Some Issues in Real-Time Systems Verification Using Time Petri Nets

Some Issues in Real-Time Systems
Verification Using Time Petri Nets

Time Petri Net (TPN) models have been widely usdldet specification and verification of
real-time systems. However, the claim that moghe$e techniques are useful for real-
time system verification can be discussed, basesvorassumptions: i) to be suitable for
real-time systems verification, a techniqgue musable to check timing properties, both
safe and behavioral, and ii) the underlying algbnit must be efficient enough to be
applied to complex systems design. In this paperwite discuss the suitability of

commonly accepted verification techniques that ommlel-checking as a verification

framework and TPN as a description model. We pteserew algorithmic approach that

allows computation of end-to-end time between #ietsvover an abstract state space
model. The proposed approach needs to compute libraat state space only once
improving the efficiency of the verification proseand turning it suitable for large

problems. We also introduce a new sufficient caommlifor abstract states space to
preserve the branching time properties that yietdge compact graphs than the condition
already used in actual approaches. The approachldvéiti a design environment also
based on Petri Nets called GHENeSys (General Hahiaal Enhanced Petri Nets). The

Pedro M. Gonzalez del Foyo

pedro.foyo @ufpe.br

Universidade Federal de Pernambuco
Dept. of Mechanical Engineering
50670-420 Recife, PE, Brazil

José Reinaldo Silva

reinaldo@usp.br

Universidade de Sao Paulo

Dept. of Mechatronics and Mechanical Systems
05508-900 S&o Paulo, SP, Brazil

results obtained, using our verification approacte a&ompared with similar available

approaches.

Keywords: formal verification, Time Petri Nets, real-timestgms, abstract state space

Introduction

In real-time systems the correctness depends onutpeit and
also on the time in which this output is produc&terefore, the
verification of such systems requires the detertiona of
quantitative temporal properties, besides qualéatproperties
associated with its logical correctness.

As stated in Wang, Deng and Wu (2000), a key reguént to
verify real time systems is the end-to-end delaytésk execution
and the correct execution sequences for those .tdSkecution
sequences are related to the logical correctnetizeasystem while
end-to-end delays allow the evaluation of quantiatemporal
properties for the sequences generated.

Despite several achievements in formal verificatfon real-
time systems, the intrinsic complexity of variousarhework
environments dedicated to its verification remafosbiddingly
high (Wang, 2004).

Usually, the verification problem of timed systems
exponentially more complex than their untimed ceupdrt (Wang,
2004). Consequently, formal verification technique® not yet
commonly used in real-time systems design. Sineewiork of
Clarke and Emerson (1981), the automatic verificaf systems
has improved, especially in what concerns time tamed systems
(Alur, Courcoubetis and Dill, 1993; Henzinger et 4092; Emerson
Jutla and Sistla, 1993), based on the Timed Autam@A)
formalism (Alur and Dill, 1990).

Recently, techniques based on reachability analgsisTPNs
have been developed — most of them based on the sl@ss
approach (Berthomieu and Menasche, 1983) — andteécsen
several (time) extended Petri nets environmentmeSof them are
suitable to do performance evaluations, sinceithe ts represented
as a fixed delay or time durations (Ramchandanv41%ifakis,
1980; Zuberek, 1980). However, those Petri nets etsodre not
well suited to deal with real-time systems whemettme duration of
activities (or tasks) could not be predicted.

Other extended models (Aalst, 1993; Merlin and Fab@76;
Ghezzi et al., 1991; Tsai, Yang and Chang, 1995teSpEles and
Peng, 2003) are suitable to deal with real-timeesgs because of
their ability to represent varying time durationk aztivities, by
using timing intervals attached to transitions. s Time Petri
Nets (TPN) belong to that class of system, andhésnhost widely
used formalism for specification, analysis and fieation of real-

Paper received 13 August 2010. Paper accepted 7 April 2011.
Technical Editor: Glauco Caurin

J. of the Braz. Soc. of Mech. Sci. & Eng.

time systems (Berthomieu and Diaz, 1991; Yoneda Bydba,
1998; Virbitskaite and Pokozy, 1999; Lime and Ra2006; Hadjidj
and Boucheneb, 2008; Yovine, 1996).

However, not all approaches using TPN's deal with eéxplicit
determination of quantitative temporal properties eritical issue in
real-time systems design. In all classical TPN apgh it is
necessary to verify whether a property can actuladychecked,
despite the possibility to determine quantitatimporal properties.
For instance, even in methods based on linear tong; safety
properties could be verified, which is not intemegtto real-time
system design. Thus, Timed Computational Tree LdGiCTL)
proposed in Alur, Courcoubetis and Dill (1993) e tmost used
temporal logic for real-time systems (Wang, 200/)e efficiency
of the verification process is also a key issuer Fstance, the
complexity of a TCTL model-checking algorithm (Alur
Courcoubetis and Dill, 1993) over Timed Automatausing the
region graph approach — is PSPACE

Virbitskaite and Pokozy (1999) implemented a matedeking
algorithm for TCTL using TPN as the descriptionnfialism, based
on the region graphs, just as in Alur, Courcoubatid Dill (1993).
The quantitative part of the algorithm is performieg adding a
special transition associated with the time in T@TL formula.
Therefore, there would be an extra transition memftila to be
checked. Even when a partial order reduction metisodsed to
decrease the state-space size the complexity rerR&RACE.

