
Some Issues in Real-Time Systems Verification Using Time Petri Nets

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 467

 Pedro M. González del Foyo
pedro.foyo@ufpe.br

Universidade Federal de Pernambuco

Dept. of Mechanical Engineering

50670-420 Recife, PE, Brazil

José Reinaldo Silva
reinaldo@usp.br

Universidade de São Paulo

Dept. of Mechatronics and Mechanical Systems

05508-900 São Paulo, SP, Brazil

Some Issues in Real-Time Systems
Verification Using Time Petri Nets
Time Petri Net (TPN) models have been widely used to the specification and verification of
real-time systems. However, the claim that most of these techniques are useful for real-
time system verification can be discussed, based on two assumptions: i) to be suitable for
real-time systems verification, a technique must be able to check timing properties, both
safe and behavioral, and ii) the underlying algorithm must be efficient enough to be
applied to complex systems design. In this paper we will discuss the suitability of
commonly accepted verification techniques that use model-checking as a verification
framework and TPN as a description model. We present a new algorithmic approach that
allows computation of end-to-end time between activities over an abstract state space
model. The proposed approach needs to compute the abstract state space only once
improving the efficiency of the verification process and turning it suitable for large
problems. We also introduce a new sufficient condition for abstract states space to
preserve the branching time properties that yields more compact graphs than the condition
already used in actual approaches. The approach would fit a design environment also
based on Petri Nets called GHENeSys (General Hierarchical Enhanced Petri Nets). The
results obtained, using our verification approach are compared with similar available
approaches.
Keywords: formal verification, Time Petri Nets, real-time systems, abstract state space

Introduction1

In real-time systems the correctness depends on the output and
also on the time in which this output is produced. Therefore, the
verification of such systems requires the determination of
quantitative temporal properties, besides qualitative properties
associated with its logical correctness.

As stated in Wang, Deng and Wu (2000), a key requirement to
verify real time systems is the end-to-end delay for task execution
and the correct execution sequences for those tasks. Execution
sequences are related to the logical correctness of the system while
end-to-end delays allow the evaluation of quantitative temporal
properties for the sequences generated.

Despite several achievements in formal verification for real-
time systems, the intrinsic complexity of various framework
environments dedicated to its verification remains forbiddingly
high (Wang, 2004).

Usually, the verification problem of timed systems is
exponentially more complex than their untimed counterpart (Wang,
2004). Consequently, formal verification techniques are not yet
commonly used in real-time systems design. Since the work of
Clarke and Emerson (1981), the automatic verification of systems
has improved, especially in what concerns time constrained systems
(Alur, Courcoubetis and Dill, 1993; Henzinger et al., 1992; Emerson
Jutla and Sistla, 1993), based on the Timed Automata (TA)
formalism (Alur and Dill, 1990).

Recently, techniques based on reachability analysis for TPNs
have been developed – most of them based on the state class
approach (Berthomieu and Menasche, 1983) – and inserted on
several (time) extended Petri nets environments. Some of them are
suitable to do performance evaluations, since the time is represented
as a fixed delay or time durations (Ramchandani, 1974; Sifakis,
1980; Zuberek, 1980). However, those Petri nets models are not
well suited to deal with real-time systems where the time duration of
activities (or tasks) could not be predicted.

Other extended models (Aalst, 1993; Merlin and Faber, 1976;
Ghezzi et al., 1991; Tsai, Yang and Chang, 1995; Cortes, Eles and
Peng, 2003) are suitable to deal with real-time systems because of
their ability to represent varying time durations of activities, by
using timing intervals attached to transitions. Merlin’s Time Petri
Nets (TPN) belong to that class of system, and is the most widely
used formalism for specification, analysis and verification of real-

Paper received 13 August 2010. Paper accepted 7 April 2011.
Technical Editor: Glauco Caurin

time systems (Berthomieu and Diaz, 1991; Yoneda and Ryuba,
1998; Virbitskaite and Pokozy, 1999; Lime and Roux, 2006; Hadjidj
and Boucheneb, 2008; Yovine, 1996).

However, not all approaches using TPN’s deal with the explicit
determination of quantitative temporal properties – a critical issue in
real-time systems design. In all classical TPN approach it is
necessary to verify whether a property can actually be checked,
despite the possibility to determine quantitative temporal properties.
For instance, even in methods based on linear time, only safety
properties could be verified, which is not interesting to real-time
system design. Thus, Timed Computational Tree Logic (TCTL)
proposed in Alur, Courcoubetis and Dill (1993) is the most used
temporal logic for real-time systems (Wang, 2004). The efficiency
of the verification process is also a key issue. For instance, the
complexity of a TCTL model-checking algorithm (Alur,
Courcoubetis and Dill, 1993) over Timed Automata – using the
region graph approach – is PSPACE1.

