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The Fundamental Elements in Certain
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Roles and Interactions

Acoustic holography and holophony, wave field sssithand active noise control are based
on common elements which are causality, model,ctige and regularization. In the
frequency domain (putting causality aside), a serfprmulation states the influence — not
the interaction — of errors of the model and objectand of regularization of the results.
However, it does not give either an understandingny relation of cause to effect. When the
objective can be reached using the available magegiylarization is not needed and the
information liable to be extracted from this detéred problem is poor, unlike in the over-
determined case when the model does not allowtijeetive to be reached. The geometrical
interpretation of the over-determined problem erittin the least-mean square sense could
be a tool to enlighten the influences and intemwiin question. After having shown the
interest of the geometrical interpretation, a pse@adhalytical inverse problem in spherical
holophony and a numerical problem in plane hologmaprovide particular illustrations.
From among the properties accessible, one is hgotéid: in the case of a perfect objective
but inaccurate model, its adaptation brings a dasee in the amount of regularization
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required and an improvement in the results. )
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Introduction

Acoustic holography (Metherel et al., 1967; MaynaAdlliams
and Lee, 1985, for the early works), wave fieldthgsis (Berkhout,
de Vries and Vogel, 1993, for the early work), tpdlony, and
active noise control (Nelson and Elliott, 1992; agliiott, 2000,
textbooks presenting a synthesis) are inverse #copsoblems
sharing common elements such as causality, trarigfeation or
model, objective or goal to be reached and regatdn. In the
frequency domain, the question of causality isgmide.

In these problems, one or a few sources are refjtoreadiate a
given acoustic pressure field (for an extensiverges of the past
three decades with 170 references, see Wu, 2008¢etl, sound
field synthesis consists in determining drivingsils to feed several
loudspeakers in order to radiate a particular wawef a particular
directivity in holophony; active noise control imked to sound
synthesis indirectly as the goal is to oppose @adled acoustic
primary field at the control microphone locationmlography is
concerned with reconstructing a field in a wholemdin from
pressure measurements at a finite number of lotstidhis
reconstruction often resting on the finding of dwrce strength at
the origin of the measured field.

With less sources to control than given pressuseeach, the
problem is overdetermined and rests on the leasireq (LS)
method, while with more sources than pressures sletal
underdetermined problems with the least-norm (LNSthad (the
smallest solution from the infinity due to undeetetination, i.e.
dealing with the LS method plus a constraint). Eagited by Hald
(2009), these solutions seem to coincide when aeigation is
involved. Limiting the investigation to overdetemad problems,
the geometrical interpretation accompanies natuth# LS method
with the Euclidian distance. The use of this intetation has proved
to be a good tool for investigating some propersesh as the
guaranteed quality of the procedure for reachirgdhjective (the
given pressure field).

The geometrical view is also closely linked to trescription of
inverse problems with the vocabulary associatech veiets, as
presented by Kirsh (1996). For example, the givessqure field
could be inaccessible for various physical reasaligelated to the
pressure field not belonging to the set of fielle sources can
generate. In active control, the secondary souacesnot merged
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with the primary ones at the origin of the givergsure field and
they cannot radiate the opposite field (exceptim tery particular
1D case of controlling plane waves in ducts); itogoaphy primary
and secondary sources are often the same, butahesgroneous
measured field has no reason to be accessibleb@dteve can do is
to reach the projection of the given field on ttet ef fields the

secondary sources can radiate, leading to the dgaoatepoint of

view. The same will occur when the model is errarseoand

therefore, not liable to generate the objective géaeralize, it will

be said that the model is not exact when incapabtadiating the

exact objective (which does not mean that the taxiatself is

erroneous), while the definition of an erroneous aw exact
objective is kept natural.

So much for the objective space. Now what aboutstiiation
space (that of driving signals or source velog#iebo go from one
space to the other, the model and its inverse eeded, and it is in
the nature of things that the inverse of the dirgoerator is ill-
conditioned (to the point that the differentiatibatween the two is
through conditioning) which means that errors, ehat their
reason for being, are greatly amplified in the Soluand in the
reconstructed field. The regularization acts onitiversion to limit
the amplification and also plays a preponderarg molthe spatial
resolution of the solution obtained, as was undediby Nelson and
Yoon (2000), by Yoon and Nelson (2000), by NelsafAod), by
Kim and Nelson (2003). Regularization acts firsttire solution
space; in the objective space, only the conseqeemam be
observed and this will be proved. Besides, we hmt&ed that the
adaptation of the model to better radiate the perdbjective (the
measured pressure without any errors) is accomgdnyie need for
less regularization and a better reconstructed fitle to a better
determination of the solution (driving signal orusce velocities).
This could help in finding the relation between utimn and
objective spaces through regularization and perhagde use of the
geometrical interpretation.

