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Estimating the magnitude of the pressure reflectioefficient |R| and the end correction |

at the open end of ducts is a critical procedureewklesigning or predicting the acoustic
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behavior of acoustical systems, such as exhausitpipes, mufflers, loudspeaker
enclosures and so on. For cylindrical ducts anchplavaves, exact intricate solutions exist
for two distinct open-end boundary conditions, ner a thin-walled unflanged pipe
and for a pipe terminated by an infinite flange.isTtvork provides simple approximate
expressions for |R| and | of cylindrical pipes tarated by circular flanges with finite

radii. The expressions are obtained from a polyr@brfit performed over the numerical
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I ntroduction

The assessment of the complex reflection coeffickerat the
open end of ducts is an important procedure inrom@redict the
acoustical behaviour of these systems in termsheif resonance
frequencies and their capability of radiating saund

For cylindrical ducts and normal acoustic modeagcegolutions
have been proposed for a thin unflanged pipe $itudtevine and
Schwinger, 1948), as well as for a pipe termindigdan infinite
flange (Nomura et al., 1960). These analytical tiahs are
relatively intricate and require numerical soluti®ased on these
limitations, approximate formulae for the unflangeippe situation
have been developed by Causs’e et al. (1984) and 8i al.
(2009b). For pipes terminated by an infinite flang@proximate
expressions have been proposed by Norris and S{i€&9) and
Silva et al. (2009b).

Nevertheless, in day-to-day circumstances, cylgariubes are
terminated by an intermediate boundary conditibrat tis, a pipe
terminated by a circular flange of finite radiusr fwhich exact
solutions do not exist. An approximate formula farch situation
has been proposed by Ando (1969). In spite of bearg
approximation, Ando’s solution depends on an iatécnumerical
computation, which precludes its application in racfical basis.
Having that in mind, Dalmont et al. (2001) proposegimple fit
formula based on the results obtained numericallytifie length
correctionl as a function of the ratio between pipe and flaragki
a/b. Unfortunately, the solutions proposed by thegbas are only
valid for the low-frequency limit.

The objective of this work is twofold. First, toviestigate the
behaviour ofR in cylindrical tubes terminated by circular flasge
of different sizes. The investigations are carriedt with a
numerical model based on the Boundary Element Mktide
second objective is to derive simple approximatpressions for
the magnitude of the reflection coefficiefR| and the length
correctionl, as functions of both the Helmholtz number ka tred
ratio between pipe and flange radi/b. The approximate
formulae derived in this work are valid for< ka < 3.0 and for
0 < a/b < 1. The behaviour of the reflection coefficieRtin the
presence of a non-stagnant mean flow is not adeldess this
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results provided by a Boundary Element model, anealid for Helmholtz numbers in the

range O< ka< 3.0, as well as for @ a/lb< 1, where a and b are the pipe and flange radii,
respectively. When compared with the exact solstifam both the unflanged and the

infinite-flanged pipe, the approximate formulae yd® a maximum error of ~2% at the

upper frequency limit (ka»>3.0).

Keywords: reflection coefficient, cylindrical ducts, flanggundary element model

study and can be found elsewhere (Silva et al.92p@llam and
Abom, 2006; Munt, 1990).

This paper is structured as follows. Section |lsprds the
formulation for the reflection coefficient insidieet pipe. Section 111
provides a brief description of the Boundary Eleméfethod,
discusses the numerical model used in this worH, pesents its
validation based on the comparison between nunieésalts and
those obtained with the exact analytical solutiforsthe unflanged
pipe (Levine and Schwinger, 1948) and for the pigreninated by
an infinite flange (Nomura et al., 1960). Sectldhdiscusses the
results obtained through the numerical model andpgses a
simplified formula for|R| andl/a based on a polynomial surface
fit. Finally, the conclusions and remarks are pmése in Section V.

