
acoustic beam: near field and far field. Near fieddthe region
straight ahead of the ultrasonic transducer armsldharacterized by
many constructive and destructive interferencess@hnterferences
lead to many fluctuations in the acoustic pressoear the
ultrasound transducer. Far field occurs in theaedieyond the near
field, and it is characterized by small fluctuagonf the sound
pressure. Figure 6a shows the results corresponditiyyee points
in the near field{= 10 mm): on the acoustic axis £ 0 mm) and
off the acoustic axisx(= 5 andx = 10 mm). Figure 6b shows the
results in the far fieldz(= 70 mm) for the same positions. Moreover,
the relative error between both solutions, caledaty Eq. (20), is
plotted in the figure. In the discrete representatinethod a space
discretization of 4X= A4y=1/8 and a time discretization of
cAt = A /30 were used.

Figure 7 shows a comparison between the pressetds fi
obtained using the exact solution and the disaegteesentation for
%he three different cases shown in Table 2. Alspuee fields were
normalized to its maximum value and the clearesasmrepresent
the maximum peak-to-peak pressure. Small differgnoginly in
the near field, were found. That was more notorifonghe smallest
spatial and temporal discretizations. Meanwhilgreat increase in
CPU time was obtained with the better discretizetjaas shown in
Tab. 2. A linear increase of the CPU time as a tioncof the
number of elementary areas used in the spatiatetization of the

ABCM
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transducer was found. The computer used was ahRetgium IV of 2.53 GHz.

@) (b)
1.5 2
; (x=0,z=10) (x=0,2z=70)
2 2 f
> 05 =]
@ @
o o
a 0 o 0
)] )]
2 2
= =
g 95 3
i o o_q
-1
e=55%
15 -2
6 7 8 9 10 11 46.5 47 47.5 48 48.5
Time (us) Time (us)
1.5 1
(x=5,2=10) (x=5,z=70)
1 05
o o
5 05 =
a @ 0
2 2
o 0 a
@ QD
= Z -0.5
5]
g ~0° 3
o x
-1
-1 e=50%
e=29%
-15 -1.5
6 8 10 12 14 46.5 47 47.5 48 48.5 49
Time (us) Time (us)
0.5 0.4
(x=10,2=10) (x=10,z=70)
0.2
o o
3 >
a @ 0
2 2
o 0 a
@ QD
2 2 -02
k& ©
D QD
o x
-0.4
e=23% e=34%
-0.5 -0.6
6 8 10 12 14 16 46 47 48 49 &0
Time (us) Time (us)

Figure 6. Pressure response comparison for the exac  t solution (solid line) and the discrete representa  tion method (dashed line) in the regions: (a) near
field (z = 10 mm) and (b) far field ( z =70 mm).

Table 2. Spatial and temporal discretization used a  nd the CPU time required to calculate the fields sh  own in Fig. 7.

Case AX= Ay (mm) cAt (mm)  CPU Time (s)

Exact - 2120 2
1 A 116 21120 1240
2 212 A 120 21
3 218 2115 52

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright 0 2011 by ABCM  October-December 2011, Vol. XXXIIl, No. 4 / 413
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(2) exact solution (b) case 1 (c) case 2 (d) case 3
an a0 an a0
0 70 70 70

g0 60

60

a0 50 50

z (mm)
z (mm)
z (mm)
z (mm)

40 40 40

30 30 an

Z0

20 20

10 10 10
0 10 -10 0 10 -10 0 10 -0 ]
X (mm) X (mim) X (mm) X (mm)

10

-10 10

Figure 7. Comparison between the pressure fields ob  tained using the exact solution and the discrete re presentation for the three different cases shown
in Table 2. (The clearest areas represent the maxim um peak-to-peak pressure).

{a) experimental (b} discrete representation method [c) exact solution
] 80

70 o
L] 1]

S0 a0

z{mm)
z{mm)
z[mm)

40 an

40 L]

20 zn

10 m
)] 10 i} 10 0 -20 -10 ] 10 20 -z0 -10 0 10 z0

x (mm) x (mmy) x (mm)

Figure 8. Acoustic field (a) experimental, (b) calc ulated by the discrete representation method and (c ) calculated by the exact solution. (The clearest
areas represent the maximum peak-to-peak pressure).