Having this research in mind the formulated framew
given, and then the geometrical interpretation e Dbjective
space is described. Its usefulness will be showmutth an
application. Contrary to the demonstration of a bafde
impossibility to describe the model regularizatianthe objective
space, a demonstration of the relation between tatiap of a
model and the amount of regularization has still been found
and the difficulties arising therein will be showhpplications in
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far-field acoustic holophony and in nearfield adausolography R* = space of positive real numbers
illustrate the above properties. Open questionsclcole this Tr = trace of a matrix
S?gﬁgg:‘ﬁiﬁ%;gi?Enact;?gmtitgsgather a variegcofistic inverse v = vector of the source velocities or source colstr
' V = space of source velocities or source controls
Nomendlatur e Y = spherical harmonics
B = acoustic admittance
a = scalar £ = regularization coefficient
a = vector Y = angle between the objective vector and the
a = erroneous vector hyperplane originating from the transfer matfix
a, = nominal value ofa g = radiation efficiency
a"”‘oraLS = least mean square solution obtained via the & = angle between the erroneous and the exact
minimization of a functional;a® is also for the ANC gb;i(t:i?/\;en\;?ioézntrol
case of optimality in general _ . .
A = matrix BIEM = boundary integral equation method
A — erroneous matrix CSLA  =compact spherical loudspeaker array
& A ¢ oate di. of A ESM = equivalent source method
! = lranspose conjugate @, o NAH = nearfield acoustic holography
Al =inverse of A SONAH = statistically optimized nearfield acoustic holaghy
AT = pseudoinverse oA WFS = wave field synthesis
||a|| , ||A|| = L2-norm of a vector, of a matrix
oa, OA = perturbation (variation) ona, on A Framework
cm = complex space of dimension m The source or sources whosg veloci‘ties are soughtaled
d = minimal dist between t tors in tRedn “secondary source(s)” to differentiate their roterfi the so-called
mi}” = Mminimal distance between two VEClors In theense primary source(s) at the origin of the radiatedspuoee. They differ
dmin = minimum possible value a ., in sound field synthesis, holophony and active eaientrol while
max ) _ they are merged in holography. Thus, in synthesid eontrol,
dmin = maximum possible value af, secondary sources cannot radiate the primary éetdirately in the
1D,3D = one-dimensional, three-dimensional whole 3D domain (contrary to cases related to ldpagation).
e = relative error on the objective . As the primary field does not belong to the .quk:_the fields
e = minimal relative error on the objective liable to be generated by the secondary sources,said that the
In ) radiation model cannot be exact, with a clear samseathematical
E = transfer matrix or propagator set terms. In contrast, there might be such antesamdel in
F = efficiency of the inversion procedure holography. Here a perturbed propagator, whichis thot exact,
h = Hankel function arises not from conceptual reasons but becausdcphyfata like
I = identity matrix sound speed, source and microphone locations arly on
I'm = identity matrix of dimensionsxm approximated and/or because the measurements kdatans are
. not exact.
J - funF:t|onaI made up of the square of tHerlorm of Concerning the objective, it is said to be exacit iperfectly
the distance between two vectors describes the field to be generated. On a micropramay, it is
Jo = initial value of J necessary to have a sufficient number of sensdtsawvell-chosen
Jat = part of J, the minimization procedure makes jtdistance between _them according to the sound spectinder
ible t h study, and also strictly no measurement errorshenrécorded and
p055|. eloreac ) L signal-processed pressures.
Jres = residual part of J, after its minimization The above problems always rest on equation
K = space of the image of the space of the source
velocities or control through the transfer matrix p =Ev 1)
Log = logarithm with base 10
LN = least norm where the vectop is_the objective made up of the mea_sured
LS = least square pressures at thaM microphones of the antenna, the velocity or
p = vector of measured acoustic pressure at thgommand vectov is sought atN points or onN sources, and
. h biecti E is the transfer matrix or propagator or model iofiehsionsM x
microphones (objective vector) N (M =N) with rankE < N. Quite often, the inverse problem is
P, = projection of the exact nominal pressure vedtor solved_ir_l the Igast-mean square sense to leac toptiimal veIociFy
h inal (or driving signals). Writing H = E'E, where the asterisk
9 the erlrpne?uhs nomina pressurz vector indicates the transpose-conjugate, we have:
= quality of the inversion procedure
Qq = guaranteed quality of the inversion process v?*(E, p) = H'E'p )
R = regularized matrix
R - real space of dimensiom which would be the exact solution insofar Bs and p are exact
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and also withH well-conditioned.
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Very simple manipulations of Eq. (2) result in therturbation

Ov= V" - v due to perturbation on the exact mo&elon the
exact objectivegp and on the numerical inversion Hf. From now
on, V is the exact vector solution.

Let us consider the perturbed model = E + JE and the
perturbed objectivep = p + Jp. As long asH = E'E is
perfectly invertible i.e., as long as the strict ualty
H*H -1 =0 holds, thenv™(E, p) = H*E p according
to EqQ. (2). This leads to

ov =V"E,p)-v= H'Edp+ (H'EEV-V) 3

where H'E” approximates the “inverse” of the rectangular iratr

E. Equation (3) is simple but with the drawback thatequires
previous knowledge of E and v, making this equation
uninteresting in the real world but a helpful fiegiproach from the
theoretical point of view. In fact Eq. (3) will beme an equation

about the error||5v|| when prior additional information oﬂ\JE”
and orﬂé'p" gives an upper bound.

When matrix H is either not invertible or poorly inverted,
because ill-conditioned, the pseudo-inveré¢*E" of E is
approached by a matrifég where the parametes can be adjusted
to solve at best the problem while still avoidingaoceptable
solutions. The matrix or operatdfig is called regulator, the most

famous being that of Tikhonov. If the numericalccéétion error is
negligible, we have:

ov=V'E D -v=R(pap-v

- . (4)
RJop+ REV- Y

which is similar to Eq. (3).
How EV* tends towardsp or P or, when a calculation is

opt

carried out with the adjusted value f named&™ , how Ev?ﬁi

tends towardsp or P or how £ depends ondp or JE , are

the questions addressed in this paper.