Nomenclature

A = internal area of the pipe‘s cross sectiorf, m
a = pipe radius, m

b = flange radius, m

c = speed of sound, m/s

f = w/2n =frequency, Hz

G(x,y) = free-space Green'’s function

Imn = coefficients of the fit formula for |R| and |

i = complex unity(-1)

k = wave number, th

ka = Helmholtz numbeimensionless

L = distance between two axial points, m

l = end correction, m

n = unity normal vector pointing inwards from thefage

P, = sound pressure calculated outside the surface
domain, Pa

P; = sound pressure calculated inside the surface
domain, Pa

p = complex sound pressure, Pa

pt andp~ = reflected and incident wave components, Pa

R = pressure reflection coefficient, dimensionless

|R| = magnitude of the pressure reflection coeffigient
dimensionless

U = volume velocity, fis

u = input function

u* = polynomial that approximates u
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v = acoustic particle velocity, m/s
VA = acoustic impedance, Rayls

Zy = characteristic acoustic impedance, Rayls
1) = rotational frequency, rad/s
Greek Symbols

4P = pressure drop, Pa

AT = mean temperature difference, K
7 = air dynamic viscosity, kg/(m s)
0 = air density, kg/m

r = boundary element surface
Subscripts

0 = relative to fluid, air

e = relative to external, outside

i =relative to inside

log =relative to logarithmic

Reflection Coefficient R

Da Silva et al.

R = —|R|exp(2ikl), (4)
where|R| is the magnitude of the reflection coefficient dnd the
end correction.

In the absence of a mean flow, the frequency-degrend
magnitude of the reflection coefficief®| assumes values between
zero and the unity, depending on the boundary ¢iemdat the open
end of the duct (flanged or unflanged). Hence, eslof|R| close to
one imply that most of the sound produced by theusiic source
stays inside the duct rather than being radiateti@émuter domain.
An opposite scenario happens whigj approaches to zero. The
frequency-dependent end correctidnis an additional length
downstream from the open end, through which th&emt wave
must propagate before it is partially reflectedibmside the duct as
a reflected wave. The end correction is a consemuehnthe inertia
caused by acoustic load of the stagnant air sudiagnthe duct’'s
open end.

Numerical Procedures

When plane sound waves propagate away from an @zous

source inside a duct, part of the acoustic wavebeilradiated to the
external domain and part will be reflected backdaeghe duct at the
open end.

open
acoustic incident reflected end
source / wave wave \ /
[ I & > radiated
x sound
/ /

duct end correction

Figure 1. Scheme of the reflection of sound at the open end of a duct.

The acoustic pressure at any point along the coatelix inside
the duct is given by

P(x) = p*(w)exp(—ikx) + p~ (w)exp(ikx). (@8]

wherek = w/c is the wavenumbei,is the complex unity andis
the speed of sound. The ratio between the reflegtedsure wave

component,p~(w) and the incident pressure wave component
pt(w), both measured at the open end, is a complex @heam

known as the pressure reflection coefficiBngiven by

p

p*’

R(w) = (2)

wherew is the rotational frequency. The reflection cagéfntR can
be also expressed in terms of acoustic impedance as

Z[Zy— 1)‘

R =0z, 51

3)

whereZ is the acoustic impedance at the duct’s open dgfihed as
the ratio between the complex acoustic presgre) = p* +p~
and the complex volume velocit¥/ (w) = v(w)/A, being A the
duct's cross-section area and v the acoustic partelocity.
Zy, = pc/A is the characteristic impedance inside the cylindes
the undisturbed density of the fluid ands the speed of sound. A
more intuitive way to gather the physical meanifi@ ds to express
it in the polar form by
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Boundary element method

A brief description of the boundary element metiiB&EM) for
determining the pressure and acoustic particlecitglavithin and
acoustic domain is here provided. The reader mag finore
thorough description of the method in several wofkahy and
Walker, 2004; Chandler and Langdon, 1991). Fordigtermination
of the radiation impedance at the open end of andpbe, the
problem is essentially divided into two parts, eagpresenting the
internal and external acoustic domains. The intedwmain is
represented by the following integral expression

Jr[6Gy % CORCY) g—ﬁ (x, y)] ar@)

[ () dr )

Py(x) = )

Likewise, the sound pressure at any point of thieragl surface
can be obtained by the solution of the followintpgral equation

oo - R0 G ey are)

P(x) =
3 (1
i 9m (gag) 00

(6)

Here and in the following? is the sound pressure calculated for
a single frequency in any pointon the boundary surfade The
sub-indexes and e indicate whethef is internally or externally
located on the surface, respectively, amdis the unity vector
pointing inwards fromI'. G(x,y) = exp(—ikR/4xL) is the free
space Green'’s function, aiids the distance between the two points
x andy within the internal domain.

The solutions for Egs. (5) and (6) can be reaclyedividing the
boundary surfac& into several discrete segments called elements.
Each element leads to a simplified integral equatwhich can be
resolved by Gauss integration with polynomial appration for
the Green'’s functio.

