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A Transformation of Variables 
Technique Applicable to the 
Boundary Element Method to 
Simulate a Special Class of Diffusive-
Advective Potential Problems 
This paper describes a novel Boundary Element Technique developed for application to 
one-dimensional and a class of two-dimensional diffusive-advective potential problems. It 
is based on transformation of variable procedure to establish an integral equation inverse 
sentence, dealing only with boundary variables, using a fundamental solution associated 
with a diffusive problem. To apply the technique described here, the original differential 
equation is rewritten and flow potential functions are employed to contract terms which 
appear in the original equation, giving as a result an equivalent equation expressed in 
terms of the derivative of the product of two functions. This new form of the governing 
equation, together with the proposed transformation of variables is quite convenient for 
the application of the boundary element methodology: a very simple discretization 
procedure arises; the resulting algorithms require low CPU time and the numerical results 
are quite accurate. 
Keywords: Boundary Element Method, potential problems, diffusive-advective equation, 
fluid flow modeling 
 
 
 
 

Introduction1 

Despite the great amount of research work developed in the last 
thirty years, there is still a wide unexplored field of research 
concerning applications of Boundary Element Method (BEM) to 
Engineering. There are important classes of problems which require 
more consistent approaches; in particular, one can mention the area 
of study of Transport Phenomena (White, 1986) and specifically 
diffusive-advective problems (Ramachandran, 1994). The most 
consistent and elegant formulation to deal with diffusive-advective 
problems in two-dimensions employs a fundamental solution of a 
similar diffusive-advective problem, with a concentrated source 
applied at a domain point (Honna et al., 1985, and also Wrobel and 
De Figueiredo, 1991). Such formulation is capable of solving with 
great accuracy problems where the velocity field is constant; 
however, the approach is not adequate anymore if the velocity field 
is dependent on spatial coordinates. Another drawback concerning 
this formulation is the difficulty to apply it to time dependent 
problems, as the fundamental solution for this case is quite 
cumbersome.  

The first BEM general formulation developed to diffusive-
advective problems was presented by Partridge et al. in 1992. This 
formulation is based on the Dual Reciprocity procedure proposed 
originally by Nardine and Brebbia (1982). Utilizing a diffusive 
fundamental solution, the formulation presented by Partridge et al, 
overcame the restriction of the previous formulation which could 
only be applied if the velocity field was constant; however, it 
presented a serious limitation when accuracy is concerned, its 
application being recommended only for fluid flow with low Peclet 
numbers (Bejan, 1993; Bennet and Myers, 1983).  

Following the Dual Reciprocity Formulation (DRF) guidelines, 
Loeffler and Mansur (2003) proposed a novel procedure called 
Quasi-Dual Reciprocity formulation (QDR). The structure of the 
QDR is similar to that of the Dual-Reciprocity, especially when the 
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use of auxiliary interpolation radial basis functions is concerned 
(Karur and Ramachandran, 1994; Partridge, 1997); however, a 
special treatment concerning the advective terms was proposed 
aiming at improving the accuracy of the numerical results for high 
Peclet numbers. 

In the present work, a novel approach is proposed, named 
Harmonic Transformation Technique (HTT). This new approach 
also employs a diffusive fundamental solution like the DRF and the 
QDR, but it employs operational procedures which include a special 
transformation of variables that makes the computational process 
quicker and accurate. This transformation is based on the governing 
equation equivalence between potential advective problems and 
inhomogeneous scalar problems, that is, Laplace´s problems; this 
equation can be easily written in the inverse integral form if 
strategic operations put it in harmonic form. 

Unhappily the HTT procedure is not general, being limited to 
one-dimensional problems and special two-dimensional cases, but it 
can be applied in some situations in hydraulic engineering, such as 
water seepage in regular soils and fluid transport in pipes and 
gutters. In addition, within the context of the Boundary Element 
Method approach, for some problems which the transient process is 
the focus of the computational simulation, it can be very interesting 
to apply the HTT together with DRF, because the HTT does not 
introduce meaningful numerical disturbance in the spatial model 
allowing a better performance of time discretization techniques. It is 
the case of inhomogeneous heat transfer problems (Pasqueti and 
Caruso, 1990; Sutradhar et al., 2002), advective problems and 
metallurgical problems (Spitzer et al., 1992) where a non-steady 
process can occur having preponderant one-dimensional flux or 
fluid flow. Problems with circumferential symmetry are also 
accessible to HTT approach. For all these situations, the HTT 
formulation shows significant advantages. It presents accuracy 
superior to the QDR and DRF, eliminates the need of using 
interpolation algorithms and, therefore, does not require matrix 
inversion. This last feature is the most important, because the 
reduction of CPU time is substantial. 
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Nomenclature 

