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The Fundamental Elements in Certain 

Inverse Acoustic Problems: their 

Roles and Interactions 
Acoustic holography and holophony, wave field synthesis and active noise control are based 
on common elements which are causality, model, objective, and regularization. In the 
frequency domain (putting causality aside), a simple formulation states the influence – not 
the interaction – of errors of the model and objective and of regularization of the results. 
However, it does not give either an understanding or any relation of cause to effect. When the 
objective can be reached using the available model, regularization is not needed and the 
information liable to be extracted from this determined problem is poor, unlike in the over-
determined case when the model does not allow the objective to be reached. The geometrical 
interpretation of the over-determined problem written in the least-mean square sense could 
be a tool to enlighten the influences and interactions in question. After having shown the 
interest of the geometrical interpretation, a pseudo-analytical inverse problem in spherical 
holophony and a numerical problem in plane holography provide particular illustrations. 
From among the properties accessible, one is highlighted: in the case of a perfect objective 
but inaccurate model, its adaptation brings a decrease in the amount of regularization 
required and an improvement in the results.  
Keywords: inverse problems, regularization, acoustics 

 
 
 

Introduction1 

Acoustic holography (Metherel et al., 1967; Maynard, Williams 
and Lee, 1985, for the early works), wave field synthesis (Berkhout, 
de Vries and Vogel, 1993, for the early work), holophony, and 
active noise control (Nelson and Elliott, 1992; and Elliott, 2000, 
textbooks presenting a synthesis) are inverse acoustic problems 
sharing common elements such as causality, transfer function or 
model, objective or goal to be reached and regularization. In the 
frequency domain, the question of causality is put aside.  

In these problems, one or a few sources are required to radiate a 
given acoustic pressure field (for an extensive overview of the past 
three decades with 170 references, see Wu, 2008). Indeed, sound 
field synthesis consists in determining driving signals to feed several 
loudspeakers in order to radiate a particular wavefront, a particular 
directivity in holophony; active noise control is linked to sound 
synthesis indirectly as the goal is to oppose a so-called acoustic 
primary field at the control microphone locations; holography is 
concerned with reconstructing a field in a whole domain from 
pressure measurements at a finite number of locations, this 
reconstruction often resting on the finding of the source strength at 
the origin of the measured field.  

With less sources to control than given pressures to reach, the 
problem is overdetermined and rests on the least-square (LS) 
method, while with more sources than pressures leads to 
underdetermined problems with the least-norm (LN) method (the 
smallest solution from the infinity due to underdetermination, i.e. 
dealing with the LS method plus a constraint). Emphasized by Hald 
(2009), these solutions seem to coincide when regularization is 
involved. Limiting the investigation to overdetermined problems, 
the geometrical interpretation accompanies naturally the LS method 
with the Euclidian distance. The use of this interpretation has proved 
to be a good tool for investigating some properties such as the 
guaranteed quality of the procedure for reaching the objective (the 
given pressure field).  

The geometrical view is also closely linked to the description of 
inverse problems with the vocabulary associated with sets, as 
presented by Kirsh (1996). For example, the given pressure field 
could be inaccessible for various physical reasons, all related to the 
pressure field not belonging to the set of fields the sources can 
generate. In active control, the secondary sources are not merged 
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with the primary ones at the origin of the given pressure field and 
they cannot radiate the opposite field (except in the very particular 
1D case of controlling plane waves in ducts); in holography primary 
and secondary sources are often the same, but here an erroneous 
measured field has no reason to be accessible. The best we can do is 
to reach the projection of the given field on the set of fields the 
secondary sources can radiate, leading to the geometrical point of 
view. The same will occur when the model is erroneous, and 
therefore, not liable to generate the objective. To generalize, it will 
be said that the model is not exact when incapable of radiating the 
exact objective (which does not mean that the radiation itself is 
erroneous), while the definition of an erroneous or an exact 
objective is kept natural.  

So much for the objective space. Now what about the solution 
space (that of driving signals or source velocities)? To go from one 
space to the other, the model and its inverse are needed, and it is in 
the nature of things that the inverse of the direct operator is ill-
conditioned (to the point that the differentiation between the two is 
through conditioning) which means that errors, whatever their 
reason for being, are greatly amplified in the solution and in the 
reconstructed field. The regularization acts on the inversion to limit 
the amplification and also plays a preponderant role in the spatial 
resolution of the solution obtained, as was underlined by Nelson and 
Yoon (2000), by Yoon and Nelson (2000), by Nelson (2001), by 
Kim and Nelson (2003). Regularization acts first in the solution 
space; in the objective space, only the consequences can be 
observed and this will be proved. Besides, we have noticed that the 
adaptation of the model to better radiate the perfect objective (the 
measured pressure without any errors) is accompanied by a need for 
less regularization and a better reconstructed field due to a better 
determination of the solution (driving signal or source velocities). 
This could help in finding the relation between solution and 
objective spaces through regularization and perhaps make use of the 
geometrical interpretation.  

Having this research in mind the formulated framework is 
given, and then the geometrical interpretation in the objective 
space is described. Its usefulness will be shown through an 
application. Contrary to the demonstration of a probable 
impossibility to describe the model regularization in the objective 
space, a demonstration of the relation between adaptation of a 
model and the amount of regularization has still not been found 
and the difficulties arising therein will be shown. Applications in 
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far-field acoustic holophony and in nearfield acoustic holography 
illustrate the above properties. Open questions conclude this 
paper, devoted to an attempt to gather a variety of acoustic inverse 
problems with their uncertainties.  