Virbitskaite and Pokozy (1999) implemented a model-checking
algorithm for TCTL using TPN as the description formalism, based
on the region graphs, just as in Alur, Courcoubetis and Dill (1993).
The quantitative part of the algorithm is performed by adding a
special transition associated with the time in the TCTL formula.
Therefore, there would be an extra transition per formula to be
checked. Even when a partial order reduction method is used to
decrease the state-space size the complexity remains PSPACE.

The verification process will be discussed in the next section,
using the concept of complexity presented in Alur, Courcoubetis and
Dill (1993) as reference. In the next section it will be presented some
commonly accepted techniques that use model-checking as a
verification framework and TPN as description model to real-time
system verification. Advantages and disadvantages of each approach
will be presented in the following section where our proposal will be
presented to construct an abstract state space to improve the
verification process. Finally, in the last section some experimental
results will be shown.

The Verification Process

Let us assume that TPN is fixed as the description model for the
design of real-time systems. Also, it is assumed that the specification
of desired properties for a given system modeled in TPN is also

1 PSPACE problems may incur memory consumption polynomials to the input sizes in
bit counts.

 Pedro M. González del Foyo and José Reinaldo Silva

468 / Vol. XXXIII, No. 4, October-December 2011 ABCM

clearly stated using some temporal logic (see section II in Wang
(2004) for a survey).

In order to verify the given specification, a state-space for the
TPN model must be first computed and represented (see section V
in (Wang, 2004) for a survey in state-space representations).
Next, a labeling algorithm should go over the state space, labeling
the nodes with their holding sub-formulas, respectively, until the
entire formula is mapped. The model-checker should answer yes
only if the formula holds in at least one node (global) or in a
specific node (local), and no otherwise. The complexity of the
labeling algorithm is linear in the size of the graph that represents
the system state-space.

Basic Definitions

Merlin’s Time Petri Nets extend classical Petri Nets by inserting
temporal intervals associated with transitions, which specify firing
delay ranges for these transitions to fire. A formal definition for
TPN nets is revisited in this section, including the notion of state
and state class.

A Time Petri Net is a tuple (P, T, B, F, M0, SIM) where:
• P is a finite non-empty set of places pi;
• T is a finite non-empty set of transitions ti;
• B is the backward incidence function

 B: P × T → N;
• F is the forward incidence function

 F: T × P → N;
• M0 is the initial marking function

 M0: P → N;
• SIM is a mapping called static interval

 SIM : T → Q+ × (Q+ ∪{∞});

where N is the set of non-negative integers and Q+ is the set of
positive rational numbers.

The static interval is composed of two positive rational numbers
(EFT, LFT), where EFT represents the earlier firing time and LFT
the latest firing time. Therefore, if a transition t becomes enabled at
time τ, then t cannot be fired before (τ + EFT(t)) and no later than
(τ+LFT(t)), unless it is disabled by the firing of another transition.

In TPN, the enabling condition of a transition is similar to the
one in classic Petri Nets. Therefore, the “enabling condition” for a
generic transition ti will be:

(∀p) (M(p) ≥ B(p, ti)); (1)

The set of all transitions enabled by marking M will be denoted

as enb(M). It is an important issue to determine the transitions that
were just enabled by the transition M (to start counting its enabling
time). If marking M is preceded by a generic marking M′, that is, if

MM t' → , the persistent transitions in M are defined as
pers(M)={t|t∈(enb(M’)∩ enb(M)}, and the new enabled transitions
as new(M) = enb(M)\pers(M). It is clear that new(M) ⊆ enb(M).

Even when marking M enables a set of transitions, not all of
them may be allowed to fire, due to the firing constraints of
transitions (EFT's and LFT's). Thus, the “firing condition” depends
on two conditions:

1) transitions must be enabled, as formally expressed by Eq. (1);
2) enabled transitions must not fire before its EFT; they must

fire before or exactly at its LFT unless another conflicting transition
fires before.

According to the second condition, a transition ti, enabled by a
marking M at absolute time τ, could be fired at the firing time θ iff θ
is not smaller than the EFT of ti and not greater than the smallest of
the LFT's of all the transitions enabled by marking M, that is:

EFT(ti) ≤ θ ≤ min(LFT(tk)) ∀tk ∈ enb(M) (2)

A concrete state of the system can be defined as a pair s = (M, V)

where:
1. M is a marking,
2. V is a clock valuation function, V: enb(M) → R+.

An abstract state of the system can be defined as a pair S = (M; I)

where:
• M is a marking,
• I is an interval set which is a vector of possible firing

times. The size of this vector is given by the number of
transitions enabled by marking M, which is │enb(M)│.

Abstract states represent a set of concrete states of the TPN

model. The firing interval set is also known as the firing domain D.
The firing of transition ti leads the system to another state, at

time τ + θ, which will be denoted as:

 (ti, θ)
S ―――→ S' (3)

ϒ(s) denotes the set of all firing transitions in state s, and ϒ(s) ⊆ enb(M).
The firing rule is the base to the computation of new states and

to establishment of a reachability relation among them. The set of
all states that are reachable from an initial state, or the set of firing
schedules feasible from an initial state, characterize the behavior of
the TPN. Similarly, the set of all reachable markings characterize
the behavior of a Petri Net.