The verification process will be discussed in thlextnsection,
using the concept of complexity presented in Almurcoubetis and
Dill (1993) as reference. In the next section il & presented some
commonly accepted techniques that use model-chpckia a
verification framework and TPN as description mottelreal-time
system verification. Advantages and disadvantagesach approach
will be presented in the following section where proposal will be
presented to construct an abstract state spacempoove the
verification process. Finally, in the last sectisome experimental
results will be shown.

TheVerification Process

Let us assume that TPN is fixed as the descriptiodel for the
design of real-time systems. Also, it is assumedi e specification
of desired properties for a given system modeled®N is also

1 PSPACE problems may incur memory consumption motyials to the input sizes in
bit counts.

Copyright 0 2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 467

clearly stated using some temporal logic (see aedii in Wang
(2004) for a survey).

In order to verify the given specification, a stafmce for the
TPN model must be first computed and representeel §sction V
in (Wang, 2004) for a survey in state-space remtas®ns).
Next, a labeling algorithm should go over the stgace, labeling
the nodes with their holding sub-formulas, respedyi, until the
entire formula is mapped. The model-checker shaumsweryes
only if the formula holds in at least one node tgl)) or in a
specific node (local), ando otherwise. The complexity of the
labeling algorithm is linear in the size of the gathat represents
the system state-space.

Basic Definitions

Merlin’s Time Petri Nets extend classical Petri Ny inserting
temporal intervals associated with transitions,chihépecify firing
delay ranges for these transitions to fire. A fdrmefinition for
TPN nets is revisited in this section, including thotion of state
and state class.

A Time Petri Net is a tuple (P, T, B, F,M6IM) where:

« Pis afinite non-empty set of places p

« Tis afinite non-empty set of transitionis t

« Bis the backward incidence function

B:PxT—N;

* Fisthe forward incidence function
F:TxP—N;

¢ My is the initial marking function
Mg: P— N;

« SIMis a mapping called static interval
SIM: T— Q" x (Q" I{x});

where N is the set of non-negative integers aridisQthe set of
positive rational numbers.

The static interval is composed of two positivéaral numbers
(EFT, LFT), where EFT represents the earlier firtmge and LFT

the latest firing time. Therefore, if a transitibbecomes enabled at

time 1, thent cannot be fired befora ¢ EFT(t)) and no later than
(t+LFT(t)), unless it is disabled by the firing ofather transition.

In TPN, the enabling condition of a transition imitar to the
one in classic Petri Nets. Therefore, the “enabtingdition” for a
generic transitioty will be:

(Op) (M(p) = B(p, 1)); @)

The set of all transitions enabled by marking Ml wé denoted
asenb(M) It is an important issue to determine the trams# that
were just enabled by the transition M (to startrting its enabling
time). If marking M is preceded by a generic magkM’, that is, if

M MM, the persistent transitions

Pedro M. Gonzélez del Foyo and José Reinaldo Silva

EFT(E) <0< min(LFT()) Oty O enb(M) @)
A concrete state of the system can be definedpasr s = (M, V)
where:
1. Misa marking,
2. Vis a clock valuation function, \enb(M)— R".

An abstract state of the system can be definedpag & = (M; 1)
where:
* Mis amarking,
| is an interval set which is a vector of possifiling
times. The size of this vector is given by the nembf
transitions enabled by marking M, which|ignb(M)| .

Abstract states represent a set of concrete stdtése TPN
model. The firing interval set is also known asfiieg domain D.

The firing of transitiont; leads the system to another state, at
timet + 6, which will be denoted as:

¢i7 e)
S———¢ 3)
Y(s) denotes the set of all firing transitions ates, andY'(s) (0 enb(M).

The firing rule is the base to the computation efvrstates and
to establishment of a reachability relation amonen. The set of
all states that are reachable from an initial statehe set of firing
schedules feasible from an initial state, charastethe behavior of
the TPN. Similarly, the set of all reachable magkircharacterize
the behavior of a Petri Net.

Let w be a path in a TPN modgl.

101 t;,0;
S S

oo

0=

where the reachable state aftéirings ise' = 5.

For a concrete state s = {M) and a state class C = (M, D), s
0 C if exists an execution pathsuchthat:

e s=q@"

e Mg=M

e 0,is consistent with D.

State Space Computation Issuesfor TPN

For real-time systems, dense time model (where time
considered in the domain*Ris the unique feasible option, what
brings to the problem of treating an infinite numbé states. Two
approaches are entitled to treat this state spag&n graphs (Alur,
Courcoubetis and Dill, 1993) and the state clasprageh
(Berthomieu and Menasche, 1983).

As always, the objective of these representatisn® iyield a

in M are defined agiate.gpace partition that groups concrete statessets of states

pers(M)={tit {enb(M’)n enb(M)} and the new enabled transitionswith similar behavior respect to the propertiesrbeerified. That

as new(M)= enb(M)\pers(M)It is clear thahew(M)O enb(M)

Even when marking M enables a set of transitioms, atl of
them may be allowed to fire, due to the firing domists of
transitions (EFT's and LFT's). Thus, the “firinghdition” depends
on two conditions:

1) transitions must be enabled, as formally expedy Eq. (1);

2) enabled transitions must not fire before its EFey must
fire before or exactly at its LFT unless anothenfticting transition
fires before.