Nomenclature 

a   = scalar 
a   = vector 
%a   = erroneous vector 

na   = nominal value of a  

aopt or a
LS

 = least mean square solution obtained via the 

minimization of a functional; opta  is also for the 
case of optimality in general 

A  = matrix 
%A  = erroneous matrix 
* *a , A  = transpose conjugate of a , of A  

1−A  = inverse of A  
†A  = pseudoinverse of A  

a  , A  = L2-norm of a vector, of a matrix 

δa , δ A   = perturbation (variation) on a , on A  
mC  = complex space of dimension m 

mind  = minimal distance between two vectors in the L2 sense 

min
mind  = minimum possible value of mind  

max
mind  = maximum possible value of mind  

1D, 3D = one-dimensional, three-dimensional 
e = relative error on the objective 

mine  = minimal relative error on the objective 

E   = transfer matrix or propagator 
F  = efficiency of the inversion procedure 
h   = Hankel function 
I   = identity matrix  

mI  = identity matrix of dimensions mxm 

J   = functional made up of the square of the L2 norm of 
the distance between two vectors 

0J  = initial value of J  

attJ  = part of 0J  the minimization procedure makes it 

possible to reach 

resJ   = residual part of 0J  after its minimization 

K  = space of the image of the space of the source 
velocities or control through the transfer matrix E  

Log   = logarithm with base 10 

LN  = least norm 
LS = least square 
p   = vector of measured acoustic pressure at the 

microphones (objective vector) 
,
np   = projection of the exact nominal pressure vector to 

the erroneous nominal pressure vector 
Q  = quality of the inversion procedure 

gQ  = guaranteed quality of the inversion process 

R  = regularized matrix 
mR  = real space of dimension m 

R+  = space of positive real numbers 
Tr  = trace of a matrix 
v   = vector of the source velocities or source controls 
V  = space of source velocities or source controls 
Y  = spherical harmonics 
β  = acoustic admittance 

ε  = regularization coefficient 
ψ  = angle between the objective vector and the 

hyperplane originating from the transfer matrix E 
σ  = radiation efficiency 
ϑ  = angle between the erroneous and the exact 

objective vectors 
ANC   = active noise control 
BIEM   = boundary integral equation method 
CSLA = compact spherical loudspeaker array 
ESM  = equivalent source method 
NAH  = nearfield acoustic holography 
SONAH = statistically optimized nearfield acoustic holography 
WFS = wave field synthesis 

Framework 

The source or sources whose velocities are sought are called 
“secondary source(s)” to differentiate their role from the so-called 
primary source(s) at the origin of the radiated pressure. They differ 
in sound field synthesis, holophony and active noise control while 
they are merged in holography. Thus, in synthesis and control, 
secondary sources cannot radiate the primary field accurately in the 
whole 3D domain (contrary to cases related to 1D propagation).  

As the primary field does not belong to the space of the fields 
liable to be generated by the secondary sources, it is said that the 
radiation model cannot be exact, with a clear sense in mathematical 
set terms. In contrast, there might be such an exact model in 
holography. Here a perturbed propagator, which is thus not exact, 
arises not from conceptual reasons but because physical data like 
sound speed, source and microphone locations are only 
approximated and/or because the measurements and calculations are 
not exact.  

Concerning the objective, it is said to be exact if it perfectly 
describes the field to be generated. On a microphone array, it is 
necessary to have a sufficient number of sensors with a well-chosen 
distance between them according to the sound spectrum under 
study, and also strictly no measurement errors on the recorded and 
signal-processed pressures.  

The above problems always rest on equation  
 

 =p Ev                                                        (1) 

 
where the vector p is the objective made up of the measured 
pressures at the M  microphones of the antenna, the velocity or 
command vector v  is sought at N  points or on N  sources, and 
E  is the transfer matrix or propagator or model of dimensions M x 
N (M ≥	N) with rank E ≤ N. Quite often, the inverse problem is 
solved in the least-mean square sense to lead to the optimal velocity 
(or driving signals). Writing *  =H E E , where the asterisk 
indicates the transpose-conjugate, we have:  
 

-1 *( ,  )  opt =v E p H E p                                          (2) 

 
which would be the exact solution insofar as E  and p  are exact 

and also with H  well-conditioned. 
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Very simple manipulations of Eq. (2) result in the perturbation 

 -  optδ =v v v due to perturbation on the exact model E, on the 
exact objective p and on the numerical inversion of H. From now 
on, v  is the exact vector solution. 

Let us consider the perturbed model     δ= +%E E E  and the 

perturbed objective     δ= +%p p p. As long as *  =% % %H E E  is 

perfectly invertible i.e., as long as the strict equality 
-1  -    =% %H H I 0  holds, then -1 *( ,  )  opt =% % %% %v E p H E p  according 

to Eq. (2). This leads to  
 

    -1 * -1 *  ( ,  ) -      (  -  )optδ δ= = +% % % % %%v v E p v H E p H E Ev v   (3) 

 

where -1 *% %H E  approximates the “inverse” of the rectangular matrix 
%E . Equation (3) is simple but with the drawback that it requires 

previous knowledge of E  and v , making this equation 
uninteresting in the real world but a helpful first approach from the 
theoretical point of view. In fact Eq. (3) will become an equation 

about the error δ v  when prior additional information on δ E

and onδ p  gives an upper bound. 

When matrix %H  is either not invertible or poorly inverted, 

because ill-conditioned, the pseudo-inverse -1 *% %H E  of %E  is 

approached by a matrix ε
%R  where the parameter ε  can be adjusted 

to solve at best the problem while still avoiding unacceptable 

solutions. The matrix or operator ε
%R  is called regulator, the most 

famous being that of Tikhonov. If the numerical calculation error is 
negligible, we have: 

 

      
  ( ,  ) -    ( ) -   

                                      (  -  )

opt
ε

ε ε

δ δ
δ

= = +

= +

% %%

% %

v v E p v R p p v

R p R Ev v
               (4) 

 
which is similar to Eq. (3).  

How opt%Ev  tends towards p  or %p  or, when a calculation is 

carried out with the adjusted value of ε  named optε , how opt

opt

ε
%Ev  

tends towards p  or %p  or how optε  depends on δ p  or δ E , are 

the questions addressed in this paper.  
The geometrical interpretation of the inverse problems dealt 

with previously by the author could constitute a tool to contribute to 
answering the questions.  

Geometrical Interpretation 

The raw material of this section is to be found in Martin and 
Cariou (1997), in Le Bourdon (2009), and in Martin, Le Bourdon 
and Arruda (2012). 