The geometrical interpretation of the inverse peoid dealt
with previously by the author could constitute altm contribute to
answering the questions.

Geometrical I nterpretation

The raw material of this section is to be foundMartin and
Cariou (1997), in Le Bourdon (2009), and in Martire, Bourdon
and Arruda (2012).

Inver se problem and projection

In presence of perturbation on the objective andhenmodel,
solution V°*'(E, P) in Eq. (2) results from the algorithm

minJ (v) = mvin" Ev- iﬂz

®)

with the L? -norm in the objective space. This Euclidian (Heiami
norm in the complex field) norm leads naturallyacgeometrical
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point of view as this operation can be seen apthgction of the
objective P on the hyper-plane spanned by the columns vedtor o
matrix E . The minimization leads to the minimal distance
d,.(E,P) :" Ev¥ - ﬁ| which is the square root of the residual

part J,., of J after the operation. Let us defink as the value of

S
J when the velocity is zero, that i, = || P* and J,, = Jy = Je

the part of J that has been attained thanks to the calculatfon o

~ 2
VIt appears that) =||EvOpt . These definitions allow us to

read symbolically the projection operation in Fiy.where the
objective does not belong to the hyper-plane dwegerturbation in
p,in E, or in both. In these conditions there exists a-nero

angle  (written ¢ for the exactp) such that

dmin(

I8

differing from the general cross-validation paraenetefined as (see
Hansen, 1998):

sing = P) , (6)

d2

min~ _ .
Tré(1 —-EE*)
The efficiency is defined by

J att

F(ﬁ)200§4ﬁ:"ﬁ”z :

)

Therefore, givenp and E , the die is cast for the optimal value
of the velocity and for the efficiency. To improttee efficiency
there is no choice but to reduce angle(throughd,,, ) hoping to

better approach the true value under some assumptions. This
angle has proved to be efficient for classifyingi®as propagators
(transfer matrices) in the automotive industry bg Bourdon,
Picard, Martin (2009).

Error of the objective

In general, the vector of the acoustic pressuragasured data
and, for this reason, inevitably erroneous, whiénb the only data

available. It is said "of reference” or "nominaficawritten p,. The
true pressurep is somewhere around this nominal value and is of
the form p=p,+J p. For the time being and for the sake of
general notation let us writg), = p,+J0p with P, seen as a

perturbed field relatively top,, underlining that the unknown true

pressure results from a variation in the availatdminal pressure.
The error in the objective is defined by

[P~ bl

&) =
e

(®)
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p and[[p] =435

space originating frghrE
Ev*

Jo wleteon

Figure 1. Projection operation related to the minimization of functional J.

As emphasized by Martin and Gronier (1998) and laytM, Le
Bourdon and Arruda (2012), this quantity may cduogdia vicinity
around the reference field containing all the péed fields such
that their relative error is less than or equahtgiven value ofe.

Ideally, a vicinity aroundp, should correspond to a vicinity around
the efficiency F, = F(p,) in order to establish a connection

between efficiency and error in the objective émdso doing, to be
able to see how the efficiency diverges from tHateference when
the error in the reference field increases. In,fabe previous

definition of the vicinity aroundp, , expressed by, is such that to
a given efficiency corresponds an infinite numblediéferent values

of e spread over the intervaﬂ0+,+oo(. Indeed the efficiency
defined by the anglgl, associated withp), is the same for an
infinite number of collinear fieldsp, , and, therefore, to an infinite

number of values o&(P,) . On the contrary, for all these collinear

fields sharing the same efficiency, a single mimmuwalue

belonging to interval[0,1] was defined by Martin and Gronier

(1998). The following definition is thus preferred:

P,- P,
~ |12
|5,

X

ﬁn_ pn

emin( bn) = (9)

Moreover it has been shown that a given valuggjf, corresponds
to a single value of the guaranteed efficiency wttem perturbed
field P, belongs to the vicinity defined bg,,, .

It appears that e, is the sinus of anglé shown in Fig. 2

and therefore, is a measurement of the apertutteeofone centered
on the reference objective (Fig. 3).

e dmin(r)n)
,/’ dmin(pn)
’ ,’dmin(b'n)

space originating

from E

Figure 2. Angle O related to €nin-
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max
dmin

(Qﬂin)

S
~

Ve dmin (pn)
space originatin _ = Ain (B)

min

from & s dmin (ernin)

=

Figure 3. Cone related to ey, defining a vicinity of the given nominal
field p,,.

A point of coordinates [emm(ﬁn),d"Lzu)j can be
min{ Pn

associated to each perturbed fiplg in the vicinity of the reference

field p,,. Let us notice that " p”u = ‘ P .
dmin( pn) dmin( bn)
projection ofp, on p,. For a set of perturbed fields sharing the
the values™" (&)

max

min
max e . ) (see Fig. 3) bound the range df,;, (B,) for any field
considered in that set. Figure 4 illustrates tlethtical result.

wherepy, is the

same minimal relative error, and

Guaranteed quality of the inver se processin the objective space

For a given reference objectiyg,, the reference or nominal
quality of the process is defined by the quantity

J0( pn)

Jres( pn)

Q.= orQﬁ r Q=

o] - (20)
1-F, sing,

ey

1

- €nin
0 ol for 0=y1,) 1
Figure 4. Theoretical form of the bounds of the cloud of points
(@i (P [ Poll/ i () -

