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Loudness Scattering due to
Vibro-Acoustic Model Variability
The use of numerical simulation in the design and evaluation of products performance
is ever increasing. To a greater extent, such estimates are needed in an early design
stage, when physical prototypes are not available. When dealing with vibro-acoustic
models, known to be computationally expensive, a question remains, which is related
to the accuracy of such models in view of the well-known variability inherent to the
mass manufacturing production techniques. In addition, both the academia and industry
have recently realized the importance of actually listening to a products sound, either by
measurements or by virtual sound synthesis, in order to assess its performance. In this
work, the scatter of significant parameter variations on a simplified vehicle vibro-acoustic
model is calculated on loudness metrics using Monte Carlo analysis. The mapping from the
system parameters to sound quality metric is performed by a fully-coupled vibro-acoustic
finite element model. Different loudness metrics are used, including overall sound pressure
level expressed in dB and Specific Loudness in Sones. Sound quality equivalent sources
are used to excite this model and the sound pressure level at the driver’s head position is
acquired to be evaluated according to sound quality metrics. No significant variation has
been perceived when evaluating the system using regular sound pressure level expressed
in dB and dB(A). This happens because of the third-octave filters that average the results
under some frequency bands. On the other hand, Zwicker Loudness presents important
variations, arguably, due to the masking effects.
Keywords: sound quality, vibro-acoustic model, finite element method, Monte Carlo
analysis

Introduction

The engine-related interior noise in a vehicle is a key element
in the customer’s perception of the vehicle’s quality, sportiveness,
robustness, among others (de Oliveira et al., 2010). Interior cavity
structure-induced noise and vibration applications, such as engine
noise in a vehicle, can be studied as a vibro-acoustic problem.

The need for a better understanding of vibro-acoustic system
performance leads to the necessity of predicting its behavior in an
early design stage, usually by means of numerical simulation (Van de
Auweraer et al., 2007). However, vibro-acoustic models are known to
be computationally expensive, mainly if the frequency range envelope
is pushed to higher frequencies, which leads to finer meshes and,
consequently, more degrees-of-freedom. A question remains, which
is related to the accuracy of such models in view of the well-known
variability inherent to the mass manufacturing production techniques.

Products on the scope of this analysis, such as vehicles, may
present considerable variations (Gallina et al., 2010; Farkas et al.,
2010) which are due to dimensional tolerances, assembly, non-
linearities and, even, changes of the environmental conditions which
might affect the acoustic properties of the air. More recently, both
the academia and industry have realized the importance of actually
listening to a products sound, either by measurements or by virtual
sound synthesis, in order to assess performance (Vorländer, 2011).

In addition, a car often sounds like a car! One would expect
a reasonably small variation on performance parameters of a group
of cars of the same brand and model, given that even different
vehicles of the same range can present a similar behavior (Brizon
& Medeiros 2012). On the other hand, the performance parameters
can be designed to be more sensitive to such variations, which is
the case of the parameters selected in this paper. It is important
to notice that, in contrast with Brizon and Medeiros (2012), the
sound quality metrics used in this work are calculated for stationary
operating conditions, resulting in a fixed harmonic excitation, which
will lead to greater variations when compared to run-ups or any other
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transient excitation. That has to do with the way humans perceive
complex sounds. Although the human ear is a magnificent transducer,
capable of distinguishing small shifts in frequency, volume, duration
and so on, there are specific mechanisms that play important roles in
shaping the way we listen, e.g. the masking and cancellation effects
that interfere with the way we perceive sound made up of multiple
harmonic components (Zwicker and Fastl, 1999), which is the case
of vehicle engine noise. Considering that a particular harmonic
component is highly amplified by one of the systems resonance,
and considering that physical parameters variations will shift that
resonance frequency, it is clear that such dominant component will
lose strength, revealing other aspects of the complex sound stimulus
that could have been masked before.