According to the second condition, a transittprenabled by a
marking M at absolute time could be fired at the firing timeiff 6

is not smaller than the EFT fand not greater than the smallest of

the LFT's of all the transitions enabled by markihghat is:

468 / Vol. XXXIII, No. 4, October-December 2011

“sets of states” must cover the entire state spacdemust be finite
in order to ensure the termination of the verifimatprocess.

Yovine (1996) and del Foyo and Silva (2008) shoat th state-
space partition created using the state class apprés more
efficient than one created using region graphsoAktate-space
computation algorithm remains PSPACE.

Concerning the state-space partition, two propasa<onsidered
in this work: one based on geometric regions (Yanadd Ryuba,
1998) and a “traditional” method (Berthomieu and£i1991). Other
partition methods are just derived from these bagproaches (Wang,
Deng and Wu, 2000; Hadjidj and Boucheneb, 2008).

State classes are commonly represented by two etema
marking and a time domain. When geometric regiomised, the

ABCM

Some Issues in Real-Time Systems Verification Using Time Petri Nets

firing sequence is also included instead of a singhrking. This
information is necessary to construct the statescraphs for the
Computational Tree Logic (CTL) model checking.

However, each one of the basic partition methodsldvoesult
in distinct state-space partitions. For instanceingi geometric
regions all time variables are referred to a glaatk, while in the
traditional method all time variables are referteda local clock,
initialized when the transitions are newly enabl&lis difference
leads to different state representations.

The representation of a state class in geomegions is given by
atuples = {J, |, 6} wherep represents the state markihgs a vector
containing the time values on which all transitievtgere fired (until
the statesis reached) referred to a global clock, arid the sequence
of transitions fired to reach the target stat€omparatively, in the
traditional approach, a state class is a pair {4, 1} where pn

Some Verification Approaches Based on Abstract State Spaces

Berthomieu and Diaz (1991) proposed an enumertttmique
based on a State Class Graph (SCG) and directedheo
determination of some TPN properties like reacligbiland
boundness. They also showed the undecidabilithage properties,
giving some sufficient conditions for the boundnessperty. The
SCG preserves only the linear time properties.

Yoneda and Ryuba (1998) proposed a sufficient ¢cmmdunder
which the abstract state spaces could preservechiran time
properties. According to them abstract state spaceserve the
branching time properties if the (AE) property lol&uch property

was calledatomicity, and State Class Graphs satisfying this property

were called Atomic Geometric Region Graph (AGRG).
The ASCG (Yoneda and Ryuba, 1998) was obtainedyubia

represents the marking ahi a vector containing the time values forgeometric regions and yields a graph that preseivesproperties
all transitions enabled irs referred to the time in which those (EE), (EA) and (AE). Figure 1 shows an example afRN taken

transitions become enabled.

On both methods, a state class stands for a “sstatés” that
shares the same marking and time boundaries. Tdwsbstract
state space of a TPN model is a contraction afetserally infinite

concrete state spaée In this paper the definition of abstract state

space follows the one stated in Hadjidj and Boueh&2008).

Definition 1 (Abstract state spageAn abstract state space of a

TPN model is defined as a state transition system«, Cy) where:
Qs a set of elements, called abstract statesesepting a

cover ofX. Each abstract state is a nonempty set of states

having the same marking,
¢ CyOQ s the initial abstract state such thafl C,,

e — O(C x T x C) is the successor relation satisfying

condition EE = SGI EEr, where:
t t
SG: 0SS, (5-8)=(050C, 01Q), (ICTQ s. t. §1C' 1C- C,

t t
EEr: (C-C') = BOC, 0C', s. t. s S

Relation - may also satisfy additional conditions as AE and EA
t t
AE : (C - C")) ([0sLC; (BTC'; s - s')

t t
EA:(C - C)) (sOC; 5IC; s - s)

The above definition establishes that all concséaées must be
included in at least one abstract state accordingphdition (SG).
However, even if well stated and successfully usdxbtract state
spaces do not ensure correctness for quantitaiapdral properties
determination.

As stated before, the end-to-end time betweene®sgutions is a
key requirement in real-time systems verificatioBince state
transitions represent the completion of some tigkend-to-end time
can be computed as the time elapsed between stadesequence of
state transitions, called execution path. Thosepcoations are correct
if all execution paths in the concrete state spgames a matching
execution path in the abstract state space aneveisa, and the time
boundaries in each time domain contain precisely t&mporal
behavior of the concrete states belonging todte stlass.

In the following section, most commonly used aldtrstate
spaces in verification approaches will be introdlce

2 Conditions EE, AE and EA named after its transisitate relations: Exists-Exists,
All-Exists and Exists-All respectively.

J. of the Braz. Soc. of Mech. Sci. & Eng.

from Yoneda and Ryuba (1998).

p1 t1

[0,1] [0,1] [0,1] [1,3]
p6 t5 p7

[5.6]

Figure 1. TPN Example.

 (re)

tl

."/ it
sl \\[f E;E/g
t2
-
s2 {p3p6)
N A
t3
g
s3 (papé |
\ P
t4 t5
s4 55
'(”5 L) \pd p7}
R i
5 t4
(;)5 p7) 56 57 (s p7)
LR et

Figure 2. SCG and AGRG obtained using Yoneda and Ryuba approach.

