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Self-Tuning Multimodal Piezoelectric 
Shunt Damping 
Piezoelectric shunt damping is a well known structural vibration control technique that 
consists in connecting an electrical circuit to a piezoelectric transducer attached to the 
structure. In the case of a resonant shunt, the network consisting of an inductor-resistor 
network when combined with the capacitive nature of the piezoelectric transducer 
impedance can be designed to act as a tuned vibration absorber. This paper discusses a 
method for the design and online adaptation of multimodal piezoelectric resonant shunts. 
The method presented in this work is different from previously multi-modal shunting 
methods (“current blocking” and “current flowing”) and implements the shunting network 
with a reduced number of discrete electrical components besides allowing for online 
tuning of the shunting parameters. The mathematical model of a structure with bonded 
piezoelectric transducers connected to a general electrical network is reviewed and the 
coupled equations of motion of a simply supported beam with piezoelectric elements and 
passive shunt networks are derived. The design of the multimodal shunt network is 
presented based on passive filter synthesis methods. The multimodal self tuning 
piezoelectric damper is demonstrated experimentally as a two-mode system applied to add 
damping to a cantilevered beam. 
Keywords: piezoelectric shunting, resonant shunt circuit, multimodal damping  
  

Introduction1 

In recent years there has been great interest in the use of 
piezoelectric materials to implement distributed actuators and 
sensors in active vibration control systems and so-called intelligent 
or smart structures. It has also been demonstrated that piezoelectric 
materials can be used passively to add damping to the structure. In 
this case, the piezoelectric element is used in combination with an 
electrical network, usually called a ‘shunt network’ that can be 
designed to add damping to the structure. The use of different kind 
of shunts for vibration control and damping was reviewed by 
Lesieutre (1998). Among the several types of electric networks that 
can be used to shunt piezoelectric transducers, the inductive shunt 
that results in a resonant LC network has received most attention in 
the recent years. This network can be tuned so that the behavior of 
the resulting system is analogous to that of a mechanical vibration 
absorber (Hagood and von Flotow, 1991). If a resistor is added to 
the shunt, resulting in a LCR network, the device acts like a damped 
vibration absorber that achieves the reduction of the resonant 
mechanical response of the target mode by replacing it with two 
damped modes. Since the pioneering work of Forward (1979), 
which introduced and demonstrated the concept of inductive 
shunting, several advances have been made. Edberg et al. (1992) 
introduced the use of variable synthetic inductors where the 
inductance is changed by varying a resistor in the network. In their 
work a two-mode resonant network was demonstrated, but few 
theoretical results were presented regarding the design of the shunt 
network parameters. Multimodal shunting was also investigated by 
Viana and Steffen (2006), who discussed the modeling of modeling 
of piezoelectric patches coupled to shunt network including a review 
of the basics of resonant network topologies. In addition, the 
modeling of multi-degree-of-freedom mechanical system was 
presented as well as a design methodology for the multi-modal case, 
although it was assumed each PZT was shunted with a parallel 
network of resistor and inductor designed to control a specific 
structural mode. Browning and Wynn (1993) presented 
experimental results of the implementation of a multimode resonant 
shunting to reduce the broadband response of a plate. They used 
four piezoelectric elements positioned on the plate such as to target 
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twelve structural modes and each piezoelectric element was shunted 
by a network designed to damp three modes. The design of the 
network was accomplished by synthesizing the desired admittance 
function as a LC ladder circuit with floating inductors that are not 
suitable for implementation with synthetic inductors using 
operational amplifiers. Hollkamp (1994) also presented a method of 
an inductive piezoelectric shunting using a single piezoelectric 
element to damp multiple modes, however, no closed form solution 
for tuning was presented and the network parameters were 
determined by numerical optimization aiming at minimizing the 
weighted vibration energy. Experimental results were presented for 
two-mode device applied to a cantilever beam. Wu (1998, 1999) 
reported a method of implementing multi-mode shunt damping 
using a single piezoelectric element and provided closed form 
analytical expression to derive the network parameter values. The 
network proposed uses a parallel R–L branch for each mode to be 
controlled. The coupling between the individual parallel shunt 
networks was prevented with additional “current blocking” 
networks consisting of L-C parallel branches placed in series with 
each parallel R-L branch network. This scheme results in a large 
number of components that increases fast with the number of modes 
to be controlled. In Behrens et al. (2002), an alternative method to 
design a multi-mode piezoelectric shunting network was presented 
called the “current flowing” method, in contrast with the “current 
blocking” method presented by Wu (1996). In this method, 
additional series L-C branches are added in series with each L-R 
shunt branch. The “current flowing" shunt was studied theoretically 
and validated experimentally on two resonant structures. This 
approach requires a smaller number of components and requires no 
floating inductors when compared with the “current blocking” 
method.  