Therefore, this paper presents a study that aims at addressing
these issues. In order to do so, the scatter of significant parameter
variations on vibro-acoustic models is calculated on the sound quality
space. This mapping is performed by a finite element (FE) model
built in LMS Virtual.Lab and the various simulations are managed by
the software Optimus. This fully-coupled vibro-acoustic FE model
is described in the section referred to as Vibro-Acoustic Model. The
Sound Quality (SQ) metrics used to evaluate the system outputs are
briefly introduced in the section referred to as Sound Quality Metrics.
Relevant SQ metrics can only be calculated when the system is
excited by a signal input that reassembles the real excitation, in order
words, a SQ Equivalent source. These input signals are generated by
Virtual Car Sound (VCS), a software developed by LMS International
to simulate engine sound in real-time operation based on Transfer
Path Analysis (TPA) models that can be experimental, numerical or
hybrid. According to Fig. 1, the VCS provides the inputs f1 and
f2 to the FE vibro-acoustic model. These force inputs are based on
real engine mount forces, therefore resembling a real engine noise
composed of multiple harmonic components with relevant amplitude
and phase relations.

The main structural paths at the vehicle firewall are then excited.
The sound pressure level at the drivers head position pdriver (the FE
model output in Fig. 1) is acquired and treated to calculate the SQ
metrics. The SQ metrics for the nominal model are discussed in the
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Sound Quality Metrics section. The sound quality scattering due to
vibro-acoustic system variability is assessed through the Monte Carlo
method in the section referred to as Variability Analysis. Important
conclusions on the performance variability considering not only the
sound pressure level expressed in dB and dBA, but also Zwicker
Loudness, an important SQ metric, are drawn clarifying some of
the design trade-offs when developing conceptual models for vibro-
acoustic performance analysis.

Nomenclature

K = stiffness matrix
D = damping matrix
M = mass matrix
F = load vector
I = identity matrix
p = vector of nodal acoustic pressures
u = vector of structural displacements
q = vector of the modal amplitudes

Greek Symbols

ω = frequency
ρ0 = fluid density
ΦΦΦ = eigenvectors
ΩΩΩ = diagonal matrix of uncoupled natural frequencies
ΓΓΓ = modal damping matrix

Subscripts

a = relative to acoustical terms
c = relative to coupling terms
s = relative to structure
n = number of DoFs (degrees-of-freedom)
L = left
R = right

Superscripts

T = transpose

Vibro-Acoustic Model

The system under investigation consists of a scaled simplified car
geometry, with rigid acoustic boundary conditions and a flexible bi-
partitioned firewall (Fig. 1). The firewall is considered as a 2 mm thick
aluminum plate, clamped on its borders and the central pillar that
connects both partitions is an aluminum beam of section 25.4 x 25.4
mm. The air is concealed inside the cavity which has no openings and
is excited only via the firewall, with no additional acoustic sources.
Two structural input points are selected, one on each firewall partition,
and an acoustic pressure point, near the drivers head position, is the
system output.

Vibro-acoustic systems can be modeled using Computer Aided
Engineering (CAE) tools such as FE and/or boundary element (BE)
methods. The present case study requires not only the fluid load on the
structure, but also the interaction between the structural vibrations and
the pressure field. In other words, the vibro-acoustic model should
be fully coupled. To cope with this, a coupled vibro-acoustic FE/FE
modeling approach is adopted.

One of the coupled FE/FE formulation is the Eulerian, in which
the structural degrees of freedom (DoFs) are displacement vectors,

 

f2f1

time order

Figure 1. Scheme of the mapping to the sound quality space.

while the acoustic DoFs are expressed as scalar functions. The latter
is usually the acoustic pressure, but can also be the fluid velocity
potential. If pressure is adopted, the system of equations yields non-
symmetrical mass and stiffness matrices, posing a disadvantage to
FE solvers. The choice of velocity potential as acoustic DoF also
presents a drawback, as the vibro-acoustic coupling terms populate
the damping matrix, yielding a symmetric but complex model, which
is computationally more expensive than the non-symmetric one (Pan
and Bies, 1990; Morand and Ohayon, 1995). Eventually, the modal
base resulting from the non-symmetric eigenproblem can easily be
handled by the modeling procedure, as will be described in more
detail in the next section. Therefore, a displacement/pressure Eulerian
formulation is adopted hereafter.