Figure 2 shows the SCG and the AGRG obtained uémeda
and Ryuba approach for the example in Fig. 1.

It should be noticed that approach proposed by ¥anand
Ryuba was idealized only for CTL model-checking.ush the
complexity of the algorithm to compute the end-talietime
between transitions will be forbiddingly high to baplemented.
Since each state class contains as much variabléseeanumber of
transitions fired to achieve it, the size of theteyn of inequalities
will increase exponentially turning it into an iattable problem.

Berthomieu, Ribet and Vernadat (2004) implementesl state
class approach in a software tool called TINA. dsifINA, the
SCG and ASCG of a TPN can be obtained, but thegptpdEE)
doesn't hold in the ASCG. The ASCG is obtained fthe Strong

Copyright 0 2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 469

State Class Graph (SSCG), which is similar to tB&Sbut more
suitable to be a starting point for the refinenmoicess.

In del Foyo and Silva (2008), an algorithm was ps®d to
compute the end-to-end time between task executimisg the
ASCG obtained using TINA. However, such techniqoly avorks
for specific system behaviors where the refinenteohnique does
not affect the (EE) property.

Figure 3 shows the ASCG with minimum and maximumeti
increments attached to every transition.

s10

s0
()
plpé
t1[1,1] t1[0,1]
sl s2
f/ -\i
| p2 p6 \ p2 pé |
t2[1,1] 2 [0,1] t2(0,0]
12 [0,1]

w $3 55
. (p3p6) (p3 95\,
| p3p6 PP k\u/
NG

t3[0,1] 3 [0,0]
t3[0.1] t3[0.1]
57
s6 —_—
lp4p6\| I._papﬁl
t5[3,3] t4[1,3]
t4 [1,3]

s9 5_8
X -
p4p7) | p5 pﬁ)

t4 [0,0] t5[4,0]

[p5 p7 |
)
Figure 3. ASCG obtained using the approach in del Foyo and Silva (2008).

Suppose, for instance, that it is necessary tokcliee TCTL

Pedro M. Gonzélez del Foyo and José Reinaldo Silva

By computing a CS-class reachability graph, itasgible to get
a partition of the state space with its respectigkd global time
interval. If that graph was correctly computed, @gto information
would be obtained to determine the validity of saemporal logic
statements including quantified temporal propertitll, the CS-
class only preserves the linear time properties.

N
50 p1ps | STO=([0,0] 50 {p1p6 |
N N
u] Itl 0.1]
s1|p2pe| ST1=[0,1] s1lp2pé)
_\- _/f S
t2 l ItZ (0.1]
N N
52 p3 FG) ST2=[0.2] 52 | p3pb |

R R
3 I t3 [0.1]

N
3 pe ps_‘_} ST3[0.3]

t4 - t5
54 55

4 \
(psp6| ST4=[16] (papr) STS=[5,6]

N

Y
3| pdp)

_—
t4 1,3 t5(5,3]
st 55
7N 2N

(psp6] [pap7)

M A
£5 [4,0]
t40,0]
s

t5 t4

7 N
s6 |psp7| ST6=[56] s7|p5p7) STT=[5,6]
N

A

(psp7) 56

Figure 4. CS-class graph and LTS for TPNin Fig. 1.

Figure 4 shows two graphs: the reachability treetfie left)
obtained using the CS-class approach and the LiShgé right)
obtained by TINA, both for the TPN example in Fig.

Despite the fact that there are different semaniticgiming
information (CS-class uses global time and LTS wglebal time
increments), the same kind of property can be ieerifin both
graphs, even linear time properties, including djtetive temporal
properties.

From the point of view of computational time, thieoce of

formula EE, (p5 0 p7) over the graph in Fig. 3. The existence of 4TS time increments is better than the reachabili (it would be

path {s0, s2, s3, s6, s9, s10} will force the viedfion algorithm to
set the formula to true in state sO. However, Ioglat the TPN we
can easily note that this formula should be evelliab false, since
there is no way transition t5 could fire beforerbe units.

Clearly, property (EE) does not hold in that graNbtice that
we can easily find an execution path accepted byTHN model
that is not covered by the ASCG.

t1 t2 t3
SO0 ———s S2 S3 s7
0,8 0,85 0,70

The CS-class approach was proposed in Wang, Dedighan
(2000) as a modification of the traditional statess approach to
allow the computation of quantitative temporal pjes.

A clock stamped state class (CS-class) is a tuptgi@, D, ST)
where:

1. Mis amarking.

2. Dis afiring domain, i.e., a set of constraintstibe values
of the time to fire for transitions enabled by et
marking M.

3. ST is the time stamp of the CS-class, which islabgj)
time interval.

470 / Vol. XXXIIl, No. 4, October-December 2011

equal in the worst case).

tz[10,50]

t1120,0

ta[20,40)

ts[10,30]

Figure 5. LTS of the TPN used in Wang, Deng and Wu (2000).

ABCM

Some Issues in Real-Time Systems Verification Using Time Petri Nets

The LTS of the example shown in Wang, Deng and 200Q) is
in Fig. 5. In the example published in Wang, Dend ®u (2000) the
reachability tree has 14 nodes while there aretffa@i. TS.

natural proposal to improve the verification pracesould be to
compute the abstract state space only once andt elvecy property
with PTIME® complexity over this space.