In practical applications, the target structural resonance 
frequencies can vary due to changes in loading or environmental 
conditions, which would result in a failure of the piezoelectric 
shunting to provide damping, unless some manner of online tuning 
is provided to modify the network parameters to target new 
resonance frequencies. Hollkamp and Starchville (1994) first 
demonstrated a single mode self-tuning piezoelectric vibration 
absorber. In their work, a synthetic inductor was used where the 
inductance of the inductor was modified by varying the value of a 
motorized potentiometer. The synthetic inductor provided both the 
inductance and resistance of the shunt. The control scheme proposed 
varied the tuning so as to maximize a performance function based 
on the ratio of the RMS voltage across the shunt to the RMS 
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response of the system given by the voltage output of another 
piezoelectric element. The success of the control approach required 
that the system response data were filtered to include only a single 
vibration mode. Niederberger et al. (2004) and Fleming and 
Moheimani (2003) investigated an adaptive multi-modal 
piezoelectric shunt method that used the so-called synthetic 
impedance method, introduced in Fleming et al. (2002), which 
replaces simpler physical networks by a voltage-controlled current-
source and a DSP system to implement the terminal impedance of 
an arbitrary shunt network. 

In this work a method to design and implement a multi-mode 
self-tuning piezoelectric vibration absorber using physical networks 
is discussed. The method allows for a reduced total number of 
components and uses grounded inductors that can be implemented 
with synthetic inductors. First, a review of the theoretical modeling 
of a structure coupled to piezoelectric elements and general shunt 
electrical network is presented. Then, the procedure for designing a 
shunt network for damping multiple structural modes with a single 
piezoelectric element is shown, including the derivation of the state 
space equations of the shunt network. The method is illustrated with 
a worked out example of a two-mode shunt applied to cantilever 
beam. Finally, a method to implement the self-tuning of the 
multimodal shunt is introduced and the implementation of a self-
tuning system is demonstrated experimentally. 

Nomenclature 

A = state dynamic matrix 
B = state input matrix 
Cp  = capacitance of the piezoelectric transducer  
cs  = structural stiffness matrix 
D = vectors of electrical displacements, [C/m2] 
E  = vectors of electrical field, [V/m] 
e  = piezoelectric material constant that relates voltage to stress 
f = vector of forces, [N] 
K = stiffness matrix 
Ke = kinetic energy 
Lu = elastic differential operator 
Lϕ  = eletrical differential operator 
q = applied charge 
Rs  = strain rotation matrices 
RE = electrical field rotation matrices 
S = vector of material strains 
T = vector of material stresses, [N/m2] 
V = potential energy 
We = electrical energy of the system 
Wm = virtual work due to magnetic terms 
W = work done by non-conservative forces 
w = mechanical displacements, [m] 
YT  = combined admittance of the shunt network and 

piezoelectric element capacitance 
ϕ = scalar electrical potential 
ε  = matrix of dielectric constants 

Piezostructure Mathematical Model 

In this section, a review of the piezostructure mathematical 
model is presented, following the derivation shown by Hagood et al. 
(1990). The equations of motion of the piezoelectric coupled 
electromechanical system are derived using a Rayleigh-Ritz 
formulation where the displacement and electric potential mode 
shapes are combined through the piezoelectric properties to form 
coupled equations of motion. This model includes the effects of the 
added mass and stiffness of the PZT patches bonded to the structure 

that are important to predict the correct resonant frequencies for 
lightweight structures. 