Let ω be a path in a TPN model ℵ.

 t0,θ0 t1,θ1 ti,θi

 ω = s0 ――→ s1 ――→ … ――→ si

where the reachable state after i firings is ωi = si .
For a concrete state s = (Ms, θ) and a state class C = (M, D), s

∈ C if exists an execution path ω such that:
• s = ωn
• Ms = M
• θn is consistent with D.

State Space Computation Issues for TPN

For real-time systems, dense time model (where time is
considered in the domain R+) is the unique feasible option, what
brings to the problem of treating an infinite number of states. Two
approaches are entitled to treat this state space: region graphs (Alur,
Courcoubetis and Dill, 1993) and the state class approach
(Berthomieu and Menasche, 1983).

As always, the objective of these representations is to yield a
state-space partition that groups concrete states into sets of states
with similar behavior respect to the properties been verified. That
“sets of states” must cover the entire state space and must be finite
in order to ensure the termination of the verification process.

Yovine (1996) and del Foyo and Silva (2008) show that a state-
space partition created using the state class approach is more
efficient than one created using region graphs. Also, state-space
computation algorithm remains PSPACE.

Concerning the state-space partition, two proposals are considered
in this work: one based on geometric regions (Yoneda and Ryuba,
1998) and a “traditional” method (Berthomieu and Diaz, 1991). Other
partition methods are just derived from these basic approaches (Wang,
Deng and Wu, 2000; Hadjidj and Boucheneb, 2008).

State classes are commonly represented by two elements: a
marking and a time domain. When geometric region is used, the

Some Issues in Real-Time Systems Verification Using Time Petri Nets

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 469

firing sequence is also included instead of a single marking. This
information is necessary to construct the state class graphs for the
Computational Tree Logic (CTL) model checking.

However, each one of the basic partition methods would result
in distinct state-space partitions. For instance, using geometric
regions all time variables are referred to a global clock, while in the
traditional method all time variables are referred to a local clock,
initialized when the transitions are newly enabled. This difference
leads to different state representations.

The representation of a state class in geometric regions is given by
a tuple s = {µ, I, σ} where µ represents the state marking, I is a vector
containing the time values on which all transitions where fired (until
the state s is reached) referred to a global clock, and σ is the sequence
of transitions fired to reach the target state s. Comparatively, in the
traditional approach, a state class is a pair s = {µ, I} where µ
represents the marking and I is a vector containing the time values for
all transitions enabled in s referred to the time in which those
transitions become enabled.

On both methods, a state class stands for a “set of states” that
shares the same marking and time boundaries. Thus, an abstract
state space of a TPN model is a contraction of its generally infinite
concrete state space Σ. In this paper the definition of abstract state
space follows the one stated in Hadjidj and Boucheneb (2008).

Definition 1 (Abstract state space): An abstract state space of a
TPN model is defined as a state transition system (Ω, →, C0) where:

• Ω is a set of elements, called abstract states, representing a
cover of Σ. Each abstract state is a nonempty set of states
having the same marking,

• C0 ∈ Ω is the initial abstract state such that s0 ∈ C0,
• → ⊆ (C × T × C) is the successor relation satisfying

condition EE2 = SG ∧ EEr, where:
 t t
SG: ∀s∈Σ, (s→s')⇒(∃s∈C, C∈Ω), ∃C'∈Ω s. t. s'∈C' ∧ C→C',

 t t
EEr: (C→C') ⇒ ∃s∈C, ∃s'∈C', s. t. s → s'.

Relation → may also satisfy additional conditions as AE and EA:

 t t
AE : (C → C')) (∀s∈C; ∃s'∈C'; s → s')

 t t
EA : (C → C')) (∀s'∈C'; ∃s∈C; s → s')

The above definition establishes that all concrete states must be

included in at least one abstract state according to condition (SG).
However, even if well stated and successfully used, abstract state
spaces do not ensure correctness for quantitative temporal properties
determination.

As stated before, the end-to-end time between task executions is a
key requirement in real-time systems verification. Since state
transitions represent the completion of some task, the end-to-end time
can be computed as the time elapsed between states in a sequence of
state transitions, called execution path. Those computations are correct
if all execution paths in the concrete state space have a matching
execution path in the abstract state space and vice-versa, and the time
boundaries in each time domain contain precisely the temporal
behavior of the concrete states belonging to its state class.

In the following section, most commonly used abstract state
spaces in verification approaches will be introduced.

2
 Conditions EE, AE and EA named after its transition state relations: Exists-Exists,

All-Exists and Exists-All respectively.