B = constant defined by Eq. (30), kg/(m2 s) 
Em = mean error, dimensionless 
Ep = nodal error, dimensionless 
f = natural boundary condition, ºC m/s 
G = global matrix of the Boundary Element Method, 

dimensionless 
H = global matrix of the Boundary Element Method, 1/m 
K = thermal diffusivity of the medium, m2/s 
L = length of the control volume, m 
m = parameter of control of the fluid flow velocity, Eq. (31), 1/s 
n = number of boundary elements used in the boundary 

discretization, dimensionless 
Nf = total number of nodal points where the mean error is 

calculated, dimensionless 
ni = cartesian coordinates of the vector normal to the 

boundary, dimensionless 
P = global matrix originated from harmonic transformation 

technique, dimensionless 
p = Peclet number, dimensionless 
Q = boundary condition prescribed at face 2, in exemple 2, 

ºc/m 
q = derivative of the temperature in the direction normal to 

the boundary, ºC/m 
q = vector containing the nodal value of the derivative of the 

temperature in the direction normal to the boundary, ºC/m 
q̂  = vector containing the nodal value of the derivative of the 

transformed variable in the direction normal to the 
boundary, ºC/m 

vi = cartesian component of the velocity field, m/s 
vx = cartesian component in the x direction of the velocity 

field, m/s 
vy = cartesian component in the y direction of the velocity 

field, m/s 

Greek Symbols 

Γ = boundary of the domain where the diffusive-advective 
potential problem is defined 

Γq = region of the boundary where is prescribed the natural 
boundary condition 

Γu = region of the boundary where is prescribed the essential 
boundary condition 

η = function of the potential of velocity used to compaction 
of the governing equation, defined by Eq. (7), 
dimensionless 

ηηηη = vector containing the nodal value of the function η, 
dimensionless 

θ = temperature, ºC 
θ = vector containing nodal value of temperature on 

boundary, ºC 

θ  = temperature prescribed at the boundary (essential 
boundary condition), ºC 

ρ = fluid density, kg/m3 
Ψ  = transformed variable defined by Eqs. (14) and (15), ºC 
Ψ  = vector containing the nodal value of the transformed 

variable in the boundary, ºC 

Ψ  = homogeneous vector containing a unique nodal value of 
the transformed variable, ºC 

k
Ψ  = nodal value of the transformed variable at nodal point k, ºC 

Ω = domain where the diffusive-advective potential problem 
is defined 

Basic Problem 

The governing equation and boundary conditions can be 
presented in a more simple form; as mentioned before, the core of 
HTT is one-dimensional applications. On the other hand, in BEM 
approaches, it is very common to use two-dimensional codes to 
solve also more simple situations. For this reason, a mathematical 
model in two dimensions is presented here. 

Then, here it is considered a homogeneous fluid medium, with 
mass movement which permits characterization of a continuous 
flow, subjected to a temperature gradient. Let Ω  be an internal 
region, delimited by a boundaryΓ , as shown in Fig. 1: 

 

 
Figure 1. Characterization of the domain Ω  and boundary Γ . 

 
Herein it is assumed incompressible and inviscid flow and 

steady state conditions (Batchelor, 1967). In this case exists a 
temperature field θ(x, y)  in Ω , governed by a well-known partial 
differential equation (Incropera and Witt, 1992), presented in Eq. (1) 
using Einstein’s indicial notation: 

 

ii i i, ,Kθ v θ=      (1) 
 

In Eq. (1) K is the thermal diffusivity of the medium and iv , 

i 1,2=  represents respectively the x and y components of the 
velocity field.  