A first step in the FE modelling of vibro-acoustic systems is
the definition of appropriate meshes for the acoustic and structural
components. Coincident structural and acoustic meshes are adopted
over the coupling boundary resulting in a simplified procedure. The
frequency range of interest is limited to 0-500 Hz to reduce the
computational effort during the modeling procedure. It may not be
representative for all interior acoustic problems, but is sufficient to
demonstrate the proposed technique and to provide general insights.
Moreover, this choice is not a limiting factor, since the methodology
employed hereafter is valid as far as FE models can be used.

The size of the structural elements is chosen such that the highest-
order mode is represented by at least 6 linear elements. The structural
mesh has 512 4-noded shell elements, yielding 3712 DoFs since the
borders of the firewall are clamped. The chosen 4-node shell element
was an isoparametric quadrilateral element with the evaluation of the
forces at the centroid of the element (QUAD4). The element type
chosen for the acoustic mesh is the 8-noded brick element. With
respect to the element size, this acoustic model exhibits a minimum
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of 6 linear elements per wavelength up to 500 Hz. The total number
of acoustic DoFs is 69272. The structural and acoustic meshes are
depicted in Fig. 2.

 

Figure 2. Finite Element Model of the cavity and the firewall.

In a coupled FE/FE approach, the effect of the fluid on the
structure dynamics can be considered as a pressure load on the wet
surface. For a system with ns structural DoFs and na acoustic DoFs,
the structural differential equation takes the following form:

(Ks + jωDs−ω2Ms)u(ω)+Kcp(ω) = Fs(ω) (1)

where Ks, Ds and Ms ∈ Rns×ns are, respectively, the stiffness,
damping and mass matrices of the structural component, Kc ∈
Rns×na is the coupling matrix, u ∈ Rns×1 is the vector of structural
displacement DoFs, p ∈ Rna×1 is the vector of nodal acoustic
pressures and Fs ∈ Rns×1 is the structural load vector.

In a similar way, the structural vibrations provide an acoustic
velocity input and therefore must be taken into account in the acoustic
model as:

(Ka + jωDa−ω2Ma)p(ω)+ω2Mcu(ω) = Fa(ω) (2)

where Ka, Da and Ma ∈ Rna×na are the acoustic stiffness, damping
and mass matrices, Mc ∈ Rna×ns is the coupling matrix and Fa
∈ Rna×1 is the acoustic load vector. For the sake of brevity,
any frequency dependent function ‘h(ω)’ is represented just as ‘h’
hereafter.

Using the relation Mc =−ρ0KT
c (de Oliveira et al., 2008), where

ρ0 is the fluid density, the combined system of equations, known as
the Eulerian FE/FE model, yields:

([
Ks Kc
0 Ka

]
+ jω

[
Ds 0
0 Da

]
+

−ω2
[

Ms 0
−ρ0KT

c Ma

]){
u
p

}
=

{
Fs
Fa

}
(3)

Based on Eq. (3) it is clear that the resulting vibro-acoustic system
is coupled, though it is no longer symmetric. As a consequence of
such non-symmetric nature, the solution of the associated undamped
eigenproblem is computationally more demanding and results in
different left and right eigenvectors:

[
Ks Kc
0 Ka

]
{ΦΦΦR}r =ω

2
r

[ Ms 0
−ρ0KT

c Ma

]
{ΦΦΦR}r (4)

{ΦΦΦL}T
r

[
Ks Kc
0 Ka

]
=ω2

r{ΦΦΦL}T
r

[ Ms 0
−ρ0KT

c Ma

]
(5)

where r = 1, . . . ,na +ns is the index of the coupled natural frequency
ωr and ΦΦΦL and ΦΦΦR ∈ R(ns+na)×1 are, respectively, the left and right
coupled modes.

Moreover, it has been indicated (Luo and Gea, 1997) that, for the
Eulerian formulation, the left and right eigenvectors, can be related
as:

{ΦΦΦL }r =
{ {ΦΦΦLs}r
{ΦΦΦLa}r

}
=

{
{ΦΦΦRs}rω

2
r

{ΦΦΦRa}r

}
(6)

where r = 1, . . . ,na + ns and the indexes a and s represent,
respectively, the acoustic and structural DoFs.