Inverse problem and projection 

In presence of perturbation on the objective and on the model, 

solution ( ,  )opt % %v E p  in Eq. (2) results from the algorithm 

   
2

min ( ) min
v

J = −% %
v

v Ev p                                        (5) 

 

with the 2L -norm in the objective space. This Euclidian (Hermitian 
norm in the complex field) norm leads naturally to a geometrical 

point of view as this operation can be seen as the projection of the 
objective %p  on the hyper-plane spanned by the columns vector of 

matrix %E . The minimization leads to the minimal distance 

min( , ) optd = −% %% %E p Ev p  which is the square root of the residual 

part resJ  of J after the operation. Let us define 0J as the value of 

J when the velocity is zero, that is 
2

0J = %p  and 0att resJ J J= −  

the part of J  that has been attained thanks to the calculation of 
optv . It appears that 

2opt
attJ = %Ev . These definitions allow us to 

read symbolically the projection operation in Fig. 1 where the 
objective does not belong to the hyper-plane due to a perturbation in 
p , in E , or in both. In these conditions there exists a non-zero 

angle ψ% (written ψ  for the exact p ) such that  

 

    min( )
sin

dψ =
%

%
%

p
p

,                                                       (6)   

 
differing from the general cross-validation parameter defined as (see 
Hansen, 1998): 
 

2
min

2( *)

d

Tr − % %I EE
.   

 
The efficiency is defined by   
 

2
2( ) cos attJ

F ψ= =% %
%

p
p

.                                               (7) 

 

Therefore, given %p  and %E , the die is cast for the optimal value 

of the velocity and for the efficiency. To improve the efficiency 
there is no choice but to reduce angle ψ%  (through mind ) hoping to 

better approach the true value v  under some assumptions. This 
angle has proved to be efficient for classifying various propagators 
(transfer matrices) in the automotive industry by Le Bourdon, 
Picard, Martin (2009).  

Error of the objective 

In general, the vector of the acoustic pressure is measured data 
and, for this reason, inevitably erroneous, while being the only data 
available. It is said "of reference" or "nominal" and written np . The 

true pressure p  is somewhere around this nominal value and is of 

the form n δ= +p p p. For the time being and for the sake of 

general notation let us write n n δ= +%p p p with n%p  seen as a 

perturbed field relatively to np , underlining that the unknown true 

pressure results from a variation in the available nominal pressure.   
The error in the objective is defined by  
 

( ) n n
n

n

e
−

=
%

%
p p

p
p

                                            (8)   
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 and 0J=%p  

 

min resd J=

ψ%
ψ 

%p  

opt%E v  
space originating from   %E  

and opt
attJ=%E v   

  
Figure 1. Projection operation related to the minimization of functional J. 

 
As emphasized by Martin and Gronier (1998) and by Martin, Le 

Bourdon and Arruda (2012), this quantity may constitute a vicinity 
around the reference field containing all the perturbed fields such 
that their relative error is less than or equal to a given value of e.  

Ideally, a vicinity around np  should correspond to a vicinity around 

the efficiency ( )n nF F= p  in order to establish a connection 

between efficiency and error in the objective and, by so doing, to be 
able to see how the efficiency diverges from that of reference when 
the error in the reference field increases. In fact, the previous 
definition of the vicinity around np , expressed by e, is such that to 

a given efficiency corresponds an infinite number of different values 

of e spread over the interval [0 , (+ +∞ . Indeed the efficiency 

defined by the angle nψ%  associated with n%p  is the same for an 

infinite number of collinear fields n%p , and, therefore, to an infinite 

number of values of ( )ne %p . On the contrary, for all these collinear 

fields sharing the same efficiency, a single minimum value 
belonging to interval [0,1] was defined by Martin and Gronier 
(1998). The following definition is thus preferred:  

 
*

2

min

.

( )

n n
n n

n
n

n

e

−

=

%
%

%
%

p p
p p

p
p

p
                                        (9)                                          

 
Moreover it has been shown that a given value of mine  corresponds 

to a single value of the guaranteed efficiency when the perturbed 
field n%p belongs to the vicinity defined by mine .  

It appears that  mine  is the sinus of angle θ  shown in Fig. 2 

and therefore, is a measurement of the aperture of the cone centered 
on the reference objective (Fig. 3). 

 

 

min( )nd p

nψ

np

space originating

from

 

  %E
 

n′%p

n%p

θ 

min( )nd %p

min( ' )nd %p

Figure 2. Angle θ  related to ����. 

 

 
 
 
 

 
 
 
 
 
 
 
 

n′p%

 
min ( )nd p

nψ  

θ 

np

min
minmin ( )d e

max
minmin ( )d e

space originating

from %E
 

min ( )nd ′p%

np%

 

 

Figure 3. Cone related to ���� defining a vicinity of the given nominal 
field	�	.  

A point of coordinates min
min

( ),
( )
n

n
n

e
d

 
 
 

%
%

%

p
p

p
 can be 

associated to each perturbed field �
� in the vicinity of the reference 

field ��. Let us notice that 

'

'
min min( ) ( )

nn

n nd d
=

%%

% %

pp

p p
 where �
�

�  is the 

projection of �� on �
�. For a set of perturbed fields sharing the 

same minimal relative error, the values min
min min( )d e  and 

max
min min( )d e  (see Fig. 3) bound the range of '

min( )nd %p for any field 

considered in that set. Figure 4 illustrates the theoretical result.  

Guaranteed quality of the inverse process in the objective space 

For a given reference objective ��, the reference or nominal 
quality of the process is defined by the quantity 
 

     0( )

( )
n

n
res n

J
Q

J
= p

p
 or 2 1

1n
n

Q
F

=
−

 or  
1

sinn
n

Q
ψ

=            (10)                               

 
 

( )
'

'
min

n

nd

%

%

p

p
 

( )

'

max
minmin

n

d e

%p  

( )

'

min
minmin

n

d e

%p  

mine  
1 0 

1 

1
sin nψ  

min( )ne forθ θ ψ=

  
 

Figure 4. Theoretical form of the bounds of the cloud of points  

( )min min( ), / ( )n n ne d% % %p p p .  