It is assumed that on Γu  and Γq  ( Γ Γ Γu q= ∪ ) are known 

respectively the temperature θ  (essential boundary condition) or a 

function f involving temperature derivative , ni iθ  on the direction 

normal to Γ  and the particle velocity component in the normal 

direction versus θ . The boundary conditions are thus described by: 
 

θ θ=  on uΓ  (essential boundary condition)  (2) 

 

,i i i if K θ n v n θ= +  on qΓ  (natural boundary condition)  (3) 

Governing Equation Compaction 

To develop the formulation, it is convenient to rewrite the 
governing equation, Eq. (1), in a compact form, such that the 
advective and diffusive parcels can be expressed in terms of the 
derivative of the product of two functions, as shown by Eq. (4): 

 

q

x

y

u

v1

v2
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( )i iηθ, , 0=  (4) 

 
The last expression is the inhomogeneous Laplace´s equation. In 

this equation (x, y)η  is a function related to the velocity field 

existing in the Ω  domain. Next it is shown the steps required to 
reach the contracted form of the governing equation, given by Eq. 
(4); an expression to compute η  as a function of the velocity field 

and the thermal diffusivity of the medium is obtained. 
First, the derivative indicated in Eq. (4) is performed: 
 

ii i iηθ, η, θ, 0+ =  (5) 

 
Comparing Eq. (5) with Eq. (1), one can see that if η  obeys the 

differential equation indicated by Eq. (6), Eq. (5) and Eq. (1) 
become the same: 

 

i
i

v
η, η

K
= −  (6) 

 
The above expression represents a system of two ordinary 

equations which are used to determine the function η , from where 

one can conclude that Eq. (4) is equivalent to the governing 
equation, as long as one considers η  given by: 

 

( )η exp Φ K= −  (7) 

 

Thus, as i i, v=Φ , the scalar function Φ  can be interpreted as 

a velocity potential. 
The transformation presented in Eq. (7) links the general 

Laplace´s Equation for inhomogeneous medium and the Advective-
Diffusive Equation. It is a sufficient condition for one-dimensional 
cases, but for two-dimensional ones the incompressibility and 
irrotationality conditions to the fluid flow are required. 

The Harmonic Transformation Technique 

Starting from the compact form of the governing equation, 
Eq. (4), it is possible to apply a transformation of variables 
procedure aiming at simplifying the numerical model 
formulation. To achieve this goal, one must introduce a new 
variable Ψ , related to the original variable θ  according to: 

 

i iΨ, ηθ,=  (8) 

 
The objective is to write the governing equation in a harmonic 

equivalent form, suitable to a BEM approach. If Eq. (8) is 
substituted into Eq. (4), one has: 

 

iiΨ, 0=  (9) 

 
Thus, Ψ  is governed by the Laplace equation. The classical 

BEM procedure (Brebbia, 1978) leads to the following matrix 
equation: 

 

ˆ 0HΨ - Gq =  (10) 
 

where i iq̂ Ψ, n= . It is necessary now to determine the vectors Ψ  

and q̂ . The vector ̂q  can be determined directly from Eq. (8): 

q̂ = ηq  (11) 

 
where q in the last equation is the flux of θ , i.e. 

 

i iq θ, n=  (12) 

 
The function Ψ  is also determined from Eq. (8); by application 

of the chain rule: 
 

i i

Ψ Ψ θ

x θ x

∂ ∂ ∂
∂ ∂ ∂

=  (13) 

 
Comparing Eq. (13) and Eq. (8), it is easy to understand that the 

function Ψ  must be such that: 
 

Ψ
η

θ

∂
∂

=  (14) 

 

Equation (14) cannot be solved analytically, as η(θ)  is not 

known. However, it is possible to establish a scheme to carry out the 
numerical integration of this equation between two arbitrary points 
within the Ω  domain, as indicated by Eq. (15): 

 
k

k k -1 k -1
Ψ - Ψ = η dθ∫  (15) 

 

If k  and k 1−  are considered to be two consecutive nodes of a 
discretized boundary, the following approximation is valid: 

 

k k 1 m k k 1( )− −Ψ ≅ Ψ + η θ − θ  (16) 

 

In the previous equation mη  is admitted to be as an 

intermediate value of the function η  within the integration interval, 

for the sake of simplicity. The trapezoidal rule was employed to 
perform the integration indicated in Eq. (15); the result being that 
indicated by Eq. (16). Since the equation (16) is the simplest 
approach to process the integration given by the equation (15), some 
more accurate schemes could easily be imagined to improve it, 
especially considering some weighted effect of adjacent nodal 
values. However, the most effective way to improve the accuracy of 
this integration without loss of simplicity is the use of boundary 
elements of the highest order, since the improvement of the 
proposed scheme would happen naturally. 