State-space model of the structure 

The schematic of the structure considered is shown in Fig. 1, 
where the electrodes of piezoelectric element mounted on a beam 
are connected to an electrical circuit with impedance Z(s). 

 

 
Figure 1. Schematic representation of a beam with piezoelectric element 
shunted to an external electrical circuit. 

 
The derivation of the theoretical model of the beam structure 

starts with the generalized form of Hamilton’s principle for 
electromechanical system (Meirovitch, 1997): 
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where Ke is the kinetic energy, V is the potential energy, We is the 
electrical energy of the system, Wm is the virtual work due to 
magnetic terms which is negligible for piezoceramic materials. W is 
the work done by all other non-conservative forces. 

Each of the terms above is defined as follows: 
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Where: w and f are the vectors of mechanical displacements and 

forces at location xj, respectively. qj and ϕj are the applied charge 
and scalar electrical potential at electrode j, respectively. S and T 
are vectors of material strains and stresses, respectively. And D and 
E are vectors of electrical displacements and electrical field, 
respectively. 

The constitutive relation for the structure material is given as: 
 
T = csS (6) 
 

where cs is the structural stiffness matrix. 
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The constitutive relation for the piezoelectric can be written as 
(Hagood and von Flotow, 1991): 
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where ε is the matrix of dielectric constants; e is the piezoelectric 
material constant that relates voltage to stress; Rs and RE are the 
appropriated rotation matrices 

The superscript s means that the parameter was measured at 
constant strain, while E means that it was measured at constant 
electrical field. Now, the strain-displacement and field-potential 
relations are introduced as: 

 
S = Luw(x) and E = Lϕϕ(x) = -∇ . ϕ(x) (8) 
 

where Lu is the linear differential operator for the particular 
elasticity problem (Cook, 1981), Lϕ is the eletrical differential 
operator and ∇ is the gradient operator. 

The displacement and potential are now expressed in terms of 
generalized coordinates r i(t) and vj(t) and assumed displacement and 
potential distributions (mode shapes) Ψ: 
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The assumed displacement and potential distributions need to 

obey respectively the geometric and prescribed voltage boundary 
conditions and also be differentiable to the order of the linear 
operators Lu or Lϕ. 

Substituting the equations above into the expression for the 
Hamilton’s principle and taking the variations, after further 
manipulation it is possible to arrive at the actuator and sensor 
equations of the system:  
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where the mass and stiffness matrices are given by the following 
volume integrals: 
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and the electromechanical coupling matrix is: 
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where the subscripts p and s mean that the integrals are performed 
over the piezoelectric material and over the structure respectively. 

Writing Eq. (11) in state space form: 
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The matrices C and D depend on the choice of observed inputs. 
The charge driven system can be obtained from the voltage driven 

case showed above by noting that Eq. (12) can be rewritten as: 
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Substituting this expression into Eq. (21) and rearranging gives: 
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and:  

 
M = Ms +  Mp 

K = Ks + Kp 
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State-space model of the structure with shunt electrical 

network 

The shunt network can also be characterized by its state space 
model. The output of the model is the current flowing out of the 
piezoelectric electrodes, Ip, and the input are the voltages at the 
piezoelectric electrodes, vp. Following the terminology introduced 
by Hagood et al. (1990), a general state space model for the shunt 
network can be written as: 
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This model can be coupled into the state space model given by 

Eqs. (23) and (24) observing that Ip, the current at the piezoelectric 
electrodes, is the derivative of the charge q and that vp is function of 
q and r. The augmented state space model including the shunt model 
can be written as: 
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and the matrices Csh and Dsh depend again on the choice of 
observed outputs. 