A common practice in solving such vibro-acoustic problems is
the use of component mode synthesis (CMS). It consists of expanding
the structural DoFs in terms of a set of Ns uncoupled structural modes
ΦΦΦs ∈ Rns×1 (without any acoustic pressure load along the coupling
interface), as well as expanding the acoustic DoFs in terms of a set
of Na uncoupled acoustic modes ΦΦΦa ∈ Rna×1(acoustic boundaries
considered rigid at the wet surface). The structural and acoustic
expansions become, respectively,

u =
Ns

∑
r=1

qsr{ΦΦΦs}r = ΦΦΦsqs (7)

p =
Na

∑
r=1

qar{ΦΦΦa}r = ΦΦΦaqa (8)

where qs ∈ RNs×1 is the vector of modal amplitudes related to the
structural DoFs, qa ∈RNa×1 is the vector of modal amplitudes related
to the acoustic DoFs, ΦΦΦs ∈ Rns×Ns is the structural modal matrix, ΦΦΦa
∈Rna×Na is the acoustic modal matrix and r is the index representing
the number of the mode.

Substituting the component mode expansions in Eqs. (7) and (8)
into Eq. (3) and pre-multiplying the structural and acoustic parts of
the resulting matrix equation, respectively, with the transpose of the
structural and acoustic modal vectors yields the undamped modal
representation:

[
ΦΦΦ

T
s KsΦΦΦs ΦΦΦ

T
s KcΦΦΦa

0 ΦΦΦ
T
a KaΦΦΦa

]{
qs
qa

}
+

−ω2
[

ΦΦΦ
T
s MsΦΦΦs 0

−ρ0ΦΦΦ
T
a KT

c ΦΦΦs ΦΦΦ
T
a MaΦΦΦa

]{
qs
qa

}
=

{
ΦΦΦ

T
s Fs

ΦΦΦ
T
a Fa

}
(9)

The homogeneous system of equations related to Eq. (9) can be
written as:

[
ΦΦΦ

T
s (Ks−ω2Ms)ΦΦΦs ΦΦΦ

T
s KcΦΦΦa

ω2ΦΦΦ
T
a KT

c ΦΦΦs − 1
ρ0

ΦΦΦ
T
a (Ka−ω2Ma)ΦΦΦa

]{
qs
qa

}
=

{
0
0

}
(10)

606 / Vol. XXXIV, Special Issue 2, 2012 ABCM



Loudness Scatterring due to Vibro-Acoustic Model Variability

Since each uncoupled mode is normalized with respect to the
uncoupled mass matrices, Eq. (10) yields:

[
ΩΩΩ

2
s −ω2Is ΦΦΦ

T
s KcΦΦΦa

ω2ΦΦΦ
T
a KT

c ΦΦΦs − 1
ρ0
(ΩΩΩ2

a−ω2Ia)

]{
qsqa

}
=
{

0
0
}

(11)

where ΩΩΩs ∈RNs×Ns and ΩΩΩa ∈RNa×Na are, respectively, the structural
and acoustic diagonal matrices of uncoupled natural frequencies.

Equation (11) still results in a non-symmetric eigenproblem and
is therefore expensive to solve. The first line of Eq. (11) leads to:

qs =ω
2(ΩΩΩ2

s )
−1qs− (ΩΩΩ2

s )
−1

ΦΦΦ
T
s KcΦΦΦaqa (12)

Applying the substitution q̄s =ω
2qs in Eq. (12) yields:

{
qsqa

}
=

[
(ΩΩΩ2

s )
−1 −(ΩΩΩ2

s )
−1ΦΦΦ

T
s KcΦΦΦa

0 I

]{
q̄sqa

}
(13)

Using Eq. (13) it is possible to rewrite Eq. (11) as a symmetric
system of equations in {q̄s qa}T :

[
Ts TT

c
Tc Ta

]{
q̄sqa

}
=

{
0
0

}
(14)

where

Ts = I−ω2(ΩΩΩ2
s )
−1 ,

Ta =ω
2(ΩΩΩ2

s )
−1

ΦΦΦ
T
a KT

c ΦΦΦs ,

Tc =−
1
ρ0

(ΩΩΩ2
a−ω2I)−ω2

ΦΦΦ
T
a KT

c ΦΦΦs(ΩΩΩ
2
s )
−1

ΦΦΦ
T
s KcΦΦΦa .