Considering now the boundary being discretized through n 
constant boundary elements (Brebbia and Walker, 1980) and 
applying Eq. (16) between the first and last nodes, it is possible to 
write the following expression: 

 

1 n n1 1 n( )Ψ ≅ Ψ + η θ − θ  (17) 

 
For the next interval, one can write: 
 

2 1 12 2 1( )Ψ ≅ Ψ + η θ − θ  (18) 

 
Substituting Eq. (17) into Eq. (18), one has 
 

2 n n1 1 n 12 2 1( ) ( )Ψ ≅ Ψ + η θ − θ + η θ − θ  (19) 
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When this procedure is repeated to all boundary nodes, one obtains the following equations: 
 
 

1 n n1 1 n

2 n n1 1 n 12 2 1

3 n n1 1 n 12 2 1 23 3 2

4 n n1 1 n 12 2 1 23 3 2 34 4 3

n n n1 1 n 12 2 1 23 3 2 34 4 3 (n 1)n

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ...... (−

Ψ ≅ Ψ + η θ − θ

Ψ ≅ Ψ + η θ − θ + η θ − θ

Ψ ≅ Ψ + η θ − θ + η θ − θ + η θ − θ

Ψ ≅ Ψ + η θ − θ + η θ − θ + η θ − θ + η θ − θ

Ψ ≅ Ψ + η θ − θ + η θ − θ + η θ − θ + η θ − θ + + η θ

⋮ ⋮ ⋮ ⋮

n n 1)−− θ

                  (20) 

 
Equation (20) can be written in matrix form as: 
 

n11 1n1

n1 12 122 2n1

n1 12 12 23 23 n13 3

n1 12 12 23 23 34 34 n14 4

12 12 23 23 34 34 45 (n 1)n n1n nn1

η 0 0 0 ηΨ θ

η η η 0 0 ηΨ θ

η η η η η 0 ηΨ θ

η η η η η η η ηΨ θ

η η η η η η η η η ηΨ θ−

−

− −

− − −
=

− − − −

− − − − −

    
    
    
   
   
   
   
   
     

⋯

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮⋮ ⋮

⋯

n

n

n

n

n

n

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

+

 
 
 

  
  
  
  
  
 

                  (21) 

 
 
 

Equation (21) is rewritten in compact notation: 
 

Ψ = Pθ + Ψ          (22) 
 
Substituting Eq. (22) and Eq. (11) into Eq. (10) it gives: 
 

HPθ - Gηq = -HΨ  (23) 
 

As Ψ  is a homogeneous vector, having in mind that the sum of 
all terms of a row of matrix H is null (Brebbia, 1978) one has: 

 

HΨ = 0  (24) 
 
Thus, Eq. (23) becomes: 
 

HPθ - Gηq = 0  (25) 
 
This last equation can be easily solved by the usual methods 

employed to solve linear algebraic system of equations. Although 
the set of equations above refer to a boundary discretized into 
constant elements, it’s easy to establish new forms to the equations 
above when higher-order elements are used. In this case, 
considering the potential function θ  written in terms of the local 
coordinates (Brebbia, Telles and Wrobel, 1984) andη  being a 

known function, the integral in the right-hand-side of Eq. (15) can 
be performed using standard Gauss quadrature rule. In this way, a 
new set of equations related to a more precise integration scheme 
can be obtained. 