Shunt Network Design 

In this section, the problem of choosing the appropriated 
electrical network configuration and component values of the shunt 
so as to apply damping to the target modes of vibration is discussed. 
Shunting networks are designed so that when connected to 
piezoelectric transducers bonded to the structure, the combined 
electrical impedance is high at the frequencies corresponding to the 
structural modes. Assuming that the piezoelectric transducer 
capacitance is known and using methods of network synthesis, it is 
possible to design the shunt network that has the required low 
electrical admittance at the target structural mode frequencies. 

The derivation considers the design of a passive lossless L-C 
ladder network through passive filter synthesis techniques as 
presented for example by Chen (1986). The addition of damping can 
be made later by adding resistors in series with the inductors. In 
general, damping provided by resistor is an important parameter to 
optimize the shunt performance as discussed by Viana and Steffen 

(2006) and Wu (1996). However, it is worth noticing that, in 
practice, due to the large inductance values usually required, the 
inductors are implemented using operational amplifiers. These 
synthetic inductors have an inherent resistance that sometimes can 
be larger than the ideal design value, leading to a non optimal 
design. In this work the design of a lossless network is assumed to 
simplify the synthesis procedure. The optimization of shunt 
parameters is an important research problem and is treated in detail 
by Steffen and Inman (1999) and Steffen et al. (2000). 

The expression for the impedance of the L-C ladder network can 
be written based on the fact that the driving point impedance of a 
lossless network is a always a quotient of even to odd or odd to even 
polynomials (Chen, 1986).  
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In the expression above, ωzi and ωpi are respectively the 

frequency of the zeros and poles in radians per second that are 
specified before the synthesis. Note also that the poles and zeros of 
ZT alternate along the jω axis and the poles and zeros frequencies of 
Eq. (36) are related by:    
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In the case of a shunting network, the expression for TZ  is the 

combined shunt and piezoelectric impedance (Browning and 
Wynn, 1993): 

 
YT= Yshunt + sCp 
 
The shunt admittance alone is obtained by subtracting the 

capacitive impedance of the PZT Cp from the total impedance: 
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where Nz and Dz are, respectively, the numerator and denominator 
of Eq. (36). 

This admittance function can be realized using the synthesis 
procedure that results in ladder networks known as Cauer II 
canonical form (Chen, 1986). This network configuration uses 
grounded inductors that are more appropriate for implementation 
with synthetic inductors. The process of obtaining Cauer II 
canonical form starts assuming that the desired electrical impedance 
is given by: 

 
Z(s) = m(s)/n(s) (38) 
 
Note that the polynomial m is assumed to be of higher degree 

than n, otherwise one would consider Y(s) = 1/Z(s) instead. The 
Cauer II canonical form requires that the numerator and 
denominator polynomials be arranged in ascending order of s:  
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Then Z(s) is expanded in a continued fraction by successive 

polynomial divisions to get: 
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The general ladder network that can realize this expression is 

shown in Fig. 2. 
 

 
Figure 2. General ladder network obtained by the Cauer II synthesis. 

Design example: two mode shunt network 

Considering a two mode shunt network with two inductors the 
expression for electrical impedance is given by: 
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where k is a real value to be determined, d1= (ωp1)

2 , d2= (ωp2)
2 and 
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The expression for the shunt electrical admittance is: 
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If k is made equal to 1/Cp, Ys simplifies into: 
 

dscs

bas

snCsC

ddndds
Y

pp
shunt +

+=
+

+−+=
3

2

1
3

21121
2

11 //

)(
 (43) 

 
where: a = d1 + d2 – n1, b = d1d2, c = 1/Cp and d = 1/Cpn1. 

Now, writing as a continued fraction, the expression for the 
shunt electrical admittance becomes: 

 

s
(a-bc/d)/cs

d/(a-bc/d)s
b/d

Yshunt 1
1

+
+=  (44) 

 
The values of the inductors and the value of the capacitor are 

given by: 
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The electrical network that realizes this expansion is shown in 

Fig. 3. The electrical impedance of the shunt network above, using 
the parameters listed in Table 1, is plotted as the solid line in Fig. 4. 