However, the LTS approach could lead to errors when First of all, the abstract state space must predaranching time

evaluating quantitative temporal properties (deyd-and Silva,

2008). Even when quantitative temporal propertes loe checked,
prospective results are not really useful in reakt systems
verifications, since the linear time properties yordllow the

verification of safety properties.

Hadjidj and Boucheneb (2008) proposed a Concretee fone
Graph (CSZG), getting results from a different nalization
technigue detached from the one used in BerthorneliVernadat
(2003). The CSZG is used as a starting point focoavex
combination process that yields a compact reprasentgrouping
state classes with the same marking and time damnsimilar to the
union operation in convex zones.

The convex combination will contract
representation, but, at the same time, will inticaltime solutions
that do not appear in the TPN model. Such operatinrid lead to
errors in the verification of quantitative tempopabperties.

The refinement process to ensure the (AE) propgigld a
graph called atomic-CSZG which can be used to w&ifL*. Such
verification is more efficient than the one in ASCé&cording to
experimental results showed in (Hadjidj and Boueter2008)

the state-gpac

properties in order to verify the TCTL. Next, thming information
must be coded in a way that we can compute thenmimi and
maximum elapsed time in every path of the graphthénfollowing
section we will show how to build a complete absttsiate space as
a general step in the verification process.

Theconstrained state class graph

The main idea is to build an abstract state splaaepreserves
CTL* properties using a refinement procedure simita the one
used in Yoneda and Ryuba (1998), but using a éiffesufficient
condition to preserve branching time properties.

To preserve the branching time properties, consttes with
different future must be grouped in different stelessses. This goal
can be achieved satisfying the (AE) property, louthis condition
concrete states with same future can be grouped, apsulting an
excessive split process, and consequently incrgakim number of
state classes. Naturally, bigger partitions implyvorse complexity
results for the labeling algorithm.

In this work we propose a new condition that issaessary and

Lime and Roux (2006) also used TPN to model systesufficient condition to abstract state spaces ®&s@mve branching

behavior. They used the state class approach tadl luiTimed
Automaton (TA) that preserves the behavior of tiRNTusing as
less clock variables as possible. The resultingehisdthen verified

time properties: thetability condition

Definition 2 (Stability): A state class istableif for any states 0 C,

using UPPAAL (Larsen, Petterson and Yi, 1997). However, eveN{(s) = Y(C). A state class graph G is stable, if everyestéss in G
whenUPPAAL can answer about quantitative temporal propertiess stable.

it can only verify a subset of TCTL, what is a lation in the
system specification, especially in the expresgibidf behavioral
properties. Another drawback is the complexityh# algorithms: a
PSPACE algorithm is executed just to convert a TiPH TA; then
another PSPACE algorithm is applied for each prtypéo be
checked.

The adding of a new transition to measure time sitapwas
proposed in Boucheneb, Gardey and Roux (2006)rforpe TCTL
model-checking in TPN. Using that transition, TCdrmulas are
translated into CTL formulas. Then a zone-basegtgfar TPN is
refined using a partition refinement technique iegdto a graph
called Atomic Zone Based Graph that preserves Ciidpgrties.
Finally, a fix point algorithm is used to check theoperty. Such
approach has PSPACE complexity for each properbetchecked.

The final conclusion is that none of the methodscassed
above improve significantly the approach in Virkége and
Pokozy (1999). Thus, the low computational efficierof these
approaches, including Virbitskaite and Pokozy (2996r its
limitation for systems specification, are the magasons why
existing model-checkers are barely used, even wiast part of the
academic community acknowledge that the TCTL is [tetter
choice for real-time systems specification.

Even with its limitations in specificatioJPPAAL is a widely
used software tool for real-time systems verifimatithanks to its
balance between performance and expressiveness.

A Proposal to Improvethe Verification Process

From the discussion above it is possible to coreltitht the
main problem in verification is the computationalplexity. The
construction of the abstract state space is PSPAG&Ethe labeling
algorithm is PTIME, thus, there are few stageshef verification
process that can be improved in a significant w@g. the other
hand, all mentioned approaches go through a prosbsse the
generation of the abstract state space is a kgy SJteerefore, a

J. of the Braz. Soc. of Mech. Sci. & Eng.

Theorem 2 (Branching time properties preservatjorAn abstract
state space preserves the branching time propéftiess stable.
Proof:

(=) This follows from the definition of abstract staispace
(property EE) and from the definition of stabil{@efinition 2).

(O) Let G be an abstract state belonging to the atisstate space
Q with at least one unstable state class C'.chéte a path in the
concrete state spagepassing through s', with[S'C' (by EE).

Let s,...,§ be successors of state s' after firing different
transitions. By property (EE) those states must ibesome
successors of C', denoted C. G. Once C' is unstable#ij, and we
can conclude that G do not satisfy (EE), or, patthoesn't have a
match in G, which means that property (EE) failGnwhich is a
contradiction.

The proper constraints used here to split unststalee classes
are quite similar to those identified in Yoneda d&diba (1998) to
split non-atomic state classes. Different sets tafesclass firing
transition are related to the EFT and LFT: the maabled and the
persistent enabled transitions.