Applications 

This topic discussion concerns three test-cases whose analytical 
solutions are known, thereby used to evaluate the performance of 
the formulation proposed. In the three applications, it is shown the 

behavior of the numerical solution for different mesh refinement and 
Peclet numbers. Another important point to be highlighted 
concerning the numerical simulations carried out is related to the 
need for poles (internal nodes, basis for global interpolation). It is 
well known in the literature, e.g., Loeffler and Mansur (1987), that 
the DRF requires the use of poles to improve the representation of 
domain known or unknown functions; in the present case the 
advective term. However, the approach proposed here (HTT) does 
not require poles. The DRF employed sixteen poles homogeneously 
distributed within the control volume, whereas the HTT and QDR 
did not use any. 

One-Dimensional Fluid Flow with a Constant Velocity Field 

The first example consists of a heat transfer problem with a 
one–dimensional constant velocity field, subjected to the following 
boundary conditions: null diffusive flux on the horizontal edges, and 
prescribed temperatures on the vertical ones, as shown in Fig. 2. 

 
 

 

Figure 2. Physical and geometrical characteristics of example 1. 
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The analytical solution of this problem is given by: 
 

px

pL

e 1

e 1

−
θ =

−
 (26) 

 
px

pL

pe
q

e 1
=

−
 (27) 

 

In the previous equations, θ  is the temperature, q is the 
derivative in the direction of the normal to the boundary of a control 
volume whose boundary coincides with that shown in the Fig. 2 and 
p is the Peclet number. The results obtained from the numerical 
simulations are described by graphs which illustrate the behavior of 
the numerical solution through values of the mean error, described 
in percentage with respect to the analytical value, the following 
expression being used in the computations: 

 

p
m

f

E
E

N

∑
=  (28) 

 
where: 

 

at  considered point  
p

analyt. value numer. value
abs

analyt. value
E

−
=

 
 
   (29) 

 

In Eq. (28) 
f

N  is the number of nodal points on the face where 

the temperature or its derivative is computed. Equation (28) will be 
employed for all examples shown here. 

Figures 3 and 4 show graphs of numerical results errors versus 
number of boundary elements, for a fixed Peclet number equal 2. 
These figures show the good convergence rate of the HTT whose 
performance is much superior to that of the DRF.  

In Fig. 3 it is shown the variation of the percentage error of the 
numerical results on face 1 versus mesh refinement. 

For a coarse mesh, the effect of the approximation shown by 
Eq. (16) is quite significant, so that the accuracy of the HTT is 
worse than that of the QDR and DRF. This behavior is credited to 
the low order interpolation used in Eq. (16). However, as the mesh 
becomes finer, the accuracy of HTT becomes closer to that of the 
QDR; in fact, the difference of the two formulations for more than 
eighty boundary elements is meaningless. Both, HTT and QDR 
approaches are superior to the DRF, even for this example with 
low Peclet Number.  

 

 

Figure 3. Temperature percentage mean error on face  1, versus mesh 
refinement for Peclet number equal to 2, for exampl e 1. 

In what boundary fluxes on the input and output faces are 
concerned, the results of HTT and QDR approaches become closer 
than that of temperature results described previously. Although for 
coarse meshes the HTT have a poor performance, its accuracy 
improves substantially with mesh refinement; results of HTT and 
QDR shown in Fig. 4 are coincident for a number of boundary 
elements higher than eighty. Still better results for HTT may be 
expected if higher order interpolation is used in Eq. (16), even when 
a coarse mesh is considered. 

 

 
Figure 4. Normal flux percentage mean error on face  4 versus mesh 
refinement for Peclet number equal to 2, for exampl e 1. 

 
Figures 5 and 6 illustrate the performance of the proposed 

formulation for different Peclet numbers, for a fixed boundary 
element mesh refinement; one hundred and sixty elements were 
employed. The solution of diffusive-advective problems is quite 
sensitive to the variations of the Peclet number. This becomes a 
serious difficulty to the approaches examined here, which model 
together the diffusive and the advective phenomena without 
considering in their mathematical structure the preponderance of one 
of the processes over the other. 

Figure 5 depicts the values of the mean percentage error 
concerning the computation of the temperatures on face 1. This 
figure shows that for Peclet Numbers over 4, the DRF presents high 
errors. It can also be noted that QDR results starts deteriorating for 
the Peclet Number about 10; as the Peclet number becomes bigger 
than 10 one can notice a quick increase of the percentage mean 
error. Errors of the HTT formulation increase slowly with the 
increase of the Peclet number. Results accuracy is acceptable (error 
less than 3%) for the range of variation depicted in Fig. 5. 