Note that the values of the electrical components computed with 
Eqs. (45) to (47) depend on the frequencies of the poles and zeros. 
These values are selected in the synthesis, with the values of the 
pole frequencies corresponding to the target resonance frequencies 
of the structure. Using the expressions for the component values 
derived above, each time the network is tuned to target different 
structural modes, it requires that new values be determined for all 
the components. This would make the implementation of a self-
tuning shunt difficult, since it would be necessary to vary both the 
inductors and capacitors values. 

 

 
Figure 3. Lossless electric network that implements two-mode shunt damping. 

 
A method to tune the shunt network by varying only the values 

of the inductors while keeping the capacitor fixed can be 
implemented observing that the frequency of the zeros that occur 
between each pair of poles can be allowed to shift as the poles are 
shifted to follow the target frequencies without negative impact on 
the performance of the shunt. Then, an expression can be written to 
compute the values of the zero frequency n1 in terms of the values of 
the pole frequencies, the value of the capacitor C1 and of the 
piezoelectric capacitance Cp. 

 

Table 1. Pole and Zeros Frequencies and Electrical Component Values. 

Frequency of pole 1 148 Hz 
Frequency of pole 2 469 Hz 
Frequency of zero 300 Hz 
PZT capacitance 24 nF 
Value of inductor L1 19.71 H 
Value of inductor L2 10.73 H 
Value of capacitor C1 26.22 nF 
Value of resistor R1 and R2 100 Ohms 

 
 
For the example of a two-mode shunt network shown in Fig. 3, 

manipulation of Eq. (47) results in a second order equation that can 
be solved for n1: 
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Thus, it is possible to keep the capacitor value fixed and tune the 
network by selecting the required values of the poles and then 
computing the value of the zero using Eq. (49). Then, the required 
values of the inductors are computed using Eq. (45) and Eq. (46). 
The electrical impedance magnitude for the shunt network tuning 
modified to have poles at 120 Hz and 500 Hz is shown in as the 
dashed line in Fig. 4. 

 

 
Figure 4. Electrical impedance magnitude for a two-mode shunt network. 
Solid line: tuning with poles at 148 Hz and 469 Hz; dashed line: new tuning 
with poles at 120 Hz and 500 Hz. 

State-Space Model of the Shunt Network 

In this section, the derivation of the shunt network state-space 
model matrices Ael, Bel, Cel and Del (Eqs. (28) and (29)) are 
presented. The details of the procedure can be found in Chen (1990). 
The shunt network is shown in Fig. 5(a), where voltage source V 
represents the PZT. Each element in the network is replaced by a 
line segment to obtain the linear graph model of the network. Then, 
an orientation represented geometrically by the edge-orientation 
arrows is assigned to each edge, resulting in the directed graph 
shown in Fig. 5. 
 

 
                         (a)                                                   (b) 

Figure 5. (a) Shunt network; (b) associated directed graph. 

 
The edge e1 contains a voltage source and is added with the 

purpose of representing the PZT. Let ik and vk be the current and 
voltage of the edge ek (k = 1,2,…,6). In order to develop state 
equations for the system, a normal tree has to be selected. A tree of 
a directed graph is a connected subgraph that contains all the nodes 
of the graph, but no circuits. In this example, without lost of 
generality, the tree e1e3e4e6 is chosen. The KCL (Kirchhoff’s current 
law) and KVL (Kirchhoff’s voltage law) equations corresponding to 
the chosen tree are: 
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The voltage-current equations of each element of the network 

are given by the expressions below: 
 
v1 = vp  (52) 
 
v2 = L1 di2/dt (53) 
 
i3 = v3/R1 (54) 
 
i4 = C1 dv4/dt (55) 
 
v5 = L2 di5/dt (56) 
 
i6 = v6/R2 (57) 

 
The state variables are chosen to be the capacitor voltage v4 and 

the inductor currents i2 and i5. Now, the goal is to express di2/dt, 
dv4/dt and di5/dt as functions of the voltage v4 and the currents i2 
and i5. Substituting Eq. (52) to Eq. (57) into Eq. (50) and Eq. (51) 
results in: 
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The system output is the current going through the PZT, i.e., 

i1=Ip. It is given by: 
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Hence the state-space matrices become: 
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[ ]110 −−=elC  (62) 
 