Were we working in active noise contrd}, would be closely

linked to the predicted attenuation. Now let us isage a
perturbation of the nominal objective such thahds a minimal
error, of less than or equal to a valgg,, . Geometrically speaking,
with p,,= P, this means that, as seen in Fig. 3, the truespress
located somewhere close to the measured one, ondhe cone
centered on the reference objectiyeand of aperture angt If, in

Special Issue 2, 2012, Vol. XXXIV / 587



the geometrical representationp,' is the projection of the

reference pressure on the edge of the cone loéatibest from the
model hyper-plane, the quality of inverse procasalways better
than that defined by

‘]O( Pn I)

) 11
Jres(Pn) -

Qy =

said to be the guaranteed quality. Therefore, itiaightforward
that the guaranteed quality is given by

Q = 1 = 1
9 sin@+y,) sind cog,+ cof s,
1 or
i %in\/Fn"-\/l_ Giny/1- R
_ 1
Qg - .
1o+ &0 (2F, = D 2 (- &5 )R (5 F)

(12)

Equation (12) was found by Martin and Gronier (19B8t via an
analytical approach far more complicated than tlsisnple
geometrical way. The analytical demonstrationilsisteresting but
no longer as for the result more directly obtaitwthy.

Graphs showing, in logarithmic scale, the guarahtgeality
against the reference quality for various valuegqf, are given in

Fig. 5. The main point here is that the graphsesrea plateau for
high nominal quality leading us to conclude that, & given value
of &, an increase in the nominal quality is not rewdrtly a

significant increase in the guaranteed quality. Witlee nominal
quality is obtained by adapting a model to makehyygerplane of
draw nearer tgp,, this information gives the limit of the effort
beyond which there is no need to go further.

a0 b 0.

@
o

2log Qg [dE)

20
0.

B in (#0)

=
=

.'LIO 2‘0 3‘0 40

20xlogsy O (dB)

Figure 5. Guaranteed quality against nominal quality for various errors in
the objective.

It has thus been shown in this section that themgdacal
interpretation has proved to be a useful tool foespnting the
guaranteed quality of the process of inversion, @alsd to reveal a
cost function for adapting the model. However ttusl operates
only in the objective space.
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Model Adaptation versus Regularization: Observations,
Generalization, Difficulties

When the model and/or the objective is/are not esthere is a
need for regularization such as Tikhonov's or dfther type, for
example by discarding the small eigenvalues of ghepagation

matrix. When only the model is not exact, the ofienaof adapting
the model consists in reducing the angle to the exact objective.

Thanks to case studies, it has been observed anthband that the
regularization has no effect o and on the other hand that the

smaller the anglé/ , the less optimal regularization needed and the

better the results. While we have found a demotistrdor the first
observation, there is still research to be donefitml how
regularization and errors are related.

Error of the objective and of the model
In very general terms and before speaking of eaagerturbed
objective and model, the question is to see ifwhieing of Ev=p

is meaningful and if there is a solution. L\étbe the solution space
and let K be the image o¥ through the modeE : E(V)=K.

When pOK , the writing Ev= p is meaningful and the LS
solution v, =(E* E) "E* p leads to the exact valwe Indeed
Vs =(E*E)"E* p=(E B 'E Ev=v.

When pUK , the writing Ev = p has no sense fovV (if
vV , then pOK') and eitherv exists outsidd/ , or it does not
exist. If the LS solutionv,s =(E* E) " E* pOV, it would
generatep' K , necessarily different fronp. When pOK but

E(V)= K' where p is not located, the same remark can be made.

In the case of errors in the objective only, thebbem to solve
is more precisely writtenEV =P which has no sense as it is

unlikely for pOK . For a well-conditioned matrixH the optimal

solution V' (E, p) = H™E"p differs from the exact solutiok
associated with the exact pressure by

v*(E, p)-v= H'E dp (13)
as stated by Eq. (3) witfe in place of E . When H is ill-
conditioned the regularized Tikhonov solution is
VP =(E*E+€)TE* p (14)
which differs from the exact solution by
VP -v=(E* E+el)E* Sp+( B E+e) B p-v)
(15)

in conformity with Eq. (4) withE in place of E.
In the case of errors in the model only, the prnobte solve is
written Ev = p. The regularized Tikhonov solution is
VP =(E*E+¢l)'E* p (16)

It differs from the exact solution by (see Eq.\@th dp=0).
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VP —y=(E* E+£l)'E* Ev-vV @7 For a given &, V™ =VAU* p arises from minimizing

- J.(v) with AL =(A* A+el ) A
It is clear that if there exists, whek — E (in a sense to be
defined), an optimal value™ of £ that tends towards zero R*, 3. Let us write EE =UAV* not yet having definedA,

then V" — Vv (in a sense to be defined). So far, the adaptation (but the access to which is not difficult) and les consider

the model carried out to obtaik — E rested on the minimization J'E(v) =|| EEV - d|2 the minimization of which for a givens
of angle ¢ . And, effectively, the process was accompaniedhiey

opt

provides v.®. It appearsv.® =v*™. So, for the time being,
observation of £ — 0. It was tempting to assume that the _ N 2 ) . N 2
regularization modified the model in order to reglug/. The functlonaIsJE(v)—||Ev-d| +& " and Jg(v)—|EEv- d' share

observation countered this assumption and we demacedelow in the same objective and the same optimal value of their variables.
four steps the independence of anglefrom the coefficients with

the consequence that the effect of regularizateoomot be described
easily in the objective space (Martin and Le Bowd@010),

perhaps a natural conclusidm retrospect sinceE is not acted
. P -1 % ; =t | 0 . .
upon, contrarily to its "inverseH "E * now written E " . _ U[ n }U* p= EV

4. Butwe have

E.v.” = E,v*™ = (UAV*)VALU* p

0
Independence of theangle/ from &

Without jeopardizing generality, suppose only thedel is not In  these  conditions, functionals J(v) =|Ev- g and

exact. , . )
. . e . J.(v)=|Ev- share the same objective and the same minimal
1. Let us consider minJ(v)=min|Ev-gd with ) =[[Ev-d )
. . v Y distanced , and this whatevete . Therefore angley such that
E:vOC' - E(V)=KOC" and J:C" - R where m>n.