Some Verification Approaches Based on Abstract State Spaces

Berthomieu and Diaz (1991) proposed an enumerative technique
based on a State Class Graph (SCG) and directed to the
determination of some TPN properties like reachability and
boundness. They also showed the undecidability of those properties,
giving some sufficient conditions for the boundness property. The
SCG preserves only the linear time properties.

Yoneda and Ryuba (1998) proposed a sufficient condition under
which the abstract state spaces could preserve branching time
properties. According to them abstract state spaces preserve the
branching time properties if the (AE) property holds. Such property
was called atomicity, and State Class Graphs satisfying this property
were called Atomic Geometric Region Graph (AGRG).

The ASCG (Yoneda and Ryuba, 1998) was obtained using the
geometric regions and yields a graph that preserves the properties
(EE), (EA) and (AE). Figure 1 shows an example of a TPN taken
from Yoneda and Ryuba (1998).

Figure 1. TPN Example.

Figure 2. SCG and AGRG obtained using Yoneda and Ryuba approach.

Figure 2 shows the SCG and the AGRG obtained using Yoneda

and Ryuba approach for the example in Fig. 1.
It should be noticed that approach proposed by Yoneda and

Ryuba was idealized only for CTL model-checking. Thus, the
complexity of the algorithm to compute the end-to-end time
between transitions will be forbiddingly high to be implemented.
Since each state class contains as much variables as the number of
transitions fired to achieve it, the size of the system of inequalities
will increase exponentially turning it into an intractable problem.

Berthomieu, Ribet and Vernadat (2004) implemented the state
class approach in a software tool called TINA. Using TINA, the
SCG and ASCG of a TPN can be obtained, but the property (EE)
doesn't hold in the ASCG. The ASCG is obtained from the Strong

 Pedro M. González del Foyo and José Reinaldo Silva

470 / Vol. XXXIII, No. 4, October-December 2011 ABCM

State Class Graph (SSCG), which is similar to the SCG, but more
suitable to be a starting point for the refinement process.

In del Foyo and Silva (2008), an algorithm was proposed to
compute the end-to-end time between task executions using the
ASCG obtained using TINA. However, such technique only works
for specific system behaviors where the refinement technique does
not affect the (EE) property.

Figure 3 shows the ASCG with minimum and maximum time
increments attached to every transition.

Figure 3. ASCG obtained using the approach in del Foyo and Silva (2008).

Suppose, for instance, that it is necessary to check the TCTL

formula EF≤4 (p5 ∧ p7) over the graph in Fig. 3. The existence of a
path {s0, s2, s3, s6, s9, s10} will force the verification algorithm to
set the formula to true in state s0. However, looking at the TPN we
can easily note that this formula should be evaluated to false, since
there is no way transition t5 could fire before 5 time units.

Clearly, property (EE) does not hold in that graph. Notice that
we can easily find an execution path accepted by the TPN model
that is not covered by the ASCG.

 t1 t2 t3
S0 ――→ S2 ――→ S3 ――→ S7
 0,8 0, 85 0,70

The CS-class approach was proposed in Wang, Deng and Wu

(2000) as a modification of the traditional state class approach to
allow the computation of quantitative temporal properties.

A clock stamped state class (CS-class) is a tuple C = (M, D, ST)
where:

1. M is a marking.
2. D is a firing domain, i.e., a set of constraints on the values

of the time to fire for transitions enabled by current
marking M.

3. ST is the time stamp of the CS-class, which is a (global)
time interval.

By computing a CS-class reachability graph, it is possible to get
a partition of the state space with its respective valid global time
interval. If that graph was correctly computed, enough information
would be obtained to determine the validity of some temporal logic
statements including quantified temporal properties. Still, the CS-
class only preserves the linear time properties.

Figure 4. CS-class graph and LTS for TPN in Fig. 1.

Figure 4 shows two graphs: the reachability tree (in the left)

obtained using the CS-class approach and the LTS (in the right)
obtained by TINA, both for the TPN example in Fig. 1.

Despite the fact that there are different semantics in timing
information (CS-class uses global time and LTS uses global time
increments), the same kind of property can be verified in both
graphs, even linear time properties, including quantitative temporal
properties.

From the point of view of computational time, the choice of
LTS time increments is better than the reachability tree (it would be
equal in the worst case).

Figure 5. LTS of the TPN used in Wang, Deng and Wu (2000).

Some Issues in Real-Time Systems Verification Using Time Petri Nets

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 471

The LTS of the example shown in Wang, Deng and Wu (2000) is
in Fig. 5. In the example published in Wang, Deng and Wu (2000) the
reachability tree has 14 nodes while there are 7 in the LTS.

However, the LTS approach could lead to errors when
evaluating quantitative temporal properties (del Foyo and Silva,
2008). Even when quantitative temporal properties can be checked,
prospective results are not really useful in real-time systems
verifications, since the linear time properties only allow the
verification of safety properties.