 0=elD  (63) 
 
Using the procedure described above, the complete 

mathematical model of the piezostructure connected to the shunt 
network is obtained. The method is applied to model a cantilever 
beam with a single piezoelectric patch bonded in the center of the 
beam and connected to a two-mode shunt tuned to the 2nd and 4th 
modes of the beam. The physical parameters of the beam and 
piezoelectric transducers are listed in Table 2. The acceleration 
response at the free end of the beam with and without the two-mode 
shunt is shown in Fig. 6. 

 
Table 2. Physical parameters of cantilever beam and piezoelectric patch. 

 Aluminum beam PZT element 
Length (mm) 300 72.4 
Thickness (mm) 3.17 0.508 
Width (mm) 35.6 35 
Young’s Modulus (N/m2) 70 x 109 66 x 109 

Density (kg/m3) 2700 7800 
Capacitance (nF) --- 80 
Piezoelectric strain 
coefficient (m/V) 

--- 190 x 10-12 

 
 

 
Figure 6. Simultaneous damping of two modes with single PZT patch. 

Experimental Implementation of Self-Tuning Shunts 

The PZT elements used are the T120-A4E-602 from Piezo 
Systems, Inc. The beam used has a length of 300 mm, width of 
35.6 mm and thickness equal to 3.17 mm. The dimensions of the 
beam and PZT parameters are summarized in Table 2. For the 
beam used in this experiment, the frequencies of the second and 
fourth modes are at 149 Hz and 468 Hz. The necessary inductance 
values are approximately 22.2 H and 11.3 H and using a 22nF 
capacitor. Due to the large inductance values necessary to 
implement the shunts network to damp modes at low frequencies, 
it is usual to use synthetic inductors using operational amplifiers. 
A common network configuration found in the literature is the so 
called gyrator filter (Horowitz and Hill, 1980) shown in Fig. 7. 
The effective input impedance of this network is given by: 

 

2431 RRRsCRsZin /)( =  (60) 

By varying the value of one of the resistors, for example R3, 
using a potentiometer, the inductance of the network can be easily 
changed. In this work the two-channel, 256 positions digitally 
controlled variable resistor (VR) device, from Analog Devices was 
used. This device contains two independent variable resistors, each 
part consisting of a fixed resistor with a wiper contact controlled by 
a 10 bits word loaded into a controlling serial input register pin. The 
resistance of the wiper and the endpoints of the resistor have linear 
variation with respect to the code input. A control algorithm to 
perform the automatic tuning of the shunt network parameters was 
implemented using LabVIEW running in a PC host computer. The 
error signal from an accelerometer located at the tip of the beam is 
acquired and processed to identify the resonance frequency peaks of 
the structure. The identification of the resonant peak power and 
frequency is performed in the frequency domain by analyzing the 
auto-spectrum of the accelerometer output. A schematic of the 
experimental setup is shown in Fig. 8. 

 

      
Figure 7. Synthetic inductor using operational amplifiers. 

 

Figure 8. Experimental setup of self-tuning multi-modal piezoelectric 
shunting system. 

 
The value of the piezoelectric element capacitance necessary for 

the tuning procedure was measured with a capacitance meter. Then, 
an initial tuning was performed using the expressions derived above 
to compute the inductance values necessary to tune the shunt to the 
target frequencies. Once the values of the inductors are determined, 
the resistor values required are evaluated and the digital 
potentiometers are set. After an initial tuning is performed the fine 
tuning of the shunt parameters is done using the fact that the 
addition of the shunted piezoelectric to the original system 
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transforms the original resonance peak in two damped peaks. For 
the optimal tuning condition the two damped resonances will have 
the same amplitude and the root mean squared (RMS) energy is 
minimized. For a sub optimal tuning condition, one of the new 
resultant peaks will have higher amplitude, as illustrated in Fig. 9. 
Observing the amplitudes of the resulting peaks after the shunting is 
applied allows determining how the value of inductance needs to be 
changed: if the peak is at a frequency higher than the original peak, 
the inductance has to be increased and vice versa. Note that in order 
for the self-tuning system to converge, the initial tuning has to be 
close enough to the pre-defined target frequencies so that the 
original resonance peaks are damped by shunt.  

