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Some Issues in Real-Time Systems 
Verification Using Time Petri Nets 
Time Petri Net (TPN) models have been widely used to the specification and verification of 
real-time systems. However, the claim that most of these techniques are useful for real-
time system verification can be discussed, based on two assumptions: i) to be suitable for 
real-time systems verification, a technique must be able to check timing properties, both 
safe and behavioral, and ii) the underlying algorithm must be efficient enough to be 
applied to complex systems design. In this paper we will discuss the suitability of 
commonly accepted verification techniques that use model-checking as a verification 
framework and TPN as a description model. We present a new algorithmic approach that 
allows computation of end-to-end time between activities over an abstract state space 
model. The proposed approach needs to compute the abstract state space only once 
improving the efficiency of the verification process and turning it suitable for large 
problems. We also introduce a new sufficient condition for abstract states space to 
preserve the branching time properties that yields more compact graphs than the condition 
already used in actual approaches. The approach would fit a design environment also 
based on Petri Nets called GHENeSys (General Hierarchical Enhanced Petri Nets). The 
results obtained, using our verification approach are compared with similar available 
approaches. 
Keywords: formal verification, Time Petri Nets, real-time systems, abstract state space 

 
Introduction1 

In real-time systems the correctness depends on the output and 
also on the time in which this output is produced. Therefore, the 
verification of such systems requires the determination of 
quantitative temporal properties, besides qualitative properties 
associated with its logical correctness. 

As stated in Wang, Deng and Wu (2000), a key requirement to 
verify real time systems is the end-to-end delay for task execution 
and the correct execution sequences for those tasks. Execution 
sequences are related to the logical correctness of the system while 
end-to-end delays allow the evaluation of quantitative temporal 
properties for the sequences generated.  

Despite several achievements in formal verification for real-
time systems, the intrinsic complexity of various framework 
environments dedicated to its verification remains forbiddingly 
high (Wang, 2004).  

Usually, the verification problem of timed systems is 
exponentially more complex than their untimed counterpart (Wang, 
2004). Consequently, formal verification techniques are not yet 
commonly used in real-time systems design. Since the work of 
Clarke and Emerson (1981), the automatic verification of systems 
has improved, especially in what concerns time constrained systems 
(Alur, Courcoubetis and Dill, 1993; Henzinger et al., 1992; Emerson 
Jutla and Sistla, 1993), based on the Timed Automata (TA) 
formalism (Alur and Dill, 1990). 

Recently, techniques based on reachability analysis for TPNs 
have been developed – most of them based on the state class 
approach (Berthomieu and Menasche, 1983) – and inserted on 
several (time) extended Petri nets environments.  Some of them are 
suitable to do performance evaluations, since the time is represented 
as a fixed delay or time durations (Ramchandani, 1974; Sifakis, 
1980; Zuberek, 1980). However, those Petri nets models are not 
well suited to deal with real-time systems where the time duration of 
activities (or tasks) could not be predicted.  

Other extended models (Aalst, 1993; Merlin and Faber, 1976; 
Ghezzi et al., 1991; Tsai, Yang and Chang, 1995; Cortes, Eles and 
Peng, 2003) are suitable to deal with real-time systems because of 
their ability to represent varying time durations of activities, by 
using timing intervals attached to transitions. Merlin’s Time Petri 
Nets (TPN) belong to that class of system, and is the most widely 
used formalism for specification, analysis and verification of real-
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time systems (Berthomieu and Diaz, 1991; Yoneda and Ryuba, 
1998; Virbitskaite and Pokozy, 1999; Lime and Roux, 2006; Hadjidj 
and Boucheneb, 2008; Yovine, 1996). 

However, not all approaches using TPN’s deal with the explicit 
determination of quantitative temporal properties – a critical issue in 
real-time systems design. In all classical TPN approach it is 
necessary to verify whether a property can actually be checked, 
despite the possibility to determine quantitative temporal properties. 
For instance, even in methods based on linear time, only safety 
properties could be verified, which is not interesting to real-time 
system design. Thus, Timed Computational Tree Logic (TCTL) 
proposed in Alur, Courcoubetis and Dill (1993) is the most used 
temporal logic for real-time systems (Wang, 2004). The efficiency 
of the verification process is also a key issue. For instance, the 
complexity of a TCTL model-checking algorithm (Alur, 
Courcoubetis and Dill, 1993) over Timed Automata – using the 
region graph approach – is PSPACE1.  