The constraint for the unstable state cEléas the form:

s'— § <EFT(t) - LFT() or s'— > LFT(t) — EFT(t)

where t, t00 enb(M"), t0 new(M") and tT new(M,)

Since the constraint is a straight line in theestdéss domain of
(t, 1), the splitting of the convex state class domain dtilomains
must be convex since they are represented usinferBifce
Bounded Matrix (Dill, 1989)) will result in two ceex time
domains, one for each resulting state clddse process must be
applied to the new state classes if they do nasfgathe stability
condition.

3 o . A) A
PTIME problems can be solved with time complexiofynomials to the input sizes
in bit counts.

Copyright 0 2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 471

Applying a constraint to an unstable state clasgsdoot
increment the number of variables in the time domaransitions
involved in the constraint are in the unstable tidmmain and,
therefore, there is no need to add any variable.

Since the CSZG (Algorithm 1 iHadjidj and Boucheneb, 20p8
satisfies properties (EE) and (EA) by constructignwould be
advisable to start the process constructing thesttained State
Class Graph (CSCG).

Every time a new state class is computed (usin@tlgm 1 in

Hadjidj and Boucheneb, 20pghe stability condition must be tested. :

If the test fails, the state class must be spiitgign adequate time
constraint. This algorithm is repeated for the s¥gscreated in the
split process until the point where is not posstblgenerate a new
state class.

The proof that the CSCG is finite for bounded TPH i

Pedro M. Gonzélez del Foyo and José Reinaldo Silva

C3

—
L s(e)

I

tmin

>

tmax time

Figure 7. Minimum and maximum time determination through paths.

straightforward.Figure 6 shows the CSCG for the TPN in Fig. 1.

Applying the stability condition over the atomicitpndition yields
graph with fewer states (see AGRG in Fig. 2. an€&3n Fig. 3).

The abstract state space satisfies (EE), sincerdfieement
process does not add or eliminate any concrete. sfdso, this
abstract state space is stable and consequentlserpes the
branching time properties.

co /N
&
t1[0,1]
[0,1]
VRN
C1(p2ps)
\P2Pe)

t2[0,1]
[01]

~

(p3p6 |

)
3101 / N\ 3[01]
(0,-0.01) 2,1]

4
ot —a
4 i
N,
t4 [1,3]
[1,3]

f\p4 p6)
t4[1,3] - t5[2,3]
[1,3] [3,3]

4 ' 4

el e o)
t5[0,3]
[2,0]
t5[0.01,5] t4[0,1]
[4,1.01] c7, [0,0]
[p5p7)
&,

Figure 6. Constrained State Class Graph for the TPN in Fig. 1.

Computing minimum and maximum elapsed time over
pathsin CSCG

For the verification of quantitative temporal propes, the
abstract state space must allow the computati@nneinimum and a
maximum elapsed time over any path. Using an afyorsimilar to
the one in del Foyo and Silva (2008), global timeréments can be
determined (See Fig. 7).

472 | Vol. XXXIII, No. 4, October-December 2011

Figure 7 shows a path G C2— C3 in an abstract state space
that clearly preserves properties (EE) and (EAYX d(€l) be the
firing time interval in state transition G C2 and I(t2), u(t2) the
global time increment in state transition €2 C3. Even when we
can't determine exactly the minimum and maximunmetinetween
concrete states belonging to C1 and C3 respectiwaycan ensure
that (OSOC1) tnn > 13(t1)+ 1(t2) and {USOC1) 4n,S18(t1)+u(t)
where |3(t1) and1d(t1) are respectively the lower and upper limits
of the firing time interval of transition t1.

Let o be a valid execution path over an abstract s{adeesthat
preserves properties (EE) and (EA):

3(t). [, u] O(tir1),[lis1, U]
S+1

8(ti+n)v[| i+nyui+n]

S+2 o0 S S

0=5

Then,
i+n

tmaxg) = Y u+13(t)

i+n

tmin(e) = Y _+I2x +18(t)

X=I1

Therefore, we can use tmis)(and tmax§) to verify
quantitative temporal properties.

For instance, let us check again the TCTL formuta,@5 Op7),
this time over the graph in Fig. 1. The TCTL forendioes not hold in
state CO since starting in CO and ending in C7staltdeast 5 time
units. However, the same formula also does not told1, what is
wrong. Notice that by sure the minimum time ela@psesome path is
greater or equal to the time computed using the titerval and the
global time increments through the path. To obtakactly the
minimum time elapsed in a path we need an absttats space that
satisfies (EA) and (AE) at the same time, whicliffcult to obtain
(and yields a large partition). We claim that ttgpra@ach used in
CSCG can provide adequate results if is possibkssore that most
of the concrete states in a state class have sarsemside the
respective state class successors. That conditlfs in the CSZG
but was affected by the refinement process.

When a constraint is applied to split an unstatdéesclass, the
relation of concrete states between the new stateses and its
predecessors is affected. Thus, the predecesgercitess must be
split too. The described operation can be seerstsring the (AE)
property in the Yoneda and Ryuba approach, whidladhit is less
restrictive, and yields better state space pamttio

We claim that an abstract state space satisfyiogeticonditions
can be used to verify the TCTL without re-computiligstate space
for every formula to be checked. Such achievementdclead to a
significant improvement in real time system vesfion.

ABCM

Some Issues in Real-Time Systems Verification Using Time Petri Nets

Experimental Results

In this section we present a comparison of our @ggr with
similar approaches available in academic publicatio The
experiments were conducted using the same modetsinsyoneda
and Ryuba (1998) and showed in Fig. 8.