Hadjidj and Boucheneb (2008) proposed a Concrete State Zone
Graph (CSZG), getting results from a different normalization
technique detached from the one used in Berthomieu and Vernadat
(2003). The CSZG is used as a starting point for a convex
combination process that yields a compact representation grouping
state classes with the same marking and time domains, similar to the
union operation in convex zones.

The convex combination will contract the state-space
representation, but, at the same time, will introduce time solutions
that do not appear in the TPN model. Such operation could lead to
errors in the verification of quantitative temporal properties.

The refinement process to ensure the (AE) property yield a
graph called atomic-CSZG which can be used to verify CTL*. Such
verification is more efficient than the one in ASCG, according to
experimental results showed in (Hadjidj and Boucheneb, 2008)

Lime and Roux (2006) also used TPN to model system
behavior. They used the state class approach to build a Timed
Automaton (TA) that preserves the behavior of the TPN using as
less clock variables as possible. The resulting model is then verified
using UPPAAL (Larsen, Petterson and Yi, 1997). However, even
when UPPAAL can answer about quantitative temporal properties,
it can only verify a subset of TCTL, what is a limitation in the
system specification, especially in the expressibility of behavioral
properties. Another drawback is the complexity of the algorithms: a
PSPACE algorithm is executed just to convert a TPN in a TA; then
another PSPACE algorithm is applied for each property to be
checked.

The adding of a new transition to measure time elapsing was
proposed in Boucheneb, Gardey and Roux (2006) to perform TCTL
model-checking in TPN. Using that transition, TCTL formulas are
translated into CTL formulas. Then a zone-based graph for TPN is
refined using a partition refinement technique leading to a graph
called Atomic Zone Based Graph that preserves CTL properties.
Finally, a fix point algorithm is used to check the property. Such
approach has PSPACE complexity for each property to be checked.

The final conclusion is that none of the methods discussed
above improve significantly the approach in Virbitskaite and
Pokozy (1999). Thus, the low computational efficiency of these
approaches, including Virbitskaite and Pokozy (1999), or its
limitation for systems specification, are the main reasons why
existing model-checkers are barely used, even when most part of the
academic community acknowledge that the TCTL is the better
choice for real-time systems specification.

Even with its limitations in specification, UPPAAL is a widely
used software tool for real-time systems verification, thanks to its
balance between performance and expressiveness.

A Proposal to Improve the Verification Process

From the discussion above it is possible to conclude that the
main problem in verification is the computational complexity. The
construction of the abstract state space is PSPACE, and the labeling
algorithm is PTIME, thus, there are few stages of the verification
process that can be improved in a significant way. On the other
hand, all mentioned approaches go through a process where the
generation of the abstract state space is a key step. Therefore, a

natural proposal to improve the verification process would be to
compute the abstract state space only once and check every property
with PTIME3 complexity over this space.

First of all, the abstract state space must preserve branching time
properties in order to verify the TCTL. Next, the timing information
must be coded in a way that we can compute the minimum and
maximum elapsed time in every path of the graph. In the following
section we will show how to build a complete abstract state space as
a general step in the verification process.

The constrained state class graph

The main idea is to build an abstract state space that preserves
CTL* properties using a refinement procedure similar to the one
used in Yoneda and Ryuba (1998), but using a different sufficient
condition to preserve branching time properties.

To preserve the branching time properties, concrete states with
different future must be grouped in different state classes. This goal
can be achieved satisfying the (AE) property, but in this condition
concrete states with same future can be grouped apart, resulting an
excessive split process, and consequently increasing the number of
state classes. Naturally, bigger partitions imply in worse complexity
results for the labeling algorithm.

In this work we propose a new condition that is a necessary and
sufficient condition to abstract state spaces to preserve branching
time properties: the stability condition.

Definition 2 (Stability): A state class is stable if for any state s ∈ C,
ϒ(s) = ϒ(C). A state class graph G is stable, if every state class in G
is stable.
Theorem 2 (Branching time properties preservation): An abstract
state space preserves the branching time properties iff it is stable.
Proof:
(⇒) This follows from the definition of abstract state space
(property EE) and from the definition of stability (Definition 2).
(⇐) Let G be an abstract state belonging to the abstract state space
Ω with at least one unstable state class C'. Let ω be a path in the
concrete state space ∑ passing through s', with s' ∈ C' (by EE).

Let s1,…,si be successors of state s' after firing different
transitions. By property (EE) those states must be in some
successors of C', denoted C1 … Cj. Once C' is unstable, i ≠ j, and we
can conclude that G do not satisfy (EE), or, path ω doesn't have a
match in G, which means that property (EE) fails in G, which is a
contradiction.

The proper constraints used here to split unstable state classes
are quite similar to those identified in Yoneda and Ryuba (1998) to
split non-atomic state classes. Different sets of state class firing
transition are related to the EFT and LFT: the new enabled and the
persistent enabled transitions.