Virbitskaite and Pokozy (1999) implemented a model-checking 
algorithm for TCTL using TPN as the description formalism, based 
on the region graphs, just as in Alur, Courcoubetis and Dill (1993). 
The quantitative part of the algorithm is performed by adding a 
special transition associated with the time in the TCTL formula. 
Therefore, there would be an extra transition per formula to be 
checked. Even when a partial order reduction method is used to 
decrease the state-space size the complexity remains PSPACE.   

The verification process will be discussed in the next section, 
using the concept of complexity presented in Alur, Courcoubetis and 
Dill (1993) as reference. In the next section it will be presented some 
commonly accepted techniques that use model-checking as a 
verification framework and TPN as description model to real-time 
system verification. Advantages and disadvantages of each approach 
will be presented in the following section where our proposal will be 
presented to construct an abstract state space to improve the 
verification process. Finally, in the last section some experimental 
results will be shown. 

The Verification Process 

Let us assume that TPN is fixed as the description model for the 
design of real-time systems. Also, it is assumed that the specification 
of desired properties for a given system modeled in TPN is also 
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clearly stated using some temporal logic (see section II in Wang 
(2004) for a survey).   

In order to verify the given specification, a state-space for the 
TPN model must be first computed and represented (see section V 
in (Wang, 2004) for a survey in state-space representations).  
Next, a labeling algorithm should go over the state space, labeling 
the nodes with their holding sub-formulas, respectively, until the 
entire formula is mapped. The model-checker should answer yes 
only if the formula holds in at least one node (global) or in a 
specific node (local), and no otherwise. The complexity of the 
labeling algorithm is linear in the size of the graph that represents 
the system state-space. 

Basic Definitions 

Merlin’s Time Petri Nets extend classical Petri Nets by inserting 
temporal intervals associated with transitions, which specify firing 
delay ranges for these transitions to fire. A formal definition for 
TPN nets is revisited in this section, including the notion of state 
and state class.   

A Time Petri Net is a tuple (P, T, B, F, M0, SIM) where: 
• P is a finite non-empty set of places pi; 
• T is a finite non-empty set of transitions ti; 
• B is the backward incidence function 

  B: P × T → N; 
• F is the forward incidence function 

  F: T × P → N; 
• M0 is the initial marking function 

  M0: P → N; 
• SIM is a mapping called static interval 

  SIM : T → Q+  × (Q+ ∪{∞}); 
 
where N is the set of non-negative integers and Q+ is the set of 
positive rational numbers. 

The static interval is composed of two positive rational numbers 
(EFT, LFT), where EFT represents the earlier firing time and LFT 
the latest firing time. Therefore, if a transition t becomes enabled at 
time τ, then t cannot be fired before (τ + EFT(t)) and no later than 
(τ+LFT(t)), unless it is disabled by the firing of another transition. 

In TPN, the enabling condition of a transition is similar to the 
one in classic Petri Nets. Therefore, the “enabling condition” for a 
generic transition ti will be: 

 
(∀p) (M(p) ≥ B(p, ti));                               (1) 
 
The set of all transitions enabled by marking M will be denoted 

as enb(M). It is an important issue to determine the transitions that 
were just enabled by the transition M (to start counting its enabling 
time). If marking M is preceded by a generic marking M′, that is, if 

MM t' → , the persistent transitions in M are defined as 
pers(M)={t|t∈(enb(M’)∩ enb(M)}, and the new enabled transitions 
as  new(M) =  enb(M)\pers(M). It is clear that new(M) ⊆ enb(M). 

Even when marking M enables a set of transitions, not all of 
them may be allowed to fire, due to the firing constraints of 
transitions (EFT's and LFT's). Thus, the “firing condition” depends 
on two conditions: 

1) transitions must be enabled, as formally expressed by Eq. (1); 
2) enabled transitions must not fire before its EFT; they must 

fire before or exactly at its LFT unless another conflicting transition 
fires before. 