 
Were we working in active noise control, nQ  would be closely 

linked to the predicted attenuation. Now let us envisage a 
perturbation of the nominal objective such that it has a minimal 
error, of less than or equal to a value mine . Geometrically speaking, 

with ��=	�
�, this means that, as seen in Fig. 3, the true pressure is 
located somewhere close to the measured one, in or on the cone 
centered on the reference objective �� and of aperture angle 
. If, in 
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the geometrical representation, 'np  is the projection of the 

reference pressure on the edge of the cone located farthest from the 
model hyper-plane, the quality of inverse process is always better 
than that defined by  
 

0( ')

( ')
n

g
res n

J
Q

J
= p

p
,                                        (11) 

 
said to be the guaranteed quality. Therefore, it is straightforward 
that the guaranteed quality is given by 
 

2
min min

1 1

sin( ) sin cos cos sin

1
                            

1 1

g
n n n

n n

Q

e F e F

θ ψ θ ψ θ ψ
= =

+ +

=
+ − −

    or 

 

2 2
min min min

1

1 (2 1) 2 (1 ) (1 )
g

n n n n

Q
F e F e e F F

=
− + − + − −

.  

                                                                                                       (12)                                
                              

Equation (12) was found by Martin and Gronier (1998) but via an 
analytical approach far more complicated than this simple 
geometrical way. The analytical demonstration is still interesting but 
no longer as for the result more directly obtained today.  

Graphs showing, in logarithmic scale, the guaranteed quality 
against the reference quality for various values of mine  are given in 

Fig. 5. The main point here is that the graphs present a plateau for 
high nominal quality leading us to conclude that, for a given value 
of mine , an increase in the nominal quality is not rewarded by a 

significant increase in the guaranteed quality. When the nominal 
quality is obtained by adapting a model to make the hyperplane of �� 
draw nearer to ��, this information gives the limit of the effort 
beyond which there is no need to go further.  
 
 

 
Figure 5. Guaranteed quality against nominal quality for various errors in 
the objective. 

 
It has thus been shown in this section that the geometrical 

interpretation has proved to be a useful tool for presenting the 
guaranteed quality of the process of inversion, and also to reveal a 
cost function for adapting the model. However this tool operates 
only in the objective space.  

Model Adaptation versus Regularization: Observations, 
Generalization, Difficulties 

When the model and/or the objective is/are not exact, there is a 
need for regularization such as Tikhonov's or of another type, for 
example by discarding the small eigenvalues of the propagation 
matrix. When only the model is not exact, the operation of adapting 
the model consists in reducing the angle ψ  to the exact objective. 

Thanks to case studies, it has been observed on the one hand that the 
regularization has no effect on ψ  and on the other hand that the 

smaller the angle ψ , the less optimal regularization needed and the 

better the results. While we have found a demonstration for the first 
observation, there is still research to be done to find how 
regularization and errors are related. 

Error of the objective and of the model 

In very general terms and before speaking of exact or perturbed 
objective and model, the question is to see if the writing of =Ev p 

is meaningful and if there is a solution. Let V be the solution space 
and let K  be the image of V  through the model E : (V) K≡E .  

When K∈p , the writing =Ev p is meaningful and the LS 

solution 1( * ) *LS
−=v E E E p  leads to the exact valuev . Indeed 

1 1( * ) * ( * ) *LS
− −= = =v E E E p E E E Ev v.  

When K∉p , the writing Ev = p  has no sense for V∈v  (if 

V∈v , then K∈p ) and either v  exists outside V , or it does not 

exist. If the LS solution 1( * ) *LS V−= ∈v E E E p , it would 

generate K∈p' , necessarily different from p . When K∈p  but 

(V) K'≡E  where p  is not located, the same remark can be made. 

In the case of errors in the objective only, the problem to solve 
is more precisely written = %Ev p which has no sense as it is 

unlikely for K∈%p . For a well-conditioned matrix H  the optimal 

solution -1 *( ,  )  opt =% %v E p H E p  differs from the exact solution v  

associated with the exact pressure by  
 

-1 *( ,  ) -   opt δ=%v E p v H E p                                (13) 

 

as stated by Eq. (3) with E  in place of %E . When H  is ill-
conditioned the regularized Tikhonov solution is  

 
1( * ) *opt

ε ε −= + %v E E I E p                                   (14) 

 
which differs from the exact solution by  
 

( )1 1( * ) * ( * ) *opt
ε ε δ ε− −− = + −v v E E + I E p E E + I E p v   

                                                                                                       (15)        
 

in conformity with Eq. (4) with E in place of %E .  
In the case of errors in the model only, the problem to solve is 

written =%Ev p . The regularized Tikhonov solution is  

 
1( * ) *opt

ε ε −= +% % %v E E I E p                                     (16) 

 
It differs from the exact solution by (see Eq. (4) with δ = 0p ). 
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1( * ) *opt
ε ε −− = + −% % %v v E E I E Ev v                          (17)                                                                                                                                        

 

It is clear that if there exists, when →%E E  (in a sense to be 

defined), an optimal value optε of ε  that tends towards zero in R+ , 

then opt
ε →v v  (in a sense to be defined). So far, the adaptation of 

the model carried out to obtain →%E E rested on the minimization 
of angle ψ . And, effectively, the process was accompanied by the 

observation of 0optε → . It was tempting to assume that the 
regularization modified the model in order to reduce ψ . The 

observation countered this assumption and we demonstrate below in 
four steps the independence of angle ψ  from the coefficient ε  with 

the consequence that the effect of regularization cannot be described 
easily in the objective space (Martin and Le Bourdon, 2010), 

perhaps a natural conclusion in retrospect since %E  is not acted 

upon, contrarily to  its "inverse" 1 *−% %H E  now written †%E .  

Independence of the angleψ  from ε  

Without jeopardizing generality, suppose only the model is not 
exact.  

1. Let us consider 
2

min ( ) minJ = %
v v

v Ev - p  with 

: ( )n mV C V K C⊂ → = ⊂% %E E  and : nJ C R+→  where  m n> .  

The space V could contain for example only those variables the 
norms of which are bounded by a given maximal value. With � in 
place of �
, Fig. 1 above has given the Euclidian representation with 

2V R⊂  and 3( )V K R= ⊂%E , and in the case where ( )V∉ %Ep .  