 

 
Figure 5. Temperature percentage mean error on face  1 versus Peclet 
number, for a boundary element mesh with one hundre d and sixty 
elements, for example 1. 

It is important to notice that the HTT and QDR approaches 
presented a good performance for average Peclet numbers; however, 
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this is not the case of the DRF, whose results deteriorated quickly 
for Peclet numbers higher than two. For Peclet numbers higher than 
10 the QDR approach also lost accuracy and only the HTT yielded 
acceptable results. It should be noticed that the superior 
performance of the HTT approach rests on the fact that it does not 
require the use of standard radial non-compact basis interpolation 
functions (Buhmann, 2003; Goldberg and Chen, 1994), which do 
not represent accurately responses whose gradients are high, quite a 
usual situation for problems with high Peclet numbers. 

 

 
Figure 6. Normal flux percentage mean error on face  4 versus Peclet 
number, for a boundary element mesh with one hundre d and sixty 
elements, for example 1. 

 
Fortunately, particular analysis of all nodal results reveals that 

the high values of temperature present lower errors than the low 
values. So, graphs similar to those shown in Fig. 5, when only the 
nodes with highest temperature values are considered, present 
results with more reduced percentage error; however, the same 
tendency of degeneration with increase of Peclet number is still 
present. 

Figure 6 shows the variation of the mean percentage error for 
normal flux on face 4, versus Peclet number. The same pattern 
previously observed for the temperature occurred here for normal 
fluxes. Again, it must be highlighted that the HTT errors were small 
for the range of Peclet number shown in Fig. 6, and that no abrupt 
error increase occurs with the increase of the Peclet number. Higher 
Peclet numbers are allowed for the QDR formulation, if the mesh is 
refined. 

Another meaningful feature of HTT formulation is its low 
computational cost. The absence of matrix inversion and the 
simplicity of the employed integration scheme which led to Eq. (17) 
reduces substantially the CPU time of HTT computer code. For all 
simulations presented here it was used a PENTHIUM IV computer 
with 3.06 GH of processing velocity and 500 Mb of RAM memory. 
Table 1 shows a comparison among the three boundary formulations 
experimented, considering the CPU time spent to solve the first 
example. It must to be noticed that this proportion does not change 
for other kind of boundary conditions, such as those shown in the 
second and third examples. 

 
Table 1. Comparison of Costs of the Three BEM Formul ations – CPU time 
in seconds. 

Mesh Size HTT QDR DRF 

20 BE 0.015625 0.015625 0.01525 

40 BE 0.031250 0.078125 0.62360 

80 BE 0.140625 0.531250 0.40265 

160 BE 0.625000 3.656250 2.57400 

One-Dimensional Fluid Flow with Variable Velocity Field 

This example consists of a heat transfer problem where the 
velocity field varies with the x coordinate and is independent of the 
y coordinate. The fluid flow is in the opposite sense of the flux of 
heat, and varies linearly in the x direction along the control volume. 
The boundary conditions for this problem are: heat flux null on the 
horizontal edges, diffusive heat flux prescribed on the right vertical 
edge and temperature prescribed on the left vertical edge, as shown 
in Fig. 7. 

Under these circumstances, the flow is necessarily compressible 
and it is usually modeled by equations which are more complex than 
that represented by the Diffusion-Advection Equation. However, for 
one-dimensional flux and for a certain particular form of the thermal 
conductivity distribution, it is possible to describe this problem by 
the Diffusion-Advection Equation, as long as an adequate 
transformation of variables is performed (Loeffler and Dan, 2004). 

 

 

Figure 7. Physical and geometrical characteristics of example 2. 

 
One of these conditions concern the density ρ(x) is such that it 

obeys the conservation equation being given by: 
 

u Bρ =  (30) 
 
In Eq. (30), B is a constant. The fluid velocity u is considered to 

vary linearly along the x direction, according to: 
 
u mx= −  (31) 
 
The analytical solution for temperatures along the x coordinate 

considering adapted Diffusion-Advection Equation is given by: 
 

QL (1 + m) L + mx
ln

m L 
θ =

  
    

 (32) 

 
The normal derivative on the vertical edges is given by: 
 

QL (1 + m)
  

x (L + mx)

∂θ
=

∂
 (33) 

 
In the numerical computations L was taken as unity. Only 

results concerning the HTT and the DRF will be presented, as the 
QDR cannot be applied to this problem, because the velocity field 
prescribed does not obey the incompressibility condition, required 
by the QDR formulation. 