The acoustic beam irradiated in water by a circd@mm 1 As it can be seen, the computational methods showoa fit
MHz ultrasonic transducer was experimentally mesguA 0.4-mm  when compared to the experimental field. Some iiffees can be
diameter hydrophone was used as the receiver. Apgtarized explained by the excitation wave, which was measurg the
system automatically scanned the field and savedd@ta in a hydrophone at 5 mm from the transducer surfaceravbaly the
suitable format for further processing. The pressamplitude, component of the plane wave was used. Neverthdlesse models
measured and simulated, at each point in the Vigld taken as the are appropriate to determine the acoustic fieldegeed by a plane
peak-to-peak value of the obtained wave. piston transducer.

Figure 8 compares the experimental field measuredhe
theoretical ones obtained with the exact and diselutions. The
amplitude values of each field were normalized ts maximum
value. The exact solution was calculated with a pienml Experimental and theoretical results were obtaiméth a
discretization ofCAt =A /30 and the approximated solution with linear array of 8x§3 mm.and 16 rectangqlar eleméntsersed in
the same temporal discretization and a spatialretigation of Water. Geometry is an important factor in the perfance of any
Ax= Ay= 218 Figure 9 shows the pressure amplitude profiles g - The width of each element must be smallan th2

the acoustic experimental, exact and approximé calculated Parrilla, 2004) in order to avoid the sproutingsplurious lobes of
' aids high intensity in other directions. Th lob nelesired and
in the near field{= 10 mm) and in the far field& 70 mm). 'gh Intensity In ofher directions 0se fobes aneiesired an

Transducer arrays

414 [ Vol. XXXIll, No. 4, October-December 2011 ABCM
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become greater when the deflection angle grows.sTlor a
frequencyfy = 3.5 MHz and propagation velocity of 1480 m/s in
water, the wavelength ia = 0.423 mm and the array element
width is of the same orded+$A/2).

0.8

o
3
V]
¢
(a) Near Field (z = 10mm) =
1 2
o
E
2
0.8
@
5
0
206
5 0 200 400 ) 600 800 1000 1200
o (a) Time (us)
N
T 0.4 1800
S R=30, 6=0° 27
S 180011 _ _ _ fogo, gm0 -7
z ¥ Experimental itahi v
0.2 i 1400 e
= = = Exact Solution .
i ; 1200 » 7
------- Discrete Representation — 4
; 2 1000 ot
-10 -5 0 5 10 o 4
x(mm) E 800 /
7
600 4
7/
7
(b) Far Field(z = 70mm) 400 e
! 200} 7
7R\ . .
08 [\ 94 -2 0 2 4
or [\ X (mm)
o A\ (b)
§ 06 ) Figure 10. (a) Waveform and (b) time delays used in  the simulations.
3 o6l
g 7
g P DA Figure 10(b) shows the delay times used in the Isitian. The
EE 0.4 /2 2 values were calculated from Eq. (19). Two caseswensidered:
= = H 1 H —_— 1 1 — )
S é Experimental N focal!zat!on inR = 30 mm W|thou_t deflection ¢(= 0°) and
022 | = = = Exact solution \ focallzatlc_Jn inR= 30 mm vx{lth deflection pf 20 degreeqs:( 20°).
. ) The maximum delay time in the case with deflectiorien times
"""" Discrete Representation higher than the other case
% . 5 s 0 The experimental field was measured at timstituto de

Automatica IndustrialfCSIC, in Spain. A 0.2-mm diameter
hydrophone, an automated system for the hydroplipos@ioning
and an acquisition data system were used.

X (mm)

Figure 9. Comparison of the experimental, exact sol  ution and discrete
representation pressure amplitudes in (@) z =10 mm and (b) z =70 mm for

|X|S10 mm.