According to the second condition, a transition ti, enabled by a 
marking M at absolute time τ, could be fired at the firing time θ iff θ 
is not smaller than the EFT of ti and not greater than the smallest of 
the LFT's of all the transitions enabled by marking M, that is: 

EFT(ti ) ≤ θ ≤ min(LFT(tk))  ∀tk ∈ enb(M)                            (2) 
 
A concrete state of the system can be defined as a pair s = (M, V) 

where: 
1. M is a marking, 
2. V is a clock valuation function, V: enb(M) → R+. 

 
An abstract state of the system can be defined as a pair S = (M; I) 

where: 
• M is a marking, 
• I is an interval set which is a vector of possible firing 

times. The size of this vector is given by the number of 
transitions enabled by marking M, which is │enb(M)│. 

 
Abstract states represent a set of concrete states of the TPN 

model. The firing interval set is also known as the firing domain D. 
The firing of transition ti leads the system to another state, at 

time τ + θ, which will be denoted as: 
 
      (ti, θ) 
S ―――→ S'                               (3) 
 

ϒ(s) denotes the set of all firing transitions in state s, and ϒ(s) ⊆ enb(M). 
The firing rule is the base to the computation of new states and 

to establishment of a reachability relation among them. The set of 
all states that are reachable from an initial state, or the set of firing 
schedules feasible from an initial state, characterize the behavior of 
the TPN. Similarly, the set of all reachable markings characterize 
the behavior of a Petri Net.  

Let ω be a path in a TPN model ℵ. 

                       t0,θ0         t1,θ1         ti,θi 

 ω = s0 ――→ s1 ――→ … ――→ si 

where the reachable state after i firings is ωi = si . 
For a concrete state s = (Ms, θ) and a state class C = (M, D),  s 

∈ C if exists an execution path ω such that: 
• s = ωn 
• Ms = M 
• θn is consistent with D. 

State Space Computation Issues for TPN 

For real-time systems, dense time model (where time is 
considered in the domain R+) is the unique feasible option, what 
brings to the problem of treating an infinite number of states. Two 
approaches are entitled to treat this state space: region graphs (Alur, 
Courcoubetis and Dill, 1993) and the state class approach 
(Berthomieu and Menasche, 1983). 

As always, the objective of these representations is to yield a 
state-space partition that groups concrete states into sets of states 
with similar behavior respect to the properties been verified. That 
“sets of states” must cover the entire state space and must be finite 
in order to ensure the termination of the verification process. 

Yovine (1996) and del Foyo and Silva (2008) show that a state-
space partition created using the state class approach is more 
efficient than one created using region graphs. Also, state-space 
computation algorithm remains PSPACE. 

Concerning the state-space partition, two proposals are considered 
in this work: one based on geometric regions (Yoneda and Ryuba, 
1998) and a “traditional” method (Berthomieu and Diaz, 1991). Other 
partition methods are just derived from these basic approaches (Wang, 
Deng and Wu, 2000; Hadjidj and Boucheneb, 2008).  

State classes are commonly represented by two elements: a 
marking and a time domain. When geometric region is used, the 
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firing sequence is also included instead of a single marking. This 
information is necessary to construct the state class graphs for the 
Computational Tree Logic (CTL) model checking.    

However, each one of the basic partition methods would result 
in distinct state-space partitions. For instance, using geometric 
regions all time variables are referred to a global clock, while in the 
traditional method all time variables are referred to a local clock, 
initialized when the transitions are newly enabled. This difference 
leads to different state representations.   

The representation of a state class in geometric regions is given by 
a tuple s = {µ, I, σ} where µ represents the state marking, I is a vector 
containing the time values on which all transitions where fired (until 
the state s is reached) referred to a global clock, and σ is the sequence 
of transitions fired to reach the target state s. Comparatively, in the 
traditional approach, a state class is a pair s = {µ, I} where µ 
represents the marking and I is a vector containing the time values for 
all transitions enabled in s referred to the time in which those 
transitions become enabled. 

On both methods, a state class stands for a “set of states” that 
shares the same marking and time boundaries. Thus, an abstract 
state space of a TPN model is a contraction of its generally infinite 
concrete state space Σ. In this paper the definition of abstract state 
space follows the one stated in Hadjidj and Boucheneb (2008). 