= opt = ., opt

The spaceV could contain for example only those variables thQ;og//:"EV =|EL does not depend on the Tikhonov
norms of which are bounded by a given maximal valiiéh p in || p|| || p||
place ofp, Fig. 1 above has given the Euclidian represemtatiith  coefficient £ . In the case of the Euclidean configuration shawn
VIOR and E(V)=K O R, and in the case wherp O E (V). Fig. 1 this is true for both functionals.

_ The singular value decomposition (SVD) & is such that 5.  Finally, the Tikhonov regularization does not seerhave
E=U A VZ*with U*U=UU*=I_ and V*V=W*=1I_. aninfluence on anglgy in spaceC™ of the objectives, but it plays
mmm o dagonal . a role in spacé/ of the solutions. Therefore, we cannot expect to

Matrix A is diagonal in its upper part and zero in its loyart. repres_ent_easily (if indeed it is possible) theutagzation process in
Matrix U is made up of base vectors of the objective spadf® OPiective space.

where the datap is located, and matri¥/ is formed with the base ) o ) ) ]
) - ) Optimal regularization and illustration on a simple example
vectors of spac¥ of variablev. When pOE(V) , one cannot find

vOV (one cannot inverE ) and E™ is replaced by the term called ~ Going back to V" (E, p), let us notice that, when solving

pseudo-inverse ofE that is g1 :(E* E)’l Ex . This operation min
(=] —— £20

Vo —v|| with the L2 -norm in the solution space, the results
) m nno - observed in examples (therefore without generatimatyet) is
leads to the solutiorv™ 0V such that it generates the nearest B =0 wh SE and theref VO — b q
p'OE(V) =K of p inthe sense of the Hermitian normcif¥. €7 =0 whatever and therefore,|V, \'" cannot be use

As V™ =E'p, it results in v*=VAU*p with forfinding £ (leaving aside thav is not known). Were we to

accept negative values of, there could be a value to make
[ } leading to "vg‘“—vi zero. Indeed V"' —v=(E* E+¢I)"E* Ev-v=0

when E* Ev=(E* E+¢l)v i.e. E* JE v =-£V. This can be

opt

A= (A’A)’lA* . We have alsoAA =
= —— ——
n,m ——— nm m,m

Ev™ = EVAU* p=(UAV*)VA'U* p or true only if E* OE V is collinear withv , a very strong constraint.
X Its LS value would begX =—-(v*\)'v*( E* +0E) JE vV

=\ 0Pt — * = n %

Ev? =UAAU™ p= U[ 0 0} U p. where it is true that the dependence 0k is made explicit, but

opt
£

observed concerns® (), note® (JE) .

this value does not minimiz - \/1| and moreover, what has been
2.  Now let us consider the functional of Tikhonov wic

helps in approximating the inverse matrix E* and is a .
In fact, the optimal valuec®™ of & is such that the objective is

best reached while the amplitude of the velocitkept reasonable.
J,:C" - R andeO R . This qualitative definition has received a heucistepresentation
through the parametric so-calldd-curve which gives the value of

regularization  process: J,(v) =|[Ev- g +&|} with
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opt
Ve

Log

against Log" Evo — d| (Kirsh, 1996; Hansen, 1998).

Vincent Martin

17.

The optimal values™ corresponds to the compromise located a&hese conditions, the perfect objective {8=417.5. Let us

the “corner” of the L-curve where the curvature is maximum.

37.

However, the idealized_ -curve has not always so clear a form angherturb the term (1,2) off to obtain E with a law such that

opt

the location for obtainingg™ should be determined with care.

Let us say thate™

objective and due to all sorts of reasons (measemesnerrors in the
model, calculation approximations). The SNR isruf by rule of
thumb and is not seen as model dependent. Howkladd, (2003)
wrote with the present notations that “re-scalinfgtloe matrix

E*E in tumn necessitates a re-scaling of the regution
parameter £°”

concerning the dependence of™ on the model, let us refer to

Gomes and Hansen (2008) where, according to the ¢fpmodel
chosen — which could be that of Statistically Opied Nearfied
Acoustic Holography (SONAH) to replace the firstsien of NAH
from Maynard et al. (1985), or that of the Bounddngegral
Equation Method (BIEM) as developed by Bai (19923 escribed
by Augusztinovicz and Tournour (1999), or that ofjubralent
Source Method (ESM) —, there is a change in tis¢ tegularization
parameter. The work of Gomes and Hansen is an @fctie earlier
work carried out by Williams (2001).

Log|vz*]

LogHEv‘;"‘ - q‘

0.2 0.4 0.6 0.8 1.0 12 14

o

Log

opt|
Ve

0.6

0.z

Log| Ev?™ - p

02 0.4 06 0.8 10 12 14

Figure 6. Two types of L-curve for the numerical example dealt with.