(a) (R=30,6=0) (a) (R=30,6=0)

60

Figure 10(a) shows the waveform used in the sinurlads the
excitation input. It is an asymmetric ultrasoniclseuof 3.5 MHz 50
with normalized amplitude.

The surface of each element was discretized byrsalementary
areas ofAS = 0.01 mm. The temporal discretization was 1/1&&m
the period of the excitation waveform; thereforbe tsampling

frequency wa: ;= 18f, = 63 MHz, which is sufficient to embrace

50

40 40

z (mm)
z (mm)

30 sli}

all the excitation waveform spectra. The choicégfand fS is an 20

important task because coarse discretizationsezmhtb poor results
and fine discretizations lead to excessive propgdsine. In addition, 10 0
the selection of the number of points of the calimd field is also e -1 0 10 a0 -0 10 0
important. In order to obtain a good resolutiorthie acoustic field, X (mm) x (mm)
8000 points were used, 80 points being inxtdirection and 100 in  Figure 11. Irradiated pressure field with focalizat  ionin R = 30 mm without
the propagation directiorz)( Experimental fields were measured withdeflection: (a) experimental and (b) simulated. (Th e clearest areas
smaller resolution: 30 points in the direction and 133 in the  "ePresent the maximum peak-to-peak pressure).

direction, totalizing 3990 points.

20

]

10 20

Figure 11 shows the simulated and experimentalltsegar
focalization at the pointR = 30 mm,@= 0°). A good agreement
was obtained. The small differences are due tartbgular velocity
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distribution in the real transducers surface, thaall the points in
the surface do not vibrate in phase or with theesamplitude. On
the other hand, time delays must be calculated tigh precision
and frequently that is not possible due to hardviar#ations. The
difference in the discretization used in the sirteda and
experimental cases also cause problems in the neltafields.
Figure 12 presents the results obtained for foattim at the point
(R=30 mm,p=20C), showing good agreement.

(a) (R=30,8=20°) (b) (R=30,6=20°)

z (mm)
z (mm)

-z0 -10 0 10 20
X (mm)

-20 -10 1} 10 20

X (mm)

ion on R = 30 mm and
ed. (The clearest areas

Figure 12. Irradiated pressure field with focalizat
deflection of 20°% (a) experimental and (b) simulat
represent the maximum peak-to-peak pressure).

Conclusions

Rayleigh and Rayleigh-Sommerfeld integral equaticar®
effective for modeling the acoustic beam radiated utrasonic
transducers. Exact solutions for some simple gegnage possible
and a discrete method, based on the same equatibmss the
computations for complex geometries.

The exact solution for the plane piston was usedrirer to
analyze the computational cost involved in themisesolution. The
time required by different discretization cases wasipared to that
obtained with the exact solution. As expected, higimporal and
spatial discretizations increase the CPU time. sk i necessary to
select the appropriate discretization; neverthelgms discretization
used in order to generate the pressure responsesish Fig. 6
should be sufficient for most cases with a modeirateease in the
CPU time.

The acoustic beam generated by a circular plan®mpigas
measured and compared to the results obtained éexhct and
discrete solutions. Both exact and discrete soistijorovide a good
reproduction of the experimental beam measuretipadth some
slight differences can occur due to non-ideal ¢ffeas discussed
below.

Array focalization is a simple concept that can é&asily
simulated by the discrete representation methods Tethod is
important because it allows analyzing the incidenfcéne deflection
angle and the focus depth on the acoustic beam rajede
Moreover, the effect of geometrical parameters, diadith,
excitation and some non-ideal effects can be aedlyZThe
simulations reproduced the beams measured with gooaracy.

In both cases, plane piston and arrays, the diftere between
the simulated and measured cases are explainedohsideal
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effects. The most important is the presence ofrotlieation modes
(such as surface and radial modes) in the reatdraoers, causing
an out-of-phase motion of the points on the transdwsurface.
Other non-ideal effects are the fact that the sumding baffle is not
perfectly rigid, as assumed in the model, and thesegnce of
matching layers on the irradiating surface. Allsheffects distort
the acoustic beam.
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