The coupled modal vector Φ̄ΦΦ ∈ R(ns+na)×(Ns+Na), resulting from
the eigenproblem associated with Eq. (14) on {q̄s qa}T , can be
interpreted as the left eigenvector ΦΦΦL of the eigenproblem in Eq. (5)
on {qs qa}T . The right eigenvector ΦΦΦR can be retrieved using
Eq. (6).

Since the uncoupled bases ΦΦΦa and ΦΦΦs result from symmetric
eigenproblems, solving Eq. (14) may seem less demanding when
compared to the solution of Eqs. (4) and (5). However, the reduction
on the computational effort is rather small, as to accurately represent
the coupled modes, it is necessary to retain a higher number of
uncoupled modes. Nevertheless, the advantage of this method is the
possibility of using dedicated software for each component uncoupled
modal analysis.

Eventually, the structural and acoustic DoFs {u p}T can be
projected using the modal base (ΦΦΦL and ΦΦΦR) and the modal coordinate
q using the following expansion:

{
u
p

}
=

Ns+Na

∑
r=1

qr {ΦΦΦR}r = ΦΦΦRq (15)

Moreover, the left and right eigenvectors are normalized such that:

ΦΦΦ
T
L

[ Ms 0
−ρ0KT

c Ma

]
ΦΦΦR = I (16)

ΦΦΦ
T
L

[
Ks Kc
0 Ka

]
ΦΦΦR = ΩΩΩ

2 (17)

ΦΦΦ
T
L

[
Ds 0
0 Da

]
ΦΦΦR = ΓΓΓ (18)

where I, ΩΩΩ
2 and ΓΓΓ ∈ R(Ns+Na)×(Ns+Na) are, respectively, the identity,

the squared coupled natural frequencies and the modal damping
matrices.

Applying the modal expansion described by Eq. (15) into Eq. (3)
and pre-multiplying it by ΦΦΦ

T
L , Eq. (3) can be re-written as

ΦΦΦ
T
L

[
Ks Kc
0 Ka

]
ΦΦΦRq+ΦΦΦ

T
L

[
Ds 0
0 Da

]
ΦΦΦRq̇+

+ΦΦΦ
T
L

[
Ms 0
−ρ0KT

c Ma

]
ΦΦΦRq̈ = ΦΦΦ

T
L

{
Fs
Fa

}
(19)

The frequency response functions can be extracted from Eq. 19
applying Laplace transformation.

For the sake of illustration, the coupled modes at 355 Hz and 482
Hz are depicted in Figs. 3 and 4.

 
Figure 3. Coupled Mode: 355 Hz.

 
Figure 4. Coupled Mode: 482 Hz.

In this work, two simultaneous structural inputs and one acoustic
output are considered to calculate the frequency response function.

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright c© 2012 by ABCM Special Issue 2, 2012, Vol. XXXIV / 607



de Oliveira et al.

The structural inputs, depicted as two spheres at the structural meshes
in Fig. 2, represent the excitation from the motor mounting system.
The acoustic output, shown as a sphere at the acoustic mesh in Fig. 2,
resembles the driver’s ear. The nominal noise transfer function, which
is calculated considering a 3.0 mm-thick firewall and speed of sound
equal to 340 m/s, is shown in Fig. 5a.

 
Figure 5. Nominal graphs for (a) noise transfer function and (b) order
magnitudes for selected rpms.