The singular value decomposition (SVD) of %E  is such that 

{ { { {
,, ,

     ,

  *
n nm n diagonalm m

m n

=%E U VΛΛΛΛ  with * * m= =U U UU I  and   * * n= =V V VV I .  

Matrix ΛΛΛΛ  is diagonal in its upper part and zero in its lower part. 
Matrix U  is made up of base vectors of the objective space 

where the data p  is located, and matrix V  is formed with the base 

vectors of space V  of variable v . When ( )V∉ %p E , one cannot find 

V∈v  (one cannot invert %E ) and 1−%E  is replaced by the term called 

pseudo-inverse of %E  that is 
{ ( ) {

1

,,
,

†

n mn m
n n

* *
−

=% % % %
14243

E E E E . This operation 

leads to the solution opt V∈v  such that it generates the nearest 
' ( )V K∈ =p E  of p  in the sense of the Hermitian norm in ��.   

As †opt = %v E p , it results in †opt *=v V U pΛΛΛΛ  with 

{ ( ) {
1† *

,,
,

n mn m
n n

*
−

=
14243

Λ Λ Λ ΛΛ Λ Λ ΛΛ Λ Λ ΛΛ Λ Λ Λ . We have also  {
†

,

0

0 0
n

m m

=
 
 
 

ΛΛΛΛΛΛΛΛ
I

 leading to 

 

( )† †*opt * *= =% %Ev EV U p U V V U pΛΛΛΛΛ ΛΛ ΛΛ ΛΛ Λ   or  

† 0

0 0
nopt * *= =

 
 
 

%
I

Ev U U p U U pΛΛΛΛΛΛΛΛ . 

 
2. Now let us consider the functional of Tikhonov which 

helps in approximating the inverse matrix  1−%E  and is a 

regularization process: 
2 2

( )
VK

Jε ε= +%v Ev - p v    with 

: nJ C Rε
+→  and Rε +∈ . 

For a given ε , †opt *ε ε=v V U pΛΛΛΛ  arises from minimizing 

( )Jε v  with ( ) 1†
n* *ε ε −= +Λ Λ ΛΛ Λ ΛΛ Λ ΛΛ Λ ΛΛΛΛΛ I .  

 

3. Let us write *ε ε=%E U VΛΛΛΛ   not yet having defined εΛΛΛΛ  

(but the access to which is not difficult) and let us consider  
2' ( )Jε ε= %v E v - p , the minimization of which for a given ε  

provides '  opt

εv . It appears '  opt opt

ε ε=v v . So, for the time being, 

functionals 
2 2

( )Jε ε= +%v Ev - p v  and 
2' ( )Jε ε= %v E v - p   share 

the same objectivep  and the same optimal value of their variables.  
 
4. But we have 
 

( )'  †*

0

0 0

opt opt

n opt

*

*

ε ε ε εε ε= =

= =
 
 
 

% %

%

E v E v U V V U p

I
                                                U U p Ev

ΛΛΛΛ ΛΛΛΛ
. 

 

In these conditions, functionals 
2

( )J = −%v Ev p  and  

2' ( )Jε ε= −%v E v p  share the same objective and the same minimal 

distance 
mind  and this whatever ε . Therefore angle ψ  such that 

'  

cos
opt opt

ε εψ = =
% %Ev E v

p p
 does not depend on the Tikhonov 

coefficient ε . In the case of the Euclidean configuration shown in 
Fig. 1 this is true for both functionals. 
 

5. Finally, the Tikhonov regularization does not seem to have 
an influence on angle ψ  in space ��  of the objectives, but it plays 
a role in space V of the solutions. Therefore, we cannot expect to 
represent easily (if indeed it is possible) the regularization process in 
the objective space.  

Optimal regularization and illustration on a simple example 

Going back to ( , )opt
ε

%v E p , let us notice that, when solving 

0
min opt

εε ≥
−v v  with the 2L -norm in the solution space, the results 

observed in examples (therefore without generalization yet) is 

0optε =  whatever δ E  and therefore, opt
ε −v v  cannot be used 

for finding optε (leaving aside that v  is not known). Were we to 
accept negative values of ε , there could be a value to make 

opt
ε −v v  zero. Indeed  1( * ) *opt

ε ε −− = + −% % %v v E E I E Ev v = 0 

when * ( * )ε= +% % %E Ev E E I v  i.e. * -δ ε%E E v = v. This can be 

true only if * δ%E E v  is collinear with v , a very strong constraint. 

Its LS value would be 1( * ) * ( * *)opt
LSε δ δ−= − +v v v E E E v 

where it is true that the dependence on δ E  is made explicit, but 

this value does not minimize opt
ε −v v and moreover, what has been 

observed concerns ( )optε ψ , not ( )optε δ E .  

In fact, the optimal value  optε  of ε  is such that the objective is 
best reached while the amplitude of the velocity is kept reasonable. 
This qualitative definition has received a heuristic representation 
through the parametric so-called L -curve which gives the value of  
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optLog εv  against optLog ε −%Ev p  (Kirsh, 1996; Hansen, 1998). 

The optimal value optε  corresponds to the compromise located at 

the “corner” of the L -curve where the curvature is maximum. 
However, the idealized L -curve has not always so clear a form and 

the location for obtaining optε  should be determined with care.   

Let us say that optε  has been defined by Steiner and Hald 
(2001), as depending on the signal to noise ratio (SNR) seen at the 
objective and due to all sorts of reasons (measurements, errors in the 
model, calculation approximations).  The SNR is defined by rule of 
thumb and is not seen as model dependent. However, Hald (2003) 
wrote with the present notations that “re-scaling of the matrix 

*% %E E  in turn necessitates a re-scaling of the regularization 

parameter optε ”. And again to emphasize the state of the art 

concerning the dependence of optε  on the model, let us refer to 
Gomes and Hansen (2008) where, according to the type of model 
chosen – which could be that of Statistically Optimized Nearfied 
Acoustic Holography (SONAH) to replace the first version of NAH 
from Maynard et al. (1985), or that of the Boundary Integral 
Equation Method (BIEM) as developed by Bai (1992) or described 
by Augusztinovicz and Tournour (1999), or that of Equivalent 
Source Method (ESM) – , there is a change in the best regularization 
parameter. The work of Gomes and Hansen is an echo of the earlier 
work carried out by Williams (2001). 
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Figure 6. Two types of L-curve for the numerical example dealt with. 