 
Definition 1 (Abstract state space): An abstract state space of a 
TPN model is defined as a state transition system (Ω, →, C0) where: 

• Ω is a set of elements, called abstract states, representing a 
cover of Σ. Each abstract state is a nonempty set of states 
having the same marking, 

• C0 ∈ Ω is the initial abstract state such that s0 ∈ C0,  
• → ⊆ (C × T × C) is the successor relation satisfying 

condition EE2 = SG ∧ EEr, where: 
                         t           t  
SG: ∀s∈Σ, (s→s')⇒(∃s∈C, C∈Ω), ∃C'∈Ω s. t. s'∈C' ∧ C→C', 

            t                                               t 
EEr: (C→C') ⇒ ∃s∈C, ∃s'∈C', s. t. s → s'. 

 
Relation → may also satisfy additional conditions as AE and EA: 

      t    t 
AE : (C → C') ) (∀s∈C; ∃s'∈C'; s → s') 
 
      t    t 
EA : (C → C') ) (∀s'∈C'; ∃s∈C; s → s') 
 
The above definition establishes that all concrete states must be 

included in at least one abstract state according to condition (SG). 
However, even if well stated and successfully used, abstract state 
spaces do not ensure correctness for quantitative temporal properties 
determination.  

As stated before, the end-to-end time between task executions is a 
key requirement in real-time systems verification. Since state 
transitions represent the completion of some task, the end-to-end time 
can be computed as the time elapsed between states in a sequence of 
state transitions, called execution path. Those computations are correct 
if all execution paths in the concrete state space have a matching 
execution path in the abstract state space and vice-versa, and the time 
boundaries in each time domain contain precisely the temporal 
behavior of the concrete states belonging to its state class.  

In the following section, most commonly used abstract state 
spaces in verification approaches will be introduced. 

                                                           
2
 Conditions EE, AE and EA named after its transition state relations: Exists-Exists, 

All-Exists and Exists-All respectively. 

Some Verification Approaches Based on Abstract State Spaces 

Berthomieu and Diaz (1991) proposed an enumerative technique 
based on a State Class Graph (SCG) and directed to the 
determination of some TPN properties like reachability and 
boundness. They also showed the undecidability of those properties, 
giving some sufficient conditions for the boundness property. The 
SCG preserves only the linear time properties. 

Yoneda and Ryuba (1998) proposed a sufficient condition under 
which the abstract state spaces could preserve branching time 
properties. According to them abstract state spaces preserve the 
branching time properties if the (AE) property holds. Such property 
was called atomicity, and State Class Graphs satisfying this property 
were called Atomic Geometric Region Graph (AGRG). 

The ASCG (Yoneda and Ryuba, 1998) was obtained using the 
geometric regions and yields a graph that preserves the properties 
(EE), (EA) and (AE). Figure 1 shows an example of a TPN taken 
from Yoneda and Ryuba (1998). 
 

 

Figure 1. TPN Example. 

  

 
Figure 2. SCG and AGRG obtained using Yoneda and Ryuba approach. 

 
Figure 2 shows the SCG and the AGRG obtained using Yoneda 

and Ryuba approach for the example in Fig. 1. 
It should be noticed that approach proposed by Yoneda and 

Ryuba was idealized only for CTL model-checking. Thus, the 
complexity of the algorithm to compute the end-to-end time 
between transitions will be forbiddingly high to be implemented. 
Since each state class contains as much variables as the number of 
transitions fired to achieve it, the size of the system of inequalities 
will increase exponentially turning it into an intractable problem. 

Berthomieu, Ribet and Vernadat (2004) implemented the state 
class approach in a software tool called TINA. Using TINA, the 
SCG and ASCG of a TPN can be obtained, but the property (EE) 
doesn't hold in the ASCG. The ASCG is obtained from the Strong 
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State Class Graph (SSCG), which is similar to the SCG, but more 
suitable to be a starting point for the refinement process. 

In del Foyo and Silva (2008), an algorithm was proposed to 
compute the end-to-end time between task executions using the 
ASCG obtained using TINA. However, such technique only works 
for specific system behaviors where the refinement technique does 
not affect the (EE) property.  

Figure 3 shows the ASCG with minimum and maximum time 
increments attached to every transition. 