BEM model

The BEM model consisted of cylindrical tube of lémg
L = 0.5 m and radiust = 0.04 m. The tube was closed at one
end and terminated by a thin circular flange atopgen end. The
boundary surface was constructed using thin shilments,
meaning that the effect of flange thickness is taiten into
account. Variations of this model were considergdliffering the

ABCM



Approximate Expressions for the Reflection Coefficient of Ducts Terminated by Circular Flanges

ratio a/b, wherea is the radius of the pipe and b is the radius ofhe reflection coefficienfR| and the dimensionless end correctiga
the circular flange. The analysis was conducted dgb =  are presented in Figs. 3(a) and 3(b), respectively.
0,0.2,0.4,0.6,0.8 and 1. For the model terminated by infinite

flange (a/b = 0), an adapted Green function was used in Eq. (6)

to take into account the effect of the infinite fimf without the 12 o infinite flande BEM
necessity of meshing it. This technique has beesady verified unflanged (""Levine&Schwinge”g“)
by Selamet et al. (2001). Figure 2 depicts the BElddel for 1 - - — infinite flange (Nomura et al. 1960) 1
a/b = 0.6. 55 * unflanged BEM
0.8r
X 0.6}
0.4r
velocit/ soul
(closed end)
0.2r
0 1 1 1 1 1
0 0.5 1 1.5 2 25 3
ka
Figure 3(a)
Figure 2. Mesh for the BEM model of a circular pipe terminated by a finite 0.9 . . . . .
thin flange (a/b = 0.6). —— unflanged (Levine & Schwinger 1948)
oo - - - infinite flange (Nomura et al. 1960)
D . | limitati h | d d 08/ g o infinite flange BEM
ue to computational limitations, the analyses wesrducte ., * unflanged BEM
up to a maximum Helmholtz numbles = 3.0, wherek = w/c is 0.7t Q
the real wavenumber amdhe speed of sound. This value is inferior Rg

to the first cut off frequency for cylindrical dsctka = 3.83),
bellow which only plane waves propagate.

The mesh refinement applied to the model waslements per
wavelength at the frequency correspondingko = 3.0. This
refinement criterion was observed to be cruciathat frequency
range of analysis, in order to maintain the modatcuracy inferior
to 0.3% (da Silva, 2008).

The model was resolved using the commercial codeS1iM

Sysnoise5.6, based on the solutions of Egs. (5) and (6). Thdeh 0 0‘_5 y 1_‘5 2 25 3

is excited at forty equally spaced frequencies betwd < ka < ka
3.0 by prescribing a unitary particle velocity at theve’s closed Figure 3(b)

end. The reflection coefficierR cannot be directly measured at the_. ) ) ) )

d of the pie due to the fact that the plane becomes Figure 3. Companson betv_veen nu_mencal and e_zxz_ict an alytical solunon§ for
end o pIp p i evet an unflanged pipe and a pipe terminated by an infin ite flange: (a) Magnitude
distorted as it approaches the output, as deschipddlalmont et al.  of the reflection coefficient; and (b) dimensionles s end correction.
(Dalmont et al.,, 2001). Therefore, for each freqyestep, the

reflection coefficieniR at the open end is indirectly computed using

the following expression: The results depicted in both Figs. 3(a) and 3(lwshhat a
very good agreement between numerical results hadry can

i tan[arctan(Z,(f)/iZy) — kA] — 1 be achieved when the mesh refinement of the maigjréater

Rena = i tan[arctan(Z,(f)/iZ) — kA +1° (7)) than forty elements per wavelength. Neverthelessslight

discrepancy of~ 0.2% is observed in the dimensionless end

where Z, = P(f)/U(f), f is the frequency, and® and U are, correctipn (Fig. 3(b)) at higlh frequencies, namfy I.ca_ > 2.5.
respectively, the pressure and the acoustic paniglocity obtained 1hiS discrepancy is attributed to a non-sufficiemesh
inside the pipe at a distance= 8a from the open end. refinement, particularly at the open end region.r Fower

Helmholtz regions, as well as for the entire ranfiedelmholtz

numbers in Fig. 3(a), the discrepancy is negligible
Mode! validation g-3(a) pancy is neglig