The constraint for the unstable state class s' has the form:

 s' – sk < EFT(t') – LFT(t) or s' – sk > LFT(t') – EFT(t)

where t, t' ∈ enb(M'), t ∈ new(M') and t' ∈ new(Mk)
Since the constraint is a straight line in the state class domain of

(t', t), the splitting of the convex state class domain (time domains
must be convex since they are represented using Difference
Bounded Matrix (Dill, 1989)) will result in two convex time
domains, one for each resulting state class. The process must be
applied to the new state classes if they do not satisfy the stability
condition.

3
 PTIME problems can be solved with time complexity polynomials to the input sizes

in bit counts.

 Pedro M. González del Foyo and José Reinaldo Silva

472 / Vol. XXXIII, No. 4, October-December 2011 ABCM

Applying a constraint to an unstable state class does not
increment the number of variables in the time domain. Transitions
involved in the constraint are in the unstable time domain and,
therefore, there is no need to add any variable.

Since the CSZG (Algorithm 1 in Hadjidj and Boucheneb, 2008)
satisfies properties (EE) and (EA) by construction, it would be
advisable to start the process constructing the Constrained State
Class Graph (CSCG).

Every time a new state class is computed (using Algorithm 1 in
Hadjidj and Boucheneb, 2008) the stability condition must be tested.
If the test fails, the state class must be split using an adequate time
constraint. This algorithm is repeated for the classes created in the
split process until the point where is not possible to generate a new
state class.

The proof that the CSCG is finite for bounded TPN is
straightforward. Figure 6 shows the CSCG for the TPN in Fig. 1.
Applying the stability condition over the atomicity condition yields
graph with fewer states (see AGRG in Fig. 2. and ASCG in Fig. 3).

The abstract state space satisfies (EE), since the refinement
process does not add or eliminate any concrete state. Also, this
abstract state space is stable and consequently preserves the
branching time properties.

Figure 6. Constrained State Class Graph for the TPN in Fig. 1.

Computing minimum and maximum elapsed time over

paths in CSCG

For the verification of quantitative temporal properties, the
abstract state space must allow the computation of a minimum and a
maximum elapsed time over any path. Using an algorithm similar to
the one in del Foyo and Silva (2008), global time increments can be
determined (See Fig. 7).

Figure 7. Minimum and maximum time determination through paths.

Figure 7 shows a path C1 → C2 → C3 in an abstract state space

that clearly preserves properties (EE) and (EA). Let δ(t1) be the
firing time interval in state transition C1 → C2 and l(t2), u(t2) the
global time increment in state transition C2 → C3. Even when we
can't determine exactly the minimum and maximum time between
concrete states belonging to C1 and C3 respectively, we can ensure
that (∀s∈C1) tmin ≥ ↓δ(t1)+ l(t2) and (∀s∈C1) tmax≤↑δ(t1)+u(t)
where ↓δ(t1) and ↑δ(t1) are respectively the lower and upper limits
of the firing time interval of transition t1.

Let ω be a valid execution path over an abstract state-space that
preserves properties (EE) and (EA):

 δ(ti),[l i,ui] δ(ti+1),[l i+1,ui+1] δ(ti+n),[l i+n,ui+n]
 ω = si ———→ si+1 —————→ si+2 … si+n-1 —————→ sn

Then,

 i+n i+n

tmin(ω) = ∑ lx + ↓δ(ti) tmax(ω) = ∑ ux + ↑δ(ti)
 x=i+2 x=i+2

Therefore, we can use tmin(ω) and tmax(ω) to verify

quantitative temporal properties.
For instance, let us check again the TCTL formula EF≤4(p5 ∋ p7),

this time over the graph in Fig. 1. The TCTL formula does not hold in
state C0 since starting in C0 and ending in C7 takes at least 5 time
units. However, the same formula also does not hold in C1, what is
wrong. Notice that by sure the minimum time elapsed in some path is
greater or equal to the time computed using the time interval and the
global time increments through the path. To obtain exactly the
minimum time elapsed in a path we need an abstract state space that
satisfies (EA) and (AE) at the same time, which is difficult to obtain
(and yields a large partition). We claim that the approach used in
CSCG can provide adequate results if is possible to assure that most
of the concrete states in a state class have successors inside the
respective state class successors. That condition holds in the CSZG
but was affected by the refinement process.

When a constraint is applied to split an unstable state class, the
relation of concrete states between the new state classes and its
predecessors is affected. Thus, the predecessor state class must be
split too. The described operation can be seen as restoring the (AE)
property in the Yoneda and Ryuba approach, which in fact it is less
restrictive, and yields better state space partitions.

We claim that an abstract state space satisfying those conditions
can be used to verify the TCTL without re-computing all state space
for every formula to be checked. Such achievement could lead to a
significant improvement in real time system verification.

Some Issues in Real-Time Systems Verification Using Time Petri Nets

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2011 by ABCM October-December 2011, Vol. XXXIII, No. 4 / 473

Experimental Results

In this section we present a comparison of our approach with
similar approaches available in academic publications. The
experiments were conducted using the same models used in Yoneda
and Ryuba (1998) and showed in Fig. 8.