 

 
Figure 3. ASCG obtained using the approach in del Foyo and Silva (2008). 

 
Suppose, for instance, that it is necessary to check the TCTL 

formula EF≤4 (p5 ∧ p7) over the graph in Fig. 3. The existence of a 
path {s0, s2, s3, s6, s9, s10} will force the verification algorithm to 
set the formula to true in state s0. However, looking at the TPN we 
can easily note that this formula should be evaluated to false, since 
there is no way transition t5 could fire before 5 time units. 

Clearly, property (EE) does not hold in that graph. Notice that 
we can easily find an execution path accepted by the TPN model 
that is not covered by the ASCG. 

 
                 t1                        t2                       t3 
S0         ――→      S2    ――→       S3   ――→      S7 
                0,8                     0, 85                  0,70 
 
The CS-class approach was proposed in Wang, Deng and Wu 

(2000) as a modification of the traditional state class approach to 
allow the computation of quantitative temporal properties.  

A clock stamped state class (CS-class) is a tuple C = (M, D, ST) 
where: 

1. M is a marking. 
2. D is a firing domain, i.e., a set of constraints on the values 

of the time to fire for transitions enabled by current 
marking M. 

3. ST is the time stamp of the CS-class, which is a (global) 
time interval. 

By computing a CS-class reachability graph, it is possible to get 
a partition of the state space with its respective valid global time 
interval. If that graph was correctly computed, enough information 
would be obtained to determine the validity of some temporal logic 
statements including quantified temporal properties. Still, the CS-
class only preserves the linear time properties.  

 

 
Figure 4. CS-class graph and LTS for TPN in Fig. 1. 

 
Figure 4 shows two graphs: the reachability tree (in the left) 

obtained using the CS-class approach and the LTS (in the right) 
obtained by TINA, both for the TPN example in Fig. 1. 

Despite the fact that there are different semantics in timing 
information (CS-class uses global time and LTS uses global time 
increments), the same kind of property can be verified in both 
graphs, even linear time properties, including quantitative temporal 
properties.   

From the point of view of computational time, the choice of 
LTS time increments is better than the reachability tree (it would be 
equal in the worst case).  

 

 

Figure 5. LTS of the TPN used in Wang, Deng and Wu (2000). 
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The LTS of the example shown in Wang, Deng and Wu (2000) is 
in Fig. 5. In the example published in Wang, Deng and Wu (2000) the 
reachability tree has 14 nodes while there are 7 in the LTS. 

However, the LTS approach could lead to errors when 
evaluating quantitative temporal properties (del Foyo and Silva, 
2008). Even when quantitative temporal properties can be checked, 
prospective results are not really useful in real-time systems 
verifications, since the linear time properties only allow the 
verification of safety properties.   

Hadjidj and Boucheneb (2008) proposed a Concrete State Zone 
Graph (CSZG), getting results from a different normalization 
technique detached from the one used in Berthomieu and Vernadat 
(2003). The CSZG is used as a starting point for a convex 
combination process that yields a compact representation grouping 
state classes with the same marking and time domains, similar to the 
union operation in convex zones. 

The convex combination will contract the state-space 
representation, but, at the same time, will introduce time solutions 
that do not appear in the TPN model. Such operation could lead to 
errors in the verification of quantitative temporal properties.  

The refinement process to ensure the (AE) property yield a 
graph called atomic-CSZG which can be used to verify CTL*. Such 
verification is more efficient than the one in ASCG, according to 
experimental results showed in (Hadjidj and Boucheneb, 2008) 

Lime and Roux (2006) also used TPN to model system 
behavior. They used the state class approach to build a Timed 
Automaton (TA) that preserves the behavior of the TPN using as 
less clock variables as possible. The resulting model is then verified 
using UPPAAL (Larsen, Petterson and Yi, 1997). However, even 
when UPPAAL can answer about quantitative temporal properties, 
it can only verify a subset of TCTL, what is a limitation in the 
system specification, especially in the expressibility of behavioral 
properties. Another drawback is the complexity of the algorithms: a 
PSPACE algorithm is executed just to convert a TPN in a TA; then 
another PSPACE algorithm is applied for each property to be 
checked. 