The curves showed in Fig. (8) and Fig. (9) illustrate respectively 
the behavior of the numerical solution for the temperature along the 
horizontal axis and for the thermal flux along the left vertical edge, 
versus mesh refinement, considering m equal to 1. In these graphs it 
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can be seen that both formulations (HTT and DRF) improve their 
results with mesh refinement; the HTT performance being superior, 
mainly when boundary fluxes are concerned. 

 

 
Figure 8. Temperature percentage mean error along t he horizontal 
direction (face 1) versus mesh refinement, for exam ple 2. 

 

 
Figure 9. Normal Flux percentage mean error along t he left vertical edge 
versus mesh refinement, for example 2. 

 
Figures 10 and 11 depict graphs which illustrate the numerical 

performance of both formulations as a function of the flow velocity, 
controlled through the parameter m. First of all, in Fig. 10, it is 
depicted the mean percentage error related to temperature numerical 
results along the horizontal direction. The performance of the HTT 
approach is undoubtedly superior to that of the DRF approach. HTT 
errors were quite low for the velocity range considered.  

With respect to the numerical results for the heat flux on face 4, 
depicted in Fig. 11, the performance of the HTT approach was again 
superior, being practically insensitive to the variations of the flow 
velocity intensity for the velocity range considered. The mean 
percentage error is practically constant, around 0.471%. 

 

 
Figure 10. Temperature percentage mean error along the horizontal 
direction versus flow velocity, for example 2. 

 
Figure 11. Normal flux percentage mean error on fac e 4 versus flow 
velocity, for example 2. 

Two-Dimensional Fluid Flow with Constant Velocity Field 

In two-dimensional problems, the harmonic transformation 
requires a more restrict condition than irrotational fluid flow 
condition. This condition appears by considering Eqs. (13) and (14), 
that is: 

 

1 1

exp( / K)
x x

∂ψ ∂θ
= −φ

∂ ∂
 (34) 

 

2 2

exp( / K)
x x

∂ψ ∂θ
= −φ

∂ ∂
 (35) 

 
Taking the cross derivatives of the former equations it is found: 
 

2 1
1 2

v v
x x

∂θ ∂θ
=

∂ ∂
 (36) 

 
It means that a very limited number of two-dimensional 

problems can be solved by the proposed method. However, to show 
the good numerical performance of HTT this case study considers a 
two-dimensional heat transfer problem, in which the velocity field 
has constant components in the x and y directions. Essential 
boundary conditions are prescribed on the four sides of length L of a 
square control volume; the analytical solution of this case-study is: 

 

( )x y
K

1
v x v y

e
+

θ =  (37) 
 
Figure 12 shows the physical and geometrical characteristics of 

the control volume of this problem. The horizontal and vertical 
components of the particle velocity vector are respectively denoted 
by vx e vy. 

The evaluation of the performance of DRF, QDR and HTT 
formulations will be carried out through comparison of the 
numerical results obtained for the boundary fluxes with analytical 
values, the latter being given by: 

 

( )x y
Kx

1
v x v yv

e
x K

+∂θ
=

∂
 (38) 

 

( )x y
Ky
1

v x v yv
e

y K

+∂θ
=

∂
 (39) 
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The criteria and formulas for error computation are the same 
used previously, given by Eq. (28) and (29). 

 

 
Figure 12. Physical and geometrical characteristics  for example 3. 

 
The first test carried out evaluates the behavior of the numerical 

solution versus the refinement of the boundary mesh used. The 
results presented in Fig. 13 correspond to fluxes on face 2, for Peclet 
number equal to 2. It is important to observe that fluxes on face two 
are more significant (higher and more prone to numerical error).  