 

Is the observation concerning the decreasing of optε  with that of 
ψ  made when solving physical inverse problems closely linked to 

the underlying physics, or is it a more general property? To try to 
answer that question, let us take a very arbitrary matrix 

1. 2.

1.1 2.1

5. 6.

 
 =  
  

E  and an arbitrary perfect velocity 
7.

12.

− 
=  
 

v . In 

these conditions, the perfect objective is 

17.

17.5

37.

 
 =  
 
 

p . Let us 

perturb the term (1,2) of E  to obtain %E  with a law such that 

1,2 1,2(1. 0.5 [ 1, 1])E E Random Real,= + − +% , i.e. with unstructured 

uncertainties. First, calculate the angle ψ (calculated through 

sin
opt

ψ
−

=
%Ev p

p
) , then draw the L -curve, and in the case of a 

relatively visible “corner”, find the  
optε , and finally calculate 

opt

opt

ε −v v . It must be said that the value of optε  retained is such 

that the quantity 2 2( ) ( )opt optLog Logε ε− +%Ev p v  is minimal, 

which is never far from the maximum curvature but not always at 
exactly the same location. Figure 6 shows two types of L -curve 

retained during the process and Fig. 7 shows ( )optε ψ , and 
opt
ε −v v  against ψ . 
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Figure 7. ( )optε ψ  above, opt

opt

ε −v v  against 
optε  below. 

 
This simple numerical experiment shows that the decreasing of 

optε  with ψ  and that of opt

opt

ε −v v  with optε  could be a general 

property rather than an observation deriving from the physical nature 
of the inverse problem dealt with in acoustics. However in this 

arbitrary example, we see a jump of ( )optε ψ  and a corresponding 

void in the curve of error in the velocity. Moreover, if several 
components of matrix E  are submitted to variations, the graphs are 
of far greater complexity as clouds take the place of the curves.  
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Beyond the observation made on this very simple calculation 

experiment, how can it be demonstrated that opt

opt

ε −v v  decreases 

with the angle ψ ? What are the difficulties?  

Indeed, let us write 
 

1 * 1 * 1 *

1 * 1 * 1 *

                    

                   

opt opt

opt

opt

opt opt opt opt

( ) ( )

ε ε

ε

ε

− − −

− − −

− = − + −

= − + −

≤ − + −

% % % % %

% % % % %

v v v v v v

R p H E p H E p H E p

R H E p H E H E p

    (18)                                                        

 
where it can be demonstrated (via the SVD of E ) that 

1 * 0( )ε
−− →% % %R H E p  when 0ε → , where it is natural that 

1 * 1 * 0( )− −− →% %H E H E p  when 1 * 1 * 0( )− −− →% %H E H E . But how 

can the dependency on ψ  be expressed? To this end, the 

expression of ( )optε ψ  will be needed. By accepting that optε  is the 

solution of 2 2min ( ) ( )opt optLog Logε εε
− +%Ev p v , the expression 

in terms of ψ  such that sin
opt

ψ
−

=
%Ev p

p
 does not seem an 

easy task.  
While the following case studies as well as the above calculation 

example have shown that the adaptation of a model using the 
parameter ψ  could be an interesting direction to follow, the 

definitive interest ought to depend on the demonstration sought and 
this question seems to be still open.  

Case Studies 

Semi-analytical spherical holophony in the far field 

In Pasqual and Martin, 2012, a primary field due to a source (or 
sources) in a sphere cΓ  of centre C is given on the spherical surface 

cΓ (Fig. 8). This area is located in the far field relative to the source.  

The given pressure is expanded in a series of P independent 
functions composed of spherical harmonics considering the 
coordinate center O.  The number of « modes » to describe the 
primary pressure with a good approximation depends on the 
coordinate center O. The minimum value of P occurs when O is at 
the so-called acoustic centre, in general unknown, even when the 
geometrical centre of the primary source is given.  

A secondary source is required to radiate the given primary 
pressure as well as possible. This source, within the sphere but also 
far from its surface, is constrained to radiate a controllable given 
number S of « modes » with S P≤ ; some of them not radiating 
efficiently, leaving '( )S S<  efficient controllable modes.  

Where should it be located to reproduce the primary field as 
well as possible? The problem is equivalent to that of finding the 
location of the secondary source centred at O. It should be said that 
the problem of reproducing a field by a spherical source has also 
been investigated by Peleg and Rafaely (2011).  

We are facing an inverse acoustic problem where the model of 
the secondary radiation has to be adapted through the secondary 
source location to reproduce at best the primary field. Due to the 
secondary source constraints, there are 'P S−  « modes » missing 
to reach the goal, a number that depends on O. Often, but not 
always, the minimal difference occurs when O is at the acoustic 

centre of the primary source(s). This difference 'P S−  will play the 
role of regularization.  

 

 
Figure 8. Illustration of the exterior spherical acoustical holophony. 

 
The primary harmonic pressure is developed in the form  
 

0

( / ) ( ) ( ) ( , )
PN n

p nm n nm
n m n

p O C h kr Y θ ϕ
= =−

=∑ ∑x d                       (19) 

 
where nh  are the Hankel functions and nmY  are the spherical 

harmonics. There are 2( 1)pP N= +  terms; however, the 

axisymmetry of the pressure field reduces the number of terms to 
( 1)pP N= +  as 0m= . For example, the field shown in Fig. 9 is 

such that there is a need for 1n >  to radiate it, whatever O (i.e., 

3P ≥ ). The coefficients nmC  can be determined almost exactly 

∀d  providing pN  is sufficiently large. In the example chosen, 

6pN = , therefore 49P =  in general and 7P = here.  In other 

words, the number of modes with non-zero (or negligible) 
coefficients depends on the location of point O.  
 

 
Figure 9. Axisymmetric primary field on cΓ . The shape and the color map 

indicate, respectively, the amplitude and phase (in degrees) of ( )p cp x . 