A fine tuning of the shunt parameters is performed through the 
minimization of the RMS energy in a frequency band centered on 
each resonance frequency. The procedure to find the optimal tuning 
consists of a simple line search, as the function to be minimized is 
unimodal over the closed interval around the resonant peak. The 
inductance of the shunt is varied by a step in an initial direction and 
the effect on the RMS energy is determined. If the effect of the 
change results in RMS energy increase, the direction of change is 
reversed. If the effect of the change results in RMS energy 
reduction, an additional step-change of smaller value is applied so 
that after a number of iterations the inductance values converge to 
the optimal values. 

 

 

Figure 9. Resonant peak for optimal and sub-optimal tuning conditions. 

 
In this experiment a two-mode shunt network was 

implemented in order to add damping to an aluminum cantilever 
excited by a PZT actuator bonded to the base of the beam. The 
shunt network was connected to single piezoelectric patch bonded 
midway along the beam. Clearly, the effectiveness of the shunted 
piezoelectric patch in damping structural modes depends on where 
the PZT element is attached to the structure and damping for 
certain structural modes can be achieved by placing the PZT 
elements on specific positions on the structure. Given the 
geometrical position of the PZT patch and the beam mode shapes, 
the 2nd and 4th vibration modes were chosen as target modes in 
the shunt design. The response at the accelerometer location before 
and after the shunting is applied is shown in Fig. 10. The reductions 
obtained are approximately 7 dB for the 2nd mode and 13 dB for the 
4th mode. Note that the experimental results shown in Fig. 10 have 
good agreement with the predicted results shown in Fig. 6. The 
differences in the vibration amplitude reductions predicted 
numerically and measured experimentally can be explained for 
example by the inherent resistance of the synthetic inductor 
presented in the experiments and also by differences between the 

numerical and experimental electromechanical coupling of the PZT 
patch and the beam structure. 

 

 
Figure 10. Experimental results: damping of 2nd and 4th modes using self-
tuning shunt. 

Conclusions 

In this work a procedure for the design and implementation of a 
self-tuning multimodal piezoelectric shunting damping system using 
a single piezoelectric element was presented. The theoretical 
modeling of a piezostructure connected to a shunt network was 
reviewed and multiple mode shunt design method based on passive 
filter synthesis techniques was demonstrated analytically. This 
multiple mode shunt network discussed has the advantage of 
implementing the multimodal shunting network with a minimal 
number of components when compared to “current blocking” and 
“current flowing” techniques. The design of a self-tuning shunt 
network was discussed and demonstrated experimentally. The 
inductors were implemented using synthetic inductors circuits based 
on using operational amplifiers that have their values modified by 
changing the values of a variable resistor, in this case a digitally 
controlled potentiometer. A tuning algorithm was introduced and 
implemented in LabView running on a PC computer. In the 
proposed method, the averaging of the auto-spectrum of the error 
signal required to reduce the measurement noise and increase the 
prediction accuracy of the resonant peaks and RMS energy made the 
algorithm convergence somewhat slow. However, the performance 
could be greatly improved by using a faster dedicated device. It is 
worth noting that, although in theory there is an optimal inductance 
and resistance values for the optimal tuning of the shunt, in practice 
the use of a synthetic inductor that has an inherent resistance made 
the use of an additional resistance not required. In practice, this 
results in a sub-optimal tuning condition, or the best possible 
performance with the given network implementation, as the control 
algorithm will always try to minimize the total energy of the 
resonant peak. In this work the error sensor was an accelerometer 
located near the tip of the beam. Future work can investigate the use 
of alternative error sensors such as an array of accelerometers to 
reduce total kinetic energy of the beam and shaped PVDF sensors 
for minimizing broadband radiated noise.  
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