The adding of a new transition to measure time elapsing was 
proposed in Boucheneb, Gardey and Roux (2006) to perform TCTL 
model-checking in TPN. Using that transition, TCTL formulas are 
translated into CTL formulas. Then a zone-based graph for TPN is 
refined using a partition refinement technique leading to a graph 
called Atomic Zone Based Graph that preserves CTL properties. 
Finally, a fix point algorithm is used to check the property. Such 
approach has PSPACE complexity for each property to be checked. 

The final conclusion is that none of the methods discussed 
above improve significantly the approach in Virbitskaite and 
Pokozy (1999). Thus, the low computational efficiency of these 
approaches, including Virbitskaite and Pokozy (1999), or its 
limitation for systems specification, are the main reasons why 
existing model-checkers are barely used, even when most part of the 
academic community acknowledge that the TCTL is the better 
choice for real-time systems specification. 

Even with its limitations in specification, UPPAAL is a widely 
used software tool for real-time systems verification, thanks to its 
balance between performance and expressiveness. 

A Proposal to Improve the Verification Process 

From the discussion above it is possible to conclude that the 
main problem in verification is the computational complexity. The 
construction of the abstract state space is PSPACE, and the labeling 
algorithm is PTIME, thus, there are few stages of the verification 
process that can be improved in a significant way. On the other 
hand, all mentioned approaches go through a process where the 
generation of the abstract state space is a key step. Therefore, a 

natural proposal to improve the verification process would be to 
compute the abstract state space only once and check every property 
with PTIME3 complexity over this space. 

First of all, the abstract state space must preserve branching time 
properties in order to verify the TCTL. Next, the timing information 
must be coded in a way that we can compute the minimum and 
maximum elapsed time in every path of the graph. In the following 
section we will show how to build a complete abstract state space as 
a general step in the verification process. 

The constrained state class graph 

The main idea is to build an abstract state space that preserves 
CTL* properties using a refinement procedure similar to the one 
used in Yoneda and Ryuba (1998), but using a different sufficient 
condition to preserve branching time properties.  

To preserve the branching time properties, concrete states with 
different future must be grouped in different state classes. This goal 
can be achieved satisfying the (AE) property, but in this condition 
concrete states with same future can be grouped apart, resulting an 
excessive split process, and consequently increasing the number of 
state classes. Naturally, bigger partitions imply in worse complexity 
results for the labeling algorithm.   

In this work we propose a new condition that is a necessary and 
sufficient condition to abstract state spaces to preserve branching 
time properties: the stability condition.    
 
Definition 2 (Stability): A state class is stable if for any state s ∈ C, 
ϒ(s) = ϒ(C). A state class graph G is stable, if every state class in G 
is stable. 
Theorem 2 (Branching time properties preservation): An abstract 
state space preserves the branching time properties iff it is stable. 
Proof:  
(⇒) This follows from the definition of abstract state space 
(property EE) and from the definition of stability (Definition 2). 
(⇐) Let G be an abstract state belonging to the abstract state space 
Ω with at least one unstable state class C'. Let ω be a path in the 
concrete state space ∑ passing through s', with s' ∈ C' (by EE). 

Let s1,…,si be successors of state s' after firing different 
transitions. By property (EE) those states must be in some 
successors of C', denoted C1 … Cj. Once C' is unstable, i ≠ j, and we 
can conclude that G do not satisfy (EE), or, path ω doesn't have a 
match in G, which means that property (EE) fails in G, which is a 
contradiction. 

The proper constraints used here to split unstable state classes 
are quite similar to those identified in Yoneda and Ryuba (1998) to 
split non-atomic state classes. Different sets of state class firing 
transition are related to the EFT and LFT: the new enabled and the 
persistent enabled transitions.  

The constraint for the unstable state class s' has the form: 

 s' – sk < EFT(t') – LFT(t)  or  s' – sk > LFT(t') – EFT(t)  

where t, t' ∈ enb(M'), t ∈ new(M') and t' ∈ new(Mk) 
Since the constraint is a straight line in the state class domain of 

(t', t), the splitting of the convex state class domain (time domains 
must be convex since they are represented using Difference 
Bounded Matrix (Dill, 1989)) will result in two convex time 
domains, one for each resulting state class. The process must be 
applied to the new state classes if they do not satisfy the stability 
condition. 