 

After linear indexing such that 2 1i n n m= + + +  and with the 

vector ( )s x  made up of components ( ) ( ) ( , )i n nms h kr Y θ ϕ=x  and 

vector c  with components i nmc C= , the primary pressure is also 

expressed by  ( / ) ( ).t
pp O =x s x c . As the number of components 

in the vectors depends on the location of point O, their dimension is 
kept the same but the number of non-zero components varies. The 
identification of the coefficients in vector c  is obtained through  the 
LS-method, but to overcome a difficulty due to the ill-conditioned 
matrix in the inversion, it is practical to deal with coefficients ( )i rγ  

such that .p =γγγγ H c  where components iiH of diagonal matrix H  

are ( )nh kr . In these conditions: 
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1( / ) ( ). .t

p pp O −=x s x H γγγγ                                       (20) 

 
These new coefficients make up the spherical wave spectrum of the 
primary pressure evaluated at cΓ . 

The identification of pγγγγ  leads to their value ̂ pγγγγ and, in the 

present situation, P is sufficient to ensure a good if not exact 
reconstruction of ( / )pp Ox , whatever O.  

Similarly the secondary harmonic field is expressed by 
 

0

( / ) ( ) ( , )
SN n

s nm n nm
n m n

p O D h kr Y θ ϕ
= =−

=∑ ∑x                             (21) 

 
written 
 

1( ) ( ). ( ). .t t
s sp −= =x s x d s x H γγγγ                                  (22) 

 
Simply enough, our goal would be perfectly achieved with 
ˆ

s p=γ γγ γγ γγ γ  if the secondary source were located at the acoustic centre 

of the primary source and able to radiate S P=  modes. However, 
the secondary source constraints with S P< have been mentioned 
and moreover, from among the S  modes, a number do not radiate 
efficiently.  

Indeed, the radiation efficiency of a compact spherical 
loudspeaker array (CSLA) has the form shown in Fig. 10. Asking of 
such a source to radiate in the low frequency range with a large n  
leads to far too high a level of driving signal or velocity. It was 
decided to discard these disturbing high values of n  and consider 

only those n  associated with a reasonable minimum value minσ of 

the efficiency. To illustrate, working with ka = 0.3 and considering 

only those modes with 5
min 10σ σ −> = , only 0n =  and 1n =  are 

left, therefore, 1sN =  and 4S=  or 2 for axisymmetric pressure 

distribution. Let us recall that 3 7P≤ ≤ in the case studied. It 
appears that 4 sources of the CSLA, placed at the so-called extremal 
points for hyperinterpolation distributed over the spherical box can 
be driven to radiate efficiently 4 modes (and 2 sources for 2 modes).   

 
 

 
Figure 10. Radiation efficiency curve for a spherical source with radius a 
for 3n ≤ . 

 
This discarding plays the role of the regularization as it 

facilitates access to the solution of the inverse problem, and the best 

solution in the LS-sense for  1( ) ( ). .t
s sp γ−=x s x H  leads to 

,s s regul=γ γγ γγ γγ γ  in the following way:  

 

, min
, ,

min

  

0  
s i n

s regul i
n

if

if

γ σ σ
γ

σ σ
≥

=  <
                                    (23) 

 
Let us define the regularization quality factor λ   by  
 

,
ˆ

1
ˆ

s regul p

p

λ
−

= −
γ γγ γγ γγ γ

γγγγ
                                            (24) 

 
which is the inverse of the amount of regularization. Clearly, when 

, ˆs regul p→γ γγ γγ γγ γ  thanks to seeking the best location for the secondary 

source, then the amount of regularization decreases as well as the 

residue s pR = −p p .  

 

 
Figure 11. Norm of the optimal radial velocity without and with 
regularization by discarding. Results as function of �� for the primary field 
shown in Fig. 9. Only the graphs � are considered in this paper. 

 
In the numerical simulation, the primary field of Fig. 9 was 

chosen because it cannot be produced by a multipolar source of 
order 1n ≤ . It was obtained by using Eq. (19) with = 0d  and the 
wave spectra ������� = 0.2, ������� = 1, ������� = 1. Due to the 
axisymmetry of ( )pp x , we only deal with points O located on the 

z  axis. Therefore only positions given by (0,0, )sz=d  are 

considered here. The values of the parameters are those given in the 
text above added to 20cr a=  and thus 6ckr = since 0.3ka= . 

Moreover, the spherical area was sampled with 300 elements and 
each elementary area weighted in order not to privilege densely 
sampled regions on the sphere.  The position of the secondary 
source is assumed to be within the range 2 2sa z a− ≤ ≤  to ensure 

far-field conditions. Figure 11 shows the norm of the optimal radial 
velocity without and with regularization; only graph e is considered 

here. The results are given as function of sz . It is clear that 

regularization is needed to prevent the loudspeakers from being 
overloaded. Figure 12 shows the normalized residual norm and the 
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regularization quality factor as functions of sz (only graph e is of 

interest here). It appears that ( ) 0opt
sR z >  because the primary field 

cannot be accurately decomposed into spherical harmonics of order 
1n ≤ . However R  is greatly reduced if the secondary source is 

placed at the optimal location.  
 

 

 
Figure 12. Above, normalized residual norm ( ) / ( )s p cR z p x  and 

below regularization quality factor function of �� (primary field in Fig. 9). 
Graphs � are considered in this paper. 

 
Figure 13. Sound pressure field produced by a spherical secondary 
source placed at the optimal position for reproduction of the primary field 
in Fig. 9. The shape and color maps indicate respectively the amplitude 
and phase (in degrees). 

 
The results presented show, in an almost natural way, that the 

adaptation of the model (here through the source location) is 
accompanied by a reduction in the regularization needed and improves 
the reconstruction. The synthesized field is given in Fig. 13.  

Numerical nearfield holography 

In Martin, Le Bourdon and Pasqual (2011), a thick vibrating disc 
(Fig. 14) radiates sound in the unbounded 3D space. The acoustic 
pressure is measured on a plane array of microphones parallel to one 
side of the disc, called the front face.  

From the inverse procedure called here holography, the type of 
vibration on the front face is deduced from the measured pressure at 
the microphone array. It is supposed that the disc is embedded in a 

total front plane made up of 1Γ  and its complementary part 1
cΓ . 