The boundary element model described in the previmction Results
was validated in terms of complex reflection caééint for both
situations including the unflanged case and the fgpminated by an ) o ) g -
infinite flange. The validation was conducted bymgaring the terminated b_y finite C|rculz:_1r flanges of dlfferemd_u are now
numerical results with the exact analytical sohsidor an unflanged Presented. Figure 4(a) depicts the results formtiagnitude of the
pipe (Levine and Schwinger, 1948) and for a pipmireated by an reflection coefficien§R| as a function of the Helmholtz nhumber ka
infinite flange (Nomura et al., 1960). The compamdetween the and the ratio between flange and pipe ragh.
numerical and the exact analytical solutions fahlibe magnitude of

The simulation results for the reflection coeffitieof pipes

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright 0 2012 by ABCM April-June 2012, Vol. XXXIV, No. 2 / 221
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- — —fit formula for ka = 0 (Dalmont et al. 2001)
0.9r — numerical data J

ka=0
0.8 T o=

0.7

06/ ka=13

05 ka=18 J
0.4m
0.3*‘_—\/\__/\*
02 ‘ ‘ ‘ ‘

. b ° :

Figure 5. Dimensionless end correction as function
pipe and flange radii a/b for different values of  ka.

IR|
l/a

of the ratio between

Figure 4(a)

The numerical results presented in terms of susfdE@s. 4(a)

and 4(b)) were used to derive approximate formfdaboth|R| and

. l/a based on a least square polynomial fit schemerttiaimizes

Qo ' T R the error e by

M
e= (u; — u?)z: ®
2

whereu; is thei-th element of an input vectar, having an arbitrary
integer number of elemenid, beingM > 1. u; is thei-th element
of a vector given by the polynomiat, whose coefficients are found
in order to minimize the errog. The resulting polynomial* is
approximated from the input vectors ¢R| and l/a obtained
numerically as functions of the Helmholtz numtier and the ratio
between duct and flange radijib, and is given by

5 5
wka,a/b) = )" )" gnnlka)™"(a/b)", ©

m=0n=0

Figure 4(b)

Figure 4. Reflection coefficient as a function of
of the reflection coefficient; and (b) dimensionles

a/b and ka: (a) magnitude
s end correction. . . X
where the coefficientg,, ,, are given for bothR| andl/a in Table 1

) ) o for the range of0 < ka < 3.0and0 <a/b < 1.
Interestingly, the results illustrated in Fig. 4&ow that, for

pipes terminated by finite circular flanges, theh&eor of
|R| for a givenka > 0 is not monotonic along/b. This implies
that, for certain values dfa > 0, the corresponding magnitude
of the reflection coefficientR| may not lie between the curves “ (@.y) goo 910 9t 920 921 922 930
representing the two extreme cases, as shown ir3ag. IR| 1.01 -0.158 -0.239 -0.748 0.353 1.842 0.614

The same non-monotonic behavior alanth is observed for
the dimensionless end correctidfu depicted in Fig. 4(b). This l/a
behavior becomes more evident whiga is plotted against the ratio
between pipe and flange radiib, as shown in Fig. 5.

The same figure shows that the numerical resultgcfio= 0
are in very good agreement with the fit formula gpsed by
Dalmont et al. (2001) for the low frequency limiAnother l/a
interesting feature of Fig. 5 is that it shows ttiet non-monotonic
behavior of [/a does not only appear along thgb axis, but also
alongka. This behavior seems to be critical in the regigh ~ 0.4.

Table 1. Coefficients found for the polynomial fit formula, Eq. (9).

0.820 -0.013 -0.111 -0.426 0.337 0.255 0.284

u*(z,y) 931 932 933 G40 G411 G2 g4a3
|R| -0.362 -0.008 -5.367 -0.187 0.097 0.0137 0.074

-0.205 0.0911 -1.17 -0.067 -0.036 0.096 0.440

u*(z,y) 944 95,0 951 952 Ggs53 954 gs55

This essentially means that, for a finite-flanggeepwitha/b ~ 0.4,
the length correctiorl/a may significantly increase && — 0.8.

222/ Vol. XXXIV, No. 2, April-June 2012

|R|
l/a

6.51 0.020 0.000 -0.046 0.050 0.056 -2.835

0.877 0.004 0.032 -0.159 0.460 -0.958 -0.033
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Naturally, the choice of the polynomial order in.E§) will
determine the goodness of the fit for the approténfarmula. On
the other hand, increasing the polynomial orderliespin a higher
number of polynomial coefficients, which may redtrithe
applicability of the fit formula. Thus, a tradeaffas established so
as to provide simplicity of the fit formula andeasonable goodness
of fit. The result was a polynomiaf of order 10 (Eq. (9)), resulting
on twenty one coefficients presented on Table 1.