The graphs of Fig. 13 show again that HTT results approach 
the analytical solution as the mesh becomes finer and finer. The 
QDR results are superior to those obtained from the HTT 
formulation, as expected for low Peclet numbers. The results 
obtained with the DRF, shown in Fig. 13, are just acceptable, the 
lack of accuracy being due to the existence of boundary regions 
where results are not accurate at all. This lack of accuracy happens 
mainly over regions where the flux values are not dominant, as 
residuals of the interference of higher values of derivative 
elsewhere which are transmitted to other parts of the domain 
through the global interpolation inherent to the DRF. Anyway, 
results presented in Fig. 13 show the strong limitation of the DRF 
for some two-dimensional cases. 

 

 

Figure 13. Normal flux percentage mean error on fac e 2 versus mesh 
refinement, for Peclet number equal to 2, for examp le 3. 

 
Next it is analyzed the performance of the three approaches (in 

what accuracy is concerned) for different Peclet numbers. A fixed 
mesh of 160 elements is employed, and the error of the flux on face 
two versus Peclet Number is plotted in Fig. 14.  

The graphs depicted in Fig. 14 show that increasing the Peclet 
number a little causes complete failure of the DRF. Errors increase 
very quickly from Peclet number equal to two onwards. The QDR 
approach requires mesh refinement in order to yield acceptable 
accuracy for higher Peclet numbers; acceptable results are obtained 
for Peclet numbers lower than 10. For Peclet numbers in the interval 
[0,10] the HTT approach presented its best performance; the error 

was under 1%. In fact, numerical experiments, not shown here, gave 
acceptable results for the HTT approach up to Peclet numbers equal 
to 20, for a fixed 160 boundary element mesh. Peclet numbers 
higher than 20 require a finer discretization. 

 

 
Figure 14. Normal flux percentage mean error on fac e 2 versus Peclet 
number, for a mesh with 160 boundary elements, for example 3. 

Conclusions 

The formulation presented in this paper showed to be suitable 
and efficient to carry out numerical modeling of one-dimensional 
and of a special class of two-dimensional diffusive-advective 
problems. The HTT approach overcomes the difficulty inherent to 
the Dual Reciprocity Formulation and other similar approaches: the 
use of auxiliary radial basis interpolation functions with non-
compact support. The HTT approach does not require domain 
interpolation, thereby, the solution algorithm is simpler to 
implement than those originated from de DRF, and is much cheaper 
as there is no need to invert matrices. For the case of the analysis 
with one hundred and sixty elements CPU time for a computer 
program based on the Harmonic Transformation Technique (HTT) 
is about 17% of the CPU time of a similar program based on Quasi-
Dual Reciprocity (QDR) and is 24% of the CPU time of a computer 
program based on the traditional Dual Reciprocity Formulation 
(DFR). Besides, the proposed HTT approach manages to represent 
with the same accuracy small and high values of the boundary 
unknowns. Thus, the numerical solution is more stable and accurate, 
especially for higher Peclet numbers. 

Results of the HTT approach showed to be quite good even in 
the case of a variable velocity field over the domain, despite the 
limited accuracy of the scheme used to integrate the transformation 
variable; it is important to notice that other formulations usually 
yield poor results in this case. Another advantage of the HTT is that 
the incompressibility condition is not required, whereas QDR only 
can be applied to potential fluid flow problems. Last, it must be 
highlighted that the HTT, such as the QDR formulation, does not 
require the use of poles to improve its accuracy, a necessary and 
expensive procedure required by DRF. 

It is necessary to emphasize that the HTT performance can still 
be improved if high order boundary elements are employed. 
Naturally, every Boundary Element formulations would have better 
performance by increasing elements order, but for the HTT 
technique the improvement will be quite higher, because the 
accuracy of approximation scheme given by Eq. (17) is also related 
to the boundary element order.  

The main problem of HTT is its limitation to one-dimensional 
and particular two-dimensional applications. However, as 
mentioned previously, in some transient problems it is interesting 
to implement simple and quick one-dimensional spatial model 
coupled with a robust time integration scheme to achieve response 
estimations or benchmarks. It must be also included some dynamic 
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problems that have effective one dimensional wave propagation. 
For this purpose the HTT formulation is suitable: in addition to the 
high accuracy, mathematical simplicity and low computational 
cost, the computational code requests quite short and simple 
programming algorithms. 
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