                                                           
3
 PTIME problems can be solved with time complexity polynomials to the input sizes 

in bit counts. 
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Applying a constraint to an unstable state class does not 
increment the number of variables in the time domain. Transitions 
involved in the constraint are in the unstable time domain and, 
therefore, there is no need to add any variable. 

Since the CSZG (Algorithm 1 in Hadjidj and Boucheneb, 2008) 
satisfies properties (EE) and (EA) by construction, it would be 
advisable to start the process constructing the Constrained State 
Class Graph (CSCG).  

Every time a new state class is computed (using Algorithm 1 in 
Hadjidj and Boucheneb, 2008) the stability condition must be tested. 
If the test fails, the state class must be split using an adequate time 
constraint. This algorithm is repeated for the classes created in the 
split process until the point where is not possible to generate a new 
state class. 

The proof that the CSCG is finite for bounded TPN is 
straightforward. Figure 6 shows the CSCG for the TPN in Fig. 1.  
Applying the stability condition over the atomicity condition yields 
graph with fewer states (see AGRG in Fig. 2. and ASCG in Fig. 3). 

The abstract state space satisfies (EE), since the refinement 
process does not add or eliminate any concrete state. Also, this 
abstract state space is stable and consequently preserves the 
branching time properties. 
 

 
Figure 6. Constrained State Class Graph for the TPN in Fig. 1. 

Computing minimum and maximum elapsed time over 

paths in CSCG 

For the verification of quantitative temporal properties, the 
abstract state space must allow the computation of a minimum and a 
maximum elapsed time over any path. Using an algorithm similar to 
the one in del Foyo and Silva (2008), global time increments can be 
determined (See Fig. 7). 

 
  

 
Figure 7. Minimum and maximum time determination through paths. 

 
Figure 7 shows a path C1 → C2 → C3 in an abstract state space 

that clearly preserves properties (EE) and (EA). Let δ(t1) be the 
firing time interval in state transition C1 → C2 and l(t2), u(t2) the 
global time increment in state transition C2 → C3. Even when we 
can't determine exactly the minimum and maximum time between 
concrete states belonging to C1 and C3 respectively, we can ensure 
that (∀s∈C1) tmin ≥ ↓δ(t1)+ l(t2) and (∀s∈C1) tmax≤↑δ(t1)+u(t) 
where ↓δ(t1) and ↑δ(t1) are respectively the lower and upper limits 
of the firing time interval of transition t1. 

Let ω be a valid execution path over an abstract state-space that 
preserves properties (EE) and (EA): 

 
           δ(ti),[l i,ui]    δ(ti+1),[l i+1,ui+1]  δ(ti+n),[l i+n,ui+n] 
 ω = si ———→ si+1 —————→ si+2  …  si+n-1 —————→ sn 

 
Then, 

            i+n                                i+n 

tmin(ω)  =  ∑   lx + ↓δ(ti)           tmax(ω)  =  ∑   ux + ↑δ(ti) 
                    x=i+2                 x=i+2 

 
Therefore, we can use tmin(ω) and tmax(ω) to verify 

quantitative temporal properties.  
For instance, let us check again the TCTL formula EF≤4(p5 ∋ p7), 

this time over the graph in Fig. 1. The TCTL formula does not hold in 
state C0 since starting in C0 and ending in C7 takes at least 5 time 
units. However, the same formula also does not hold in C1, what is 
wrong.  Notice that by sure the minimum time elapsed in some path is 
greater or equal to the time computed using the time interval and the 
global time increments through the path. To obtain exactly the 
minimum time elapsed in a path we need an abstract state space that 
satisfies (EA) and (AE) at the same time, which is difficult to obtain 
(and yields a large partition). We claim that the approach used in 
CSCG can provide adequate results if is possible to assure that most 
of the concrete states in a state class have successors inside the 
respective state class successors. That condition holds in the CSZG 
but was affected by the refinement process.    

When a constraint is applied to split an unstable state class, the 
relation of concrete states between the new state classes and its 
predecessors is affected. Thus, the predecessor state class must be 
split too. The described operation can be seen as restoring the (AE) 
property in the Yoneda and Ryuba approach, which in fact it is less 
restrictive, and yields better state space partitions.   