0 0.5 1 15 2 25 3
ka
Figure 6(d)
Figure 6. Comparison between approximate formula an  d numerical results

for |R|. (—) Approximate formula; (* * *) numerical result s. The results are
obtained for four different values of  a/b: (a) 0.2; (b) 0.4; (c) 0.6; and (d) 0.8.

Replacing the coefficients from Tablel in Eq. (9 lead to the

oo 0‘_5 1 1_‘5 2 2‘_5 3 fit formulas for both the magnitude of the reflecticoefficient|R|
ka and the end correctioh. Figures 6 and 7 present comparisons
Figure 6(a) between numerical data and the values obtaineddyitt formula

(Eg. (9)) with the coefficients provided in Table The results
depicted in Figure 6 show a good agreement betfiedarmula
and numerical data for the magnitude of the rdfactoefficient
|R|. The maximum deviation from the numerical residtfound at
a/b = 0.4 andka ~ 1, and corresponds &% (Fig. 7(b)).

Figure 7 shows the numerical and fit formula resdtir the
dimensionless end correction Similarly to |R|, the maximum
deviation between numerical and fit results is oles at a/b = 0.4
and ka = 0.7, corresponding to 2%. The deviationsath |R| and
are attributed to the inability of the polynomial ¢apture the non-
monotonic behavior of these curves, particulartydgh = 0.4.

As previously discussed, the deviations could beimized by
increasing the order of the polynomial (Eq. (9)).

However, increasing the accuracy of the fit foranly 1%

‘ ‘ would require an increase of the polynomial ordgreight. That

o L L L
0 0.5 1 1.5 2 25 3 would imply in a significant increase of the numbércoefficients,
- 'g(ab) which in turn compromises the simplicity of thefétmula.
igure

Conclusions

This paper investigates the behavior of the madeitaf the
reflection coefficient|R| and the dimensionless end correctign
at the open end of cylindrical pipes terminatedfimjte circular
flanges in the absence of a mean flow. Moreovee faper
presented an approximate formula for bfkth and(/a based on a
polynomial fit. The results from a numerical modéla pipe based
on the boundary elements method have shown ®jand!/a have
a non-monotonic behavior in the regions betwéeg a/b < 1
and0 < ka < 3.0. In the case ofR|, the non-monotonic behavior
is more significant at high frequencies, namiely > 2 and within
0.2 <a/b < 05.

The non-monotonic behavior is also observed|far In this

o0 05 1 15 2 25 3 case, however, the behavior is stronger at theflequency region,
ka namely ka < 0.5 and 0.2 <a/b<0.6. In fact, in the low
Figure 6(c) frequency region the non-monotonic behavior ffa  may act to

significantly increase the value of the end cofoectska increases
from zero. This behavior is neither observed inuh#langed pipe,
nor in the pipe terminated by an infinite flangeheTapproximate

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright 0 2012 by ABCM April-June 2012, Vol. XXXIV, No. 2 / 223



formulae for|R| andl/a were derived by a polynomial fit of the
numerical results.

The fit formula agrees well with the numerical fesuprovided
that0 < ka < 3.0 and0 < a/b < 1. In the case of the magnitude
of the reflection coefficient, the maximum deviatidrom the
numerical results is equal #9% ata/b = 0.4 and ~ 1. Similarly,

in the case of/a the maximum deviation from the numerical results

is found ata/b = 0.4, corresponding t8% atka ~ 0.4.

0.2+ 1
o L L L L L
0 0.5 1 15 2 25 3
ka
Figure 7(a)

0.2+ 1
o L L L L L
0 0.5 1 15 2 25 3
ka
Figure 7(b)

15
ka
Figure 7(c)

0.5
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0.8

0.2 J
o 1 1 1 1 1
0 0.5 1 1.5 2 25 3
ka
Figure 7(d)

Figure 7. Comparison between approximate formula an  d numerical results
for l/a. (—) Approximate formula; (* * *) numerical result s. The results are
obtained for four different values of  a/b: (a) 0.2; (b) 0.4; (c) 0.6; and (d) 0.8.
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