Using the code developed by Yoneda and Ryuba wi thei
Atomic Geometric Region Graph (AGRG). The tool TINA.9 was

(pl t1 p2 2 p3 t3 pa ta p5 \
—OAO—A4 O A -O1 -0
10.1] 10.11 [0,1] 12.3]

p6 t5 p7

O O,

[5.6]

(a) Net 1
L/(pl t1 p2 2 p3 t3 p4 ta p5 \]
(0,11 10,11 [0.11 [1,3]
pP6 t5 p7
[5.6]
(b) Net 2

used to built the Atomic State Class Graph (ASC®n
implementation of the algorithm proposed in thiskvavas used to
build the Constrained State Class Graph (CSCG).

Table 1 reports the size (nodes and arcs) of tisgradh state
spaces obtained for those TPN models using the appeoaches
mentioned above and the region graph representétibm, Dill,
and Courcoubetis, 1993).

(o

\,@)

t3 p4 4 P>]
OO
[0,1] [3,3]

t2 p3

t1 p2
OO
(0,11 [0.1]

p6 ts p7 t6
15,61 [0,0]

(c) Net 3

o

(pl t1

b
{ p2 t2 p3 t3 pa ta p5 |
SOA—O—A—O—"1—0OA4—-0"

(=15 t5 p7

©—1—0

(d) Net 4

Figure 8. Time Petri Nets used in experiments by Yoneda and Ryuba (1998).

Table 1. Comparison of AGRG, ASCG, CSCG and the Region Graph approach.

Examples AGRG ASCG CSCG Region Graph
nodes 53 27 39 215
Fig. 8(a) arcs 95 49 53 348
CPU time (s) 0.034 0.001 0.014 -
node: 64 47 51 24¢
Fig. 8(b) arcs 178 140 70 466
CPU time (s 0.357 0.004 0.02¢ -
node: 16¢ 80 121 29¢€
Fig. 8(c) arcs 363 204 171 469
CPU time (s 6.36(0.004 0.062 -
nodes 53 27 39 15011
Fig. 8(d) arcs 95 49 53 25206
CPU time (s) 0.040 0.001 0.015 -

The result confirms that the CSCG yields bettetestgpace
partitions than the geometric region approach byneda and
Ryuba. Taking into account the CPU time to obtaose partitions,
the CSCG achieves better performance even when déormad
Ryuba implementations used C++ and our
implemented using Java.

Comparing with the ASCG, and taking in account fHidA is

a prevalence of one approach over the other. Gendlis, ASCG
generates fewer nodes, but CSCG generated fewsr iardNet
Examples 2 and 3 (about 50% and 30% less arcseatagly). In
the Net Example 2 TINA performance is still bettéuyt this

algorithms wasituation is inverted in Net Example 3. This is aosurprise, since

the ASCG does not include all paths in the TPN madtie CSCG
can sometimes lead to better partitions (like the m Fig. 8 (b))

a reference system in the area of real time vatifio — there is not than the ASCG, due to the stability condition.

J. of the Braz. Soc. of Mech. Sci. & Eng.

Copyright 0 2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 473

However, in what concerns the compatibility witte thverall
design process, to generate the whole state spateamsider all
possible paths makes the analysis more secure ifesemetimes it
compromises the performance. Of course that it do¢snean that
TINA analysis is not useful, but for real-time sysis the ability to
determine quantitative temporal properties is @ltiand should be
taken into account to choose the verification agpho For this kind
of systems the proposal presented here should be adeisable.

Conclusion

The verification process is evolving since the wofiClark and
Emerson (1981), but still it does not appear anr@gagh efficient
enough to verify quantitative temporal propertiesranching time
temporal logics. Existing approaches were used lifogar-time
temporal logic, but cannot be successfully apptitedranching-time
temporal logic.

Current solutions to verify branching-time temponalgic
include only subsets of logic as in Larsen, Patterand Yi (1997)
and Boucheneb, Gardey and Roux (2006). There acesalutions
that use the region graph approach (Alur, Courctsitznd Dill,
1993; Virbitskaite and Pokozy, 1999). The low eéfitcy of these
methods, or limitations in the specification methatk the reasons
why existing model-checkers are barely used, efvéhere is almost
a consensus in the academic community that the Ti€The better
choice for real-time system specification.

In this work we showed that obtaining an abstraatesspace
that satisfies (EE)/(EA) properties and the stabitiondition will
increase the efficiency of the verification procesghout any
restriction to the specification power of the TCTL.

We also believe that such partition could be oleghitaking the
CSCG as a start point.

Acknowledgements

We thank CAPES for the partial support to the regeahat
resulted in this article.

References

Aalst, W., 1993, “Interval Timed Coloured Petri Netnd their
Analysis”, in: Application and Theory of Petri Net893, M.A. Marsan, Ed.,
Vol. 691. Springer-Verlag, Berlin, pp. 453-472.

Alur, R., Courcoubetis, C. and Dill, D.L., 1993, tdel-checking in
dense real-timeinformation and Computatiqorvol. 104, No. 1, pp. 2-34.

Alur, R. and Dill, D., 1990, “Automata for modelimgal-time systems”,
Lecture Notes in Computer Science, Vol. 443, pj2-325.

Berthomieu, B. and Diaz, M., 1991, “Modelling aneri¥ication of time
dependent systems using time Petri nets”, IEEE Sraon Software
Engineering, Vol. 17, No. 3, pp. 259-273.