Using the code developed by Yoneda and Ryuba we built the
Atomic Geometric Region Graph (AGRG). The tool TINA v2.9 was

used to built the Atomic State Class Graph (ASCG). An
implementation of the algorithm proposed in this work was used to
build the Constrained State Class Graph (CSCG).

Table 1 reports the size (nodes and arcs) of the abstract state
spaces obtained for those TPN models using the tree approaches
mentioned above and the region graph representation (Alur, Dill,
and Courcoubetis, 1993).

Figure 8. Time Petri Nets used in experiments by Yoneda and Ryuba (1998).

Table 1. Comparison of AGRG, ASCG, CSCG and the Region Graph approach.

Examples AGRG ASCG CSCG Region Graph

Fig. 8(a)

nodes 53 27 39 215

arcs 95 49 53 348

CPU time (s) 0.034 0.001 0.014 -

Fig. 8(b)

nodes 64 47 51 249

arcs 178 140 70 466

CPU time (s) 0.357 0.004 0.026 -

Fig. 8(c)

nodes 168 80 121 296

arcs 363 204 171 469

CPU time (s) 6.360 0.004 0.063 -

Fig. 8(d)

nodes 53 27 39 15011

arcs 95 49 53 25206

CPU time (s) 0.040 0.001 0.015 -

The result confirms that the CSCG yields better state space
partitions than the geometric region approach by Yoneda and
Ryuba. Taking into account the CPU time to obtain those partitions,
the CSCG achieves better performance even when Yoneda and
Ryuba implementations used C++ and our algorithm was
implemented using Java.

Comparing with the ASCG, and taking in account that TINA is
a reference system in the area of real time verification – there is not

a prevalence of one approach over the other. Consistently, ASCG
generates fewer nodes, but CSCG generated fewer arcs in Net
Examples 2 and 3 (about 50% and 30% less arcs, respectively). In
the Net Example 2 TINA performance is still better, but this
situation is inverted in Net Example 3. This is not a surprise, since
the ASCG does not include all paths in the TPN model; the CSCG
can sometimes lead to better partitions (like the one in Fig. 8 (b))
than the ASCG, due to the stability condition.

Pedro M. González del Foyo and José Reinaldo Silva

474 / Vol. XXXIII, No. 4, October-December 2011 ABCM

However, in what concerns the compatibility with the overall
design process, to generate the whole state space and consider all
possible paths makes the analysis more secure, even if sometimes it
compromises the performance. Of course that it does not mean that
TINA analysis is not useful, but for real-time systems the ability to
determine quantitative temporal properties is critical and should be
taken into account to choose the verification approach. For this kind
of systems the proposal presented here should be more advisable.

Conclusion

The verification process is evolving since the work of Clark and
Emerson (1981), but still it does not appear an approach efficient
enough to verify quantitative temporal properties in branching time
temporal logics. Existing approaches were used for linear-time
temporal logic, but cannot be successfully applied to branching-time
temporal logic.

Current solutions to verify branching-time temporal logic
include only subsets of logic as in Larsen, Petterson and Yi (1997)
and Boucheneb, Gardey and Roux (2006). There are also solutions
that use the region graph approach (Alur, Courcoubetis and Dill,
1993; Virbitskaite and Pokozy, 1999). The low efficiency of these
methods, or limitations in the specification method, are the reasons
why existing model-checkers are barely used, even if there is almost
a consensus in the academic community that the TCTL is the better
choice for real-time system specification.

In this work we showed that obtaining an abstract state space
that satisfies (EE)/(EA) properties and the stability condition will
increase the efficiency of the verification process without any
restriction to the specification power of the TCTL.

We also believe that such partition could be obtained taking the
CSCG as a start point.

Acknowledgements

We thank CAPES for the partial support to the research that
resulted in this article.

References

Aalst, W., 1993, “Interval Timed Coloured Petri Nets and their
Analysis”, in: Application and Theory of Petri Nets 1993, M.A. Marsan, Ed.,
Vol. 691. Springer-Verlag, Berlin, pp. 453-472.

Alur, R., Courcoubetis, C. and Dill, D.L., 1993, “Model-checking in
dense real-time”, Information and Computation, Vol. 104, No. 1, pp. 2-34.

Alur, R. and Dill, D., 1990, “Automata for modeling real-time systems”,
Lecture Notes in Computer Science, Vol. 443, pp. 322-335.

Berthomieu, B. and Diaz, M., 1991, “Modelling and verification of time
dependent systems using time Petri nets”, IEEE Trans. on Software
Engineering, Vol. 17, No. 3, pp. 259-273.

Berthomieu, B. and Menasche, M., 1983, “An enumerative approach for
analyzing time Petri nets”, in: Information Processing: proceedings of the
IFIP congress 1983, R.E.A. Mason, Ed., Vol. 9. Elsevier Science Publishers,
Amsterdam, pp. 41-46.