How to take into account the radiation behind this front plane due to 
the vibration of the rear face and the thickness? This problem 
originates from the acoustic holography of a rolling wheel 
embedded in a car body. Despite the slightly different goals, let us 
quote the work of Schuhmacher et al. (2003), on a quite similar 
subject.  

 

Ω  

z 

y x 

v r
2 2 2Γ = Γ ∪ Γ  

 

r v
1 1 1Γ = Γ ∪ Γ

 

3Γ  

0 

 
Figure 14. A thick disc, with vibrating front face 1Γ , rear face 2Γ , thread 

3Γ , radiates in the unbounded 3D space Ω . 

 
Presently the radiation model is obtained through the boundary 

integral method that has the continuous form  
 

1

1

1

1
2

1 1
2

1 1
2

( )  i ( ) ( ,  )d  

            i ( )  ( ,  )d

            i ( )  ( ,  )d
c

c

p Q v P g P Q P

k p P g P Q P

k p P g P Q P

ρ ω

β

β

Γ

Γ

Γ

=

+

+

∫

∫

∫

                               (25) 

 
leading to the discrete form  

 

( )-1

1 1 1 1  ( , ) -  ( , )  t c c tp i ik ikρω β β β β = +   c I A B d v    

or  1 1  ( , )cβ β=p E v                                                        

(26) 
 

where 1β  and 1
cβ  are the unknown admittances (in a particular 

sense)  respectively on 1Γ  and 1
cΓ .  

For the numerical simulation, the given modal forms on the 
faces and on the thickness are  

 

( ) ( )

( ) ( )

min

max min

-
, sin  cos  -  

- 2

,   sin  cos

i

i

r r
v r a l

r r

y
v y a l

e

πθ θ π

θ θ π

 
=  

 

 =  
 

               (27) 

 

Admittances 1β  and 1
cβ  are local reactions and depend on the 

point sx∈ Γ . Therefore, there are an infinite number of variables 

to identify and it is impossible to find the true propagator in these 
conditions. However, it has been observed that the admittance on 

sΓ  tends toward zero when the radial distance tends towards 

infinity. Beyond a certain distance, the admittance is negligible and 
makes finite meshing of the source plane possible. The number of 
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unknowns in the propagation model is directly linked to the number 
of points in the meshing of the source plane. It appears unrealistic 
for computation time reasons to identify each local admittance. To 
reduce the number of unknowns, the admittance is approached by a 
known function based on its expected form, and now only a small 
number of coefficients of the function must be identified. In the case 

of the thick disc, the following approximation β%  has been chosen: 

 

    
( ) ( ) [ ]

[ (

52

8 10

1 3 4 6 max

7 9 max

e i e 0,

i ,

c rc r

c c

c c c c r r

c r c r r r
β

 + + + ∀ ∈= 
+ ∀ ∈ +∞

%  (28) 

 

where the coefficients ( )  1,10i ic R= ∈ . Adapting the propagator 

consists now in identifying the 10 coefficients. However this 
simplification is at the price of information about the function.  

Using the genetic algorithm with the cost function made up of 
the angle ψ , the coefficients have been obtained approximately and 

the results are given in Fig. 15. 
 
 

 
Figure 15. Admittance on the front face, expected and reconstructed. 

 
 

 
 

 
Figure 16: Optimal Tikhonov regularization parameter and error in the 
reconstructed velocity versus the cost function. 

 
Table 1 shows the vibrating form obtained for the front face 

and Fig. 16 presents the same results in another form, namely the 
optimal value of the Tikhonov regularization parameter against 
angle ψ , itself depending on the admittance on the front face 

1 1
cΓ ∪ Γ , as well as the error in the reconstructed velocity against 

angle ψ .   

These results illustrate again the interaction between the 
adaptation of the model and the value of the regularization 
parameter with the consequence on the reconstructed velocity. 

Conclusion and Open Questions 

The present paper has given very general equations linking 
errors in models as well as in objectives and errors in the solution of 
certain inverse problems. Some interactions between models, 
objectives, errors, and regularizations are not visible in these 
equations while their consequence on the solution is well described. 
The current research attempts to contribute in finding the actions 
and interactions at play.  

The geometrical interpretation has proved useful to show very 
easily the guaranteed quality of the inverse procedure, and also to 
define a cost function (angle ψ ) to adapt the model in cases where 

the objective is exact. It has been demonstrated that the 
regularization does not act on ψ

 
in the objective space (it acts in 

the solution space) and that a smaller cost function leads to a lesser 
optimal regularization parameter and gives a better solution. These 
links have been seen in a very simple calculation example outside 
all physical meaning. However no demonstration has yet been 
found.  

The question of error in the objective with an exact model has 
not been addressed here, except through the guaranteed quality. 
Nevertheless angle ψ  exists for an exact model and a perturbed 

objective. However, the aim here, not worked on yet, is to adapt the 
pressure to reach the model, not the opposite. 

Now it must be underlined that the adaptation of the model has 
been carried out via the reduction of angle ψ

 
from the exact 

objective. In the presence of perturbation on the objective, the same 
procedure would be followed by reducing angle ψ θ+  without 

being able to distinguish ψ
 
from θ . If the adaptation works well, 

the model will reach the perturbed objective and thus be far from the 
exact objective by angle θ . If θ ψ> , the cure is worse than the 

disease! How should the problem, clearly defined in geometrical 
terms, be tackled? 

Another question concerns the geometrical representation of the 
best location of the sensors and their robustness. It was at the center 
of preoccupations in active control in the 2000’s, as the paper by 
Baek and Elliott can testify. In this field, Martin and Gronier (2001) 
showed, first, that it is always possible to obtain the nominal quality 
of the inverse process by filtering a small number of components of 
the reference objective and, second, that the robustness of the 
filtered sensor configurations was not identical. It could be that the 
first property may be understood thanks to geometrical 
representation in the objective space (moreover with an 
understanding of one of the constraints associated with the 
assertion) and that the robustness may be understood by looking in 
the direction of the projection of the cone on the subspace to which 
the filtered components of the objective belong.  
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