Is the observation concerning the decreasingsf with that of
Y made when solving physical inverse problems clobeked to

the underlying physics, or is it a more generalpprty? To try to
answer that question, let us take a very arbitramatrix

1. 2.
—7.
E=|1.1 2.1 and an arbitrary perfect veIocity:{lz}. In
5. 6. '
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. And again to emphasize the state of the art

E1,z = E,,(1.+ 0.5Randonj Reat,1;+ 1]), i.e. with unstructured

has been defined by Steiner and Halduncertainties. First, calculate the angl# (calculated through
(2001), as depending on the signal to noise r&NR) seen at the

S
sing :W) , then draw thel_ -curve, and in the case of a

relatively visible “corner”, find the EOpt, and finally calculate

opt
(e

—v” It must be said that the value &f™ retained is such

that the quantity\/(Log" EvoP — p")2 +(Log||v€°"t||)2 is minimal,

which is never far from the maximum curvature bat always at
exactly the same location. Figure 6 shows two typled_ -curve
retained during the process and Fig. 7 shoa®¥'(y), and

VP — v" againstyy .
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Figure 7. £ () above,

t ) t
ngm —V" against & pelow.

This simple numerical experiment shows that theedesing of
£ with ¢ and that of{|v°> —V” with £ could be a general

ot

property rather than an observation deriving frbwa physical nature
of the inverse problem dealt with in acoustics. ldegr in this

arbitrary example, we see a jump &f” (i) and a corresponding

void in the curve of error in the velocity. Moreoyéf several
components of matrixe are submitted to variations, the graphs are
of far greater complexity as clouds take the ptedbe curves.
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Beyond the observation made on this very simpleutation
experiment, how can it be demonstrated t‘baaj,f’; - V” decreases

with the anglel/ ? What are the difficulties?
Indeed, let us write

ey
=R p-H'E p+ H'E p-HE

<R~ APE )P +|(HPE - HE

(18)

where it can be demonstrated (via the SVD &) that
"( R - I:|_1I§*)p|| - 0 when & - 0, where it is natural that
|(HE"~HE")p| - 0 when (H™E"~HE") - 0. But how
can the dependency oW/ be expressed? To this end,

expression ofe®(¢) will be needed. By accepting thaf™ is the

solution of n"‘lgin\/(Log”Ev;’pt - q|)2 + (Loq Via
_|ev-o

[l
easy task.
While the following case studies as well as thevatmalculation
example have shown that the adaptation of a modeiguthe

)? , the expression

in terms of ¢ such thatsing does not seem an

e Po(Xx/O)=3" > Gy (d) (k) Y(6.9)

centre of the primary source(s). This differerfée- S' will play the
role of regularization.

<

ac'\:.-’

/

4
\ /
ARG

0

Figure 8. lllustration of the exterior spherical acoustical holophony.

The primary harmonic pressure is developed in dinen f

(19)
n=0 m=-n
where h, are the Hankel functions anl, are the spherical

harmonics. There areP=(N, +1)° terms; however, the
axisymmetry of the pressure field reduces the nunobeéerms to
P=(N,+1) asm=0. For example, the field shown in Fig. 9 is
such that there is a need for>1 to radiate it, whateve® (i.e.,

P = 3). The coefficientsC,,, can be determined almost exactly

parameter{/ could be an interesting direction to follow, the Jd providing N, is sufficiently large. In the example chosen,

definitive interest ought to depend on the dematistn sought and
this question seems to be still open.

Case Studies

Semi-analytical spherical holophony in thefar field
In Pasqual and Martin, 2012, a primary field dua tsource (or
sources) in a sphere, of centreC is given on the spherical surface

I". (Fig. 8). This area is located in the far fieldatale to the source.

The given pressure is expanded in a serie® @idependent
functions composed of spherical harmonics considerihe

coordinate cente©. The number of « modes » to describe the

primary pressure with a good approximation depeods the

coordinate cente®. The minimum value oP occurs wherO is at

the so-called acoustic centre, in general unknasven when the
geometrical centre of the primary source is given.

A secondary source is required to radiate the gipemary
pressure as well as possible. This source, withénsphere but also
far from its surface, is constrained to radiateoatollable given
numberS of « modes » withS< P; some of them not radiating
efficiently, leaving S'(<  efficient controllable modes.

Where should it be located to reproduce the prinfeeld as
well as possible? The problem is equivalent to tifafinding the
location of the secondary source centre@alt should be said that
the problem of reproducing a field by a sphericairse has also
been investigated by Peleg and Rafaely (2011).

We are facing an inverse acoustic problem wherartbdel of
the secondary radiation has to be adapted throghsécondary
source location to reproduce at best the primagld fiDue to the
secondary source constraints, there Bre S' « modes » missing
to reach the goal, a number that dependsOorOften, but not
always, the minimal difference occurs whénis at the acoustic

J. of the Braz. Soc. of Mech. Sci. & Eng.
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N, =6, therefore P=49 in general andP =7 here. In other

words, the number of modes with non-zero (or négky
coefficients depends on the location of pdnt

06
04 ’
02
0
02 -
: 02

Figure 9. Axisymmetric primary field on rc . The shape and the color map

0

0
-0.2 -0.2
(e)

indicate, respectively, the amplitude and phase (in degrees) of pp(xc) .