Berthomieu, B., and Vernadat, F., 2003, “State class constructions for
branching analysis of time Petri nets”, Lecture Notes in Computer Science,
Vol. 2619, pp. 442-457.

Berthomieu, B., Ribet, P.O. and Vernadat, F., 2004, “The tool TINA -
construction of abstract state spaces for petri nets and time petri nets”, Int. J.
Prod. res., Vol. 42, No. 14, pp. 2741-2756.

Boucheneb, H., Gardey, G. and Roux, O.H., 2006, “TCTL model
checking of Time Petri Nets”, IRCCyN Technical report number RI2006-14.

Clarke, E.M. and Emerson, E.A., 1981, “Design and synthesis of
synchronization skeletons using branching time temporal logic,” in: Proc.
Workshop on Logics of Programs, Vol. 131, Berlin: Springer Verlag, pp. 52-71.

Cortes, L.A., Eles, P. and Peng, Z., 2003, “Modeling and formal
verification of embedded systems based on a Petri net representation”,
Journal of Systems Architecture, Vol. 49, pp. 571-598.

Dill, D.L., 1989, “Timing assumptions and verification of finite-state
concurrent systems”, in Automatic Verification Methods for Finite State
Systems, pp. 197-212.

Emerson, E.A., Jutla, C.S. and Sistla, A.P., 1993, “On model-checking
for fragments of µ-calculus”, in Computer Aided Verification, pp. 385-396.

del Foyo, P.M.G. and Silva, J.R., 2008, “The verification of real time
systems using the Tina tool,” in: Proceedings of the IFAC World Congress,
Seul, Korea, pp. 525-533.

Ghezzi, C., Mandrioli, D., Morasca, S. and Pezze, M., 1991, “A unified
high-level Petri net formalism for time-critical systems”, IEEE Trans. on
Software Engineering, Vol. 17, No. 2, pp. 160-172.

Hadjidj, R. and Boucheneb, H., 2008, “Improving state class
constructions for CTL* model checking of time Petri nets”, STTT, Vol. 10,
No. 2, pp. 167-184.

Henzinger, T., Nicollin, X., Sifakis, J. and Yovine S., 1992, “Symbolic
Model Checking for Real-Time Systems”, in 7th. Symposium of Logics in
Computer Science. Santa-Cruz, California: IEEE Computer Scienty Press,
pp. 394-406.

Larsen, K.G., Pettersson, P. and Yi, W., 1997, “UPPAAL in a
Nutshell”, Int. Journal on Software Tools for Technology Transfer, Vol. 1,
No. 1-2, pp. 134-152.

Lime, D. and Roux, O.H., 2006, “Model checking of time Petri nets
using the state class timed automaton”, Discrete Event Dyn. Syst., Vol. 16,
pp. 179-206.

Merlin, P. and Faber, D., 1976, “Recoverability of communication
protocols–implications of a theoretical study”, IEEE Transactions on
Communications [legacy, pre-1988], Vol. 24, No. 9, pp. 1036-1043.

Ramchandani, C., 1974, “Analysis of asynchronous concurrent systems
by timed Petri nets”, Massachusetts Institute of Technology, Cambridge,
MA, USA, Tech. Report.

Sifakis, J., 1980, “Performance evaluation of systems using nets”, in:
Proceedings of the Advanced Course on General Net Theory of Processes
and Systems. London, UK: Springer-Verlag, pp. 307-319.

Tsai, J.J.P., Yang, S.J. and Chang, Y.H., 1995, “Timing constraint
Petri nets and their application to schedulability analysis of real-time
system specifications”, IEEE Trans. on Software Engineering, Vol. 21,
No. 1, pp. 32-49.

Virbitskaite, I. and Pokozy, E., 1999, “A partial order method for the
verification of time Petri nets”, in: FCT, G. Ciobanu and G. Paun, Eds., Vol.
1684. Springer Verlag, pp. 547-558.

Wang, J., Deng, Y. and Xu, G., 2000, “Reachability analysis of real-
time systems using time petri nets”, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 30, No. 5, pp. 725-736.

Wang F., 2004, “Formal verification of timed systems: A survey and
perspective”, Proceedings of the IEEE, Vol. 92, No. 8, pp. 1283-1305.

Yoneda T. and Ryuba, H., 1998, “CTL model checking of time Petri
nets using geometric regions”, IEICE Trans. on Information and Systems,
Vol. E81-D, No. 3, pp. 297-396.

Yovine, S., 1996, “Model checking timed automata”, in: European
Educational Forum: School on Embedded Systems, pp. 114-152.

Zuberek, W.M., 1980, “Timed petri nets and preliminary performance
evaluation”, in: ISCA ’80: Proceedings of the 7th annual symposium on
Computer Architecture. New York, NY, USA: ACM Press, pp. 88-96.