We claim that an abstract state space satisfying those conditions 
can be used to verify the TCTL without re-computing all state space 
for every formula to be checked. Such achievement could lead to a 
significant improvement in real time system verification.  
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Experimental Results 

In this section we present a comparison of our approach with 
similar approaches available in academic publications. The 
experiments were conducted using the same models used in Yoneda 
and Ryuba (1998) and showed in Fig. 8. 

Using the code developed by Yoneda and Ryuba we built the 
Atomic Geometric Region Graph (AGRG). The tool TINA v2.9 was 

used to built the Atomic State Class Graph (ASCG). An 
implementation of the algorithm proposed in this work was used to 
build the Constrained State Class Graph (CSCG).  

Table 1 reports the size (nodes and arcs) of the abstract state 
spaces obtained for those TPN models using the tree approaches 
mentioned above and the region graph representation (Alur, Dill, 
and Courcoubetis, 1993).  

 
 
 

 

Figure 8. Time Petri Nets used in experiments by Yoneda and Ryuba (1998). 

 
 

Table 1. Comparison of AGRG, ASCG, CSCG and the Region Graph approach. 

Examples AGRG ASCG CSCG Region Graph 

 
Fig. 8(a) 

nodes 53 27 39 215 

arcs 95 49 53 348 

CPU time (s) 0.034 0.001 0.014 - 

 
Fig. 8(b) 

nodes 64 47 51 249 

arcs 178 140 70 466 

CPU time (s) 0.357 0.004 0.026 - 

 
Fig. 8(c) 

nodes 168 80 121 296 

arcs 363 204 171 469 

CPU time (s) 6.360 0.004 0.063 - 

 
Fig. 8(d) 

nodes 53 27 39 15011 

arcs 95 49 53 25206 

CPU time (s) 0.040 0.001 0.015 - 

 
 

The result confirms that the CSCG yields better state space 
partitions than the geometric region approach by Yoneda and 
Ryuba.  Taking into account the CPU time to obtain those partitions, 
the CSCG achieves better performance even when Yoneda and 
Ryuba implementations used C++ and our algorithm was 
implemented using Java.  

Comparing with the ASCG, and taking in account that TINA is 
a reference system in the area of real time verification – there is not 

a prevalence of one approach over the other. Consistently, ASCG 
generates fewer nodes, but CSCG generated fewer arcs in Net 
Examples 2 and 3 (about 50% and 30% less arcs, respectively). In 
the Net Example 2 TINA performance is still better, but this 
situation is inverted in Net Example 3. This is not a surprise, since 
the ASCG does not include all paths in the TPN model; the CSCG 
can sometimes lead to better partitions (like the one in Fig. 8 (b)) 
than the ASCG, due to the stability condition.  
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However, in what concerns the compatibility with the overall 
design process, to generate the whole state space and consider all 
possible paths makes the analysis more secure, even if sometimes it 
compromises the performance. Of course that it does not mean that 
TINA analysis is not useful, but for real-time systems the ability to 
determine quantitative temporal properties is critical and should be 
taken into account to choose the verification approach. For this kind 
of systems the proposal presented here should be more advisable. 

Conclusion 

The verification process is evolving since the work of Clark and 
Emerson (1981), but still it does not appear an approach efficient 
enough to verify quantitative temporal properties in branching time 
temporal logics. Existing approaches were used for linear-time 
temporal logic, but cannot be successfully applied to branching-time 
temporal logic. 

Current solutions to verify branching-time temporal logic 
include only subsets of logic as in Larsen, Petterson and Yi (1997) 
and Boucheneb, Gardey and Roux (2006). There are also solutions 
that use the region graph approach (Alur, Courcoubetis and Dill, 
1993; Virbitskaite and Pokozy, 1999). The low efficiency of these 
methods, or limitations in the specification method, are the reasons 
why existing model-checkers are barely used, even if there is almost 
a consensus in the academic community that the TCTL is the better 
choice for real-time system specification. 

In this work we showed that obtaining an abstract state space 
that satisfies (EE)/(EA) properties and the stability condition will 
increase the efficiency of the verification process without any 
restriction to the specification power of the TCTL. 

We also believe that such partition could be obtained taking the 
CSCG as a start point. 
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