After linear indexing such that=n?+n+m+1 and with the
vector §(X) made up of componeng(x) = h,(kn Y,,(6,¢) and
=C

nm ?

vector C with componentsc, the primary pressure is also

expressed byp,(x/0O) = §'(X).c . As the number of components

in the vectors depends on the location of p@intheir dimension is
kept the same but the number of non-zero componemiss. The
identification of the coefficients in vecta@ is obtained through the
LS-method, but to overcome a difficulty due to theonditioned

matrix in the inversion, it is practical to dealhvtoefficients; (r)
such thaty,, = H.c where component$i; of diagonal matrixH

are h (kr) . In these conditions:

Special Issue 2, 2012, Vol. XXXIV / 591



p,(x/0)=s(x).H™y, (20)

These new coefficients make up the spherical wpeeteum of the
primary pressure evaluated Bf .
The identification of y,, leads to their value‘f/p and, in the

present situation,P is sufficient to ensure a good if not exact
reconstruction ofp,(x / O) , whatever.

Similarly the secondary harmonic field is expresisgd

p.(x/0)=Y Z D._h (k)Y (6,8)

n=0 m=-n

(21)

written

p(x)=s(x).d=$(X.H . (22)
Simply enough, our goal would be perfectly achieweith
V.= f/p if the secondary source were located at the aicoceshtre

of the primary source and able to radige= P modes. However,
the secondary source constraints wi Phave been mentioned
and moreover, from among th® modes, a number do not radiate
efficiently.

Indeed, the radiation efficiency of a compact sjmaér
loudspeaker array (CSLA) has the form shown in E@y.Asking of
such a source to radiate in the low frequency ramigfe a largen
leads to far too high a level of driving signal \@locity. It was
decided to discard these disturbing high valuesiodnd consider
only thosen associated with a reasonable minimum vatng, of
the efficiency. To illustrate, working with ka =30and considering

only those modes witw >, =10°, only n=0 andn=1 are
left, therefore, N, =1 and S=4 or 2 for axisymmetric pressure

distribution. Let us recall tha@< P < 7in the case studied. It
appears that 4 sources of the CSLA, placed atdtwaled extremal
points for hyperinterpolation distributed over tgherical box can
be driven to radiate efficiently 4 modes (and 2rees for 2 modes).

n

W o= 0

Radiation efficiency

ka
Figure 10. Radiation efficiency curve for a spherical source with radius a
for n<3.

This discarding plays the role of the regularizatias it
facilitates access to the solution of the invensblem, and the best

solution in the LS-sense for p,(X) =s(x).H™ .y, leads to
Vs = Vs regu N the following way:
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ysi If Un 2 Umin
=30 23
ys,regul,l { 0 If o_n < Umin ( )
Let us define the regularization quality factdr by
A :1_ ys,regill_yp" (24)
il

which is the inverse of the amount of regularizatiGlearly, when

Veorequl — f/p thanks to seeking the best location for the seagnd
source, then the amount of regularization decreasesell as the

p.— by

residueR :|

zyfa

%10

=

08r

0.6

Sopt
[

04

0.2

-2 -15 -1 -05

.

Le

Figure 11. Norm of the optimal radial velocity without and with
regularization by discarding. Results as function of zg for the primary field
shown in Fig. 9. Only the graphs e are considered in this paper.

In the numerical simulation, the primary field ofgF9 was
chosen because it cannot be produced by a multipolarce of
order N<1. It was obtained by using Eq. (19) with=0 and the
wave spectray(r;) = 0.2,y10(r) = 1, y40(r.) = 1. Due to the
axisymmetry of pp(x) , we only deal with point® located on the

z axis. Therefore only positions given bgd =(0,0,z,) are
considered here. The values of the parameterdase Diven in the
text above added td, =20a and thuskr, =6 since ka=0.3.

Moreover, the spherical area was sampled with 38hents and
each elementary area weighted in order not to Ipgei densely
sampled regions on the sphere. The position of séendary

source is assumed to be within the rangga < z, < 2a to ensure

far-field conditions. Figure 11 shows the norm loé bptimal radial
velocity without and with regularization; only gtag is considered

here. The results are given as function &af. It is clear that

regularization is needed to prevent the loudspeakem being
overloaded. Figure 12 shows the normalized residoain and the
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regularization quality factor as functions @ (only graphe is of ~How to take into account the radiation behind ftost plane due to

the vibration of the rear face and the thicknessfs Tproblem
interest here). It appears thR( ™) > 0 because the primary field originates from the acoustic holography of a rafliwheel
cannot be accurately decomposed into spherical drsios of order embedded in a car body. Despite the slightly dsffiergoals, let us
n<1. However R is greatly reduced if the secondary source i§uote the work of Schuhmacher et al. (2003), oruitecsimilar

placed at the optimal location. subject.
0.35 Z
e r,=ryor r

-
—=-(d)
(e)

1 - i
I & _r v

095 _-“ "\_— rl_r1Dr1
09 ," e fmm T Gl Figure 14. A thick disc, with vibrating front face Fl, rear face F2 , thread
il 1 r3, radiates in the unbounded 3D space Q.
08 (a)

(b)

— _ . .