Berthomieu, B. and Menasche, M., 1983, “An enuniegapproach for
analyzing time Petri nets”, in: Information Prodags proceedings of the
IFIP congress 1983, R.E.A. Mason, Ed., Vol. 9. ilseScience Publishers,
Amsterdam, pp. 41-46.

Berthomieu, B., and Vernadat, F., 2003, “Statescle@nstructions for
branching analysis of time Petri nets”, Lecture édoin Computer Science,
Vol. 2619, pp. 442-457.

474 | Vol. XXXIII, No. 4, October-December 2011

Pedro M. Gonzélez del Foyo and José Reinaldo Silva

Berthomieu, B., Ribet, P.O. and Vernadat, F., 200#4g¢ tool TINA -
construction of abstract state spaces for pets aetl time petri netstnt. J.
Prod. res, Vol. 42, No. 14, pp. 2741-2756.

Boucheneb, H., Gardey, G. and Roux, O.H., 2006, TTGnodel
checking of Time Petri Nets”, IRCCyN Technical repmumber RI12006-14.

Clarke, E.M. and Emerson, E.A., 1981, “Design anghthesis of
synchronization skeletons using branching time taiplogic,” in: Proc.
Workshop on Logics of Programs, Vol. 131, BerlipriSger Verlag, pp. 52-71.

Cortes, L.A., Eles, P. and Peng, Z., 2003, “Modgliand formal
verification of embedded systems based on a Petrirepresentation”,
Journal of Systems Architecture, Vol. 49, pp. 588:5

Dill, D.L., 1989, “Timing assumptions and verifiaat of finite-state
concurrent systems”, in Automatic Verification Metls for Finite State
Systems, pp. 197-212.

Emerson, E.A., Jutla, C.S. and Sistla, A.P., 1988, model-checking
for fragments ofi-calculus”, in Computer Aided Verification, pp. 3896.

del Foyo, P.M.G. and Silva, J.R., 2008, “The vesifion of real time
systems using the Tina tool,” in: Proceedings ef HRAC World Congress,
Seul, Korea, pp. 525-533.

Ghezzi, C., Mandrioli, D., Morasca, S. and Pezze, 1891, “A unified
high-level Petri net formalism for time-critical gms”, IEEE Trans. on
Software Engineering/ol. 17, No. 2, pp. 160-172.

Hadjidj, R. and Boucheneb, H., 2008, “Improving tetaclass
constructions for CTL* model checking of time Petdts”, STTT, Vol. 10,
No. 2, pp. 167-184.

Henzinger, T., Nicollin, X., Sifakis, J. and Yovirg, 1992, “Symbolic
Model Checking for Real-Time Systems”, in 7th. Sysipm of Logics in
Computer Science. Santa-Cruz, California: IEEE Qatewp Scienty Press,
pp. 394-406.

Larsen, K.G., Pettersson, P. and Yi, W., 1997, “ARP in a
Nutshell”, Int. Journal on Software Tools for Technology TrensVol. 1,
No. 1-2, pp. 134-152.

Lime, D. and Roux, O.H., 2006, “Model checking ohe Petri nets
using the state class timed automatddi§crete Event Dyn. Sysiol. 16,
pp. 179-206.

Merlin, P. and Faber, D., 1976, “Recoverability @mmunication
protocols—implications of a theoretical studfEEE Transactions on
Communicationflegacy, pre-1988], Vol. 24, No. 9, pp. 1036-1043.

Ramchandani, C., 1974, “Analysis of asynchronousooent systems
by timed Petri nets”, Massachusetts Institute o€hiP®logy, Cambridge,
MA, USA, Tech. Report.

Sifakis, J., 1980, “Performance evaluation of systeusing nets”, in:
Proceedings of the Advanced Course on General Rebrly of Processes
and Systems. London, UK: Springer-Verlag, pp. 309-

Tsai, J.J.P., Yang, S.J. and Chang, Y.H., 1995nifig constraint
Petri nets and their application to schedulabibtyalysis of real-time
system specifications”\EEE Trans. on Software Engineeringol. 21,
No. 1, pp. 32-49.

Virbitskaite, . and Pokozy, E., 1999, “A partialder method for the
verification of time Petri nets”, in: FCT, G. Cialbaand G. Paun, Eds., Vol.
1684. Springer Verlag, pp. 547-558.

Wang, J., Deng, Y. and Xu, G., 2000, “Reachabditalysis of real-
time systems using time petri netl2EE Transactions on Systems, Man and
CyberneticsVol. 30, No. 5, pp. 725-736.

Wang F., 2004, “Formal verification of timed systenh\ survey and
perspective”, Proceedings of the IEEE, Vol. 92, 8lqop. 1283-1305.

Yoneda T. and Ryuba, H., 1998, “CTL model checkafgime Petri
nets using geometric regiondEICE Trans. on Information and Systems
Vol. E81-D, No. 3, pp. 297-396.

Yovine, S., 1996, “Model checking timed automataf; European
Educational Forum: School on Embedded Systems], pp152.

Zuberek, W.M., 1980, “Timed petri nets and preliariyn performance
evaluation”, in: ISCA '80: Proceedings of the 7thnaal symposium on
Computer Architecture. New York, NY, USA: ACM Prepp. 88-96.

ABCM