. e Presently the radiation model is obtained through houndary

(&) . .
o7 integral method that has the continuous form

p(Q =ipw| V(P g,(P QdP
Figure 12. Above, normalized residual norm R(ZS)/"pp(XC)” and '[rl 9}/2
below regularization quality factor function of z (primary field in Fig. 9). + kjr LBpP) g}/ (P, Q)dP (25)
1 2

Graphs e are considered in this paper.
+ k[ A pP) g, (P, Q)P

s 19
i i leading to the discrete form
a0 -
: a p = ipafikc (BB 1 - KABE)] B+ dv
-3
e “ or p=EWB.B)V
0z 100 (26)

=150

where B, and S are the unknown admittances (in a particular

Figure 13. Sound pressure field produced by a spherical secondary

. c
source placed at the optimal position for reproduction of the primary field Sense) reSpeCtlveW Oﬁl and rl :

in Fig. 9. The shape and color maps indicate respectively the amplitude For the numerical simulation, the given modal forams the
and phase (in degrees). faces and on the thickness are
The results presented show, in an almost naturg| tat the . r-r. Vi
adaptation of the model (here through the sourasatitn) is v(r.8)=a sin(16) CO{%” 'EJ
accompanied by a reduction in the regularizatiarded and improves max - min (27)
the reconstruction. The synthesized field is giveig. 13. v(y 8) = 3 sin(lé?) co{l ”j
e

Numerical nearfield holography

In Martin, Le Bourdon and Pasqual (2011), a thiitiating disc Admittances 3, and /3] are local reactions and depend on the
(Fig. 14) radiates sound in the unbounded 3D spHlce. acoustic

pressure is measured on a plane array of microghper@llel to one
side of the disc, called the front face. to identify and it is impossible to find the trueopagator in these

From the inverse procedure called here holografiteytype of ~conditions. However, it has been observed thatatfiittance on
vibration on the front face is deduced from the soeed pressure at [©  tends toward zero when the radial distance teossards
the microphone array. It is supposed that the idismbedded in a . >

total front plane made up of , and its complementary paff; .

point xd I_S. Therefore, there are an infinite number of vdaab

infinity. Beyond a certain distance, the admittareceegligible and
makes finite meshing of the source plane possitie. number of

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright 0 2012 by ABCM Special Issue 2, 2012, Vol. XXXIV / 593



unknowns in the propagation model is directly lidke the number
of points in the meshing of the source plane. fiegps unrealistic
for computation time reasons to identify each lcadnittance. To
reduce the number of unknowns, the admittance psoaghed by a
known function based on its expected form, and ooly a small
number of coefficients of the function must be iiféed. In the case

of the thick disc, the following approximatioﬁ has been chosen:

e (cleoZr + 03) + i(c4e%’ + (%) 0r0[ 0,5 8)

C I +ic,r® O D[ e 00 (

max?

where the coefficientsC, (i :1,10)D R. Adapting the propagator

consists now in identifying the 10 coefficients. whver this

simplification is at the price of information abdbe function.
Using the genetic algorithm with the cost functimade up of

the anglet/, the coefficients have been obtained approximaaty

the results are given in Fig. 15.

——actual B,
actual B,
opt

_____ o
B>

-0.2

0.25 04 06 08 1 12 14 16 18
r(m)

0.2

Figure 15. Admittance on the front face, expected and reconstructed.

erreur | \\FFEVN/M\ |

Figure 16: Optimal Tikhonov regularization parameter and error in the
reconstructed velocity versus the cost function.

Table 1 shows the vibrating form obtained for thent face

and Fig. 16presents the same results in another form, narhely t

optimal value of the Tikhonov regularization paraeneagainst
angle {/, itself depending on the admittance on the fratef

I, O3, as well as the error in the reconstructed vefoagainst

angley .

These results illustrate again the interaction ketw the
adaptation of the model and the value of the regaton
parameter with the consequence on the reconstruetedity.
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Conclusion and Open Questions

The present paper has given very general equatiokig
errors in models as well as in objectives and seritothe solution of
certain inverse problems. Some interactions betwessdels,
objectives, errors, and regularizations are nofbMsin these
equations while their consequence on the soluiomell described.
The current research attempts to contribute inifigdhe actions
and interactions at play.

The geometrical interpretation has proved usefuhow very
easily the guaranteed quality of the inverse praopedand also to
define a cost function (angh ) to adapt the model in cases where

the objective is exact. It has been demonstratedt tthe
regularization does not act dff in the objective space (it acts in

the solution space) and that a smaller cost fundéads to a lesser
optimal regularization parameter and gives a betémtion. These
links have been seen in a very simple calculatiem®le outside
all physical meaning. However no demonstration ket been
found.

The question of error in the objective with an eéxaodel has
not been addressed here, except through the geadamjuality.
Nevertheless anglé/ exists for an exact model and a perturbed

objective. However, the aim here, not worked on igeto adapt the
pressure to reach the model, not the opposite.

Now it must be underlined that the adaptation ef thodel has
been carried out via the reduction of angle from the exact

objective. In the presence of perturbation on thieaive, the same
procedure would be followed by reducing angle+ & without

being able to distinguisky from &. If the adaptation works well,
the model will reach the perturbed objective andthe far from the
exact objective by anglé. If &>/, the cure is worse than the

disease! How should the problem, clearly definedg@ometrical
terms, be tackled?

Another question concerns the geometrical reprasientof the
best location of the sensors and their robustriesss at the center
of preoccupations in active control in the 200Gis, the paper by
Baek and Elliott can testify. In this field, Martand Gronier (2001)
showed, first, that it is always possible to obthi@ nominal quality
of the inverse process by filtering a small numtfecomponents of
the reference objective and, second, that the tobss of the
filtered sensor configurations was not identicakduld be that the
first property may be understood thanks to geowsltri
representation in the objective space (moreoverh win
understanding of one of the constraints associatéith the
assertion) and that the robustness may be unddrspdooking in
the direction of the projection of the cone on shibspace to which
the filtered components of the objective belong.
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