Sound Quality Metrics

Sound quality is the science that studies the human appreciation
of a determined auditive stimulus. More than the mathematical
interpretation of pressure signals, SQ and psychoacoustics try to
correlate acoustic stimuli with hearing sensation (Zwicker and Fastl,
1999). It is also important to define which is the most appropriate
set of metrics for each application. Loudness and Roughness have
been indicated, among others, as the most important for engine noise
(Gonzalez et al., 2003). In summary, Loudness is the term referring
to the human perception of sound volume and Roughness is the term
that correlates to how noticeable or annoying a sound is heard by
the human ear. In this manuscript, the impact of the manufacturing
process variability on Loudness is assessed through Monte Carlo
analysis. The sound quality metric known as Loudness is properly
introduced and discussed in the next subsection. Further information
can be found in de Oliveira et al. (2009).

Specific Loudness and Zwicker Loudness

In spite of showing some correlation with actual human
perception, and therefore being widely used, dB(A) measurements
simply superimpose the effects of different frequency components on
complex sound. In this sense, it neglects an important mechanism
within the ear transduction of pressure fluctuations into signals to the
brain, namely frequency masking (Zwicker and Fastl,1999).

Masking is related to the way hair-cells are positioned in the
cochlea, so that a tonal (or narrow band) stimulus excites a specific
region in the cochlea with effects on its neighborhood, turning them
insensitive to another (lower level) excitation, which rises the concept
of critical bands of excitation, measured in Barks. This phenomenon
is responsible, for instance, for the way speech intelligibility is

affected by background noise. The capability of recognizing a specific
sound (test sound) in the presence of another one (masker sound)
is very much related to their relations in level and spectral content.
Indeed, masking can be interpreted as the variation on the hearing
threshold curve to a test sound in the presence of a masker, i.e., if
the test sound spectrum lies below the masked threshold it will be
inaudible. This concep is illustrated in Fig. 6.

 

Figure 6. Comparison of two periodic sound samples: (a-b) amplitude of the
sinewave components, (c-d) 1/3rd octave band representation, (e-f) specific
Loudness.

Figure 6(a) shows the magnitude of a periodic signal in the
frequency domain. This signal is composed of three sinewave
components, one of amplitude 0.10 Pa and two others of 0.05 Pa at
125 Hz, 500 Hz and 1000 Hz, respectively. Figure 6(b) shows the
other periodic signal, in all aspects similar to the first one, but for
the frequency of the third component that is of 160 Hz instead of 1
kHz. In that way, the energy content of both signals is the same,
resulting in 82.4 mPaRMS. Figures 6(c) and (d) show both signals
represented in third-octave plots, showing that the signal present
on band #20 (1000 Hz) has migrated to band #11, which does not
change the overall sound pressure level of 72.3 dB. The difference is,
however, clear in Figs. 6(e) and (f), which show the Specific Loudness
plots for both signals. While the signal shown in Fig. 6(a) has well
spreaded frequency components, each one of them can be seen in the
Specific Loudness plot, above each other’s masking curves, resulting
in 13.7 Sones. However, the second signal presents two frequency
components that are close to each other, namely 125 and 160 Hz. As
a result, the 160 Hz component with a smaller amplitude will lie under
the former masking curve, which means that it will not be audible and
will not compute for the overall Loudness, resulting in 9.93 Sones
(27% less than the other signal).

From the available techniques, only the method developed by
Zwicker and Fastl (1999) is valid to broadband excitation, with or
without tonal components in free and diffuse fields. The first step in
the numerical procedure consists in filtering the signal with critical
band filters, followed by a masking check. In this stage, if the
proceeding band level falls under the masking curve of the preceding
one, this value is neglected; otherwise the value is kept. Following
this procedure, the Specific Loudness graph is obtained with units
Sones/Bark. The value for Zwicker Loudness (ZL) is defined as
the integral of the Specific Loudness (SL) over Bark, with values
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Table 1. Nominal results – 3 mm firewall and 340 m/s speed of sound.

Condition SPL SLP ZL
RPM dB dB(A) Sones

1200 58.3 29.8 0.95
1800 68.3 48.6 3.83
2400 68.0 59.3 5.00
3000 67.0 63.0 5.04
3600 67.1 59.3 4.10
4200 76.9 66.4 5.12

expressed in Sones. The advantage of the Sones scale is its linear
correlation with the human perception of volume, i.e., an acoustic
stimulus of 8 Sones sounds twice as loud as a 4 Sones stimulus.

Figure 7 and Table 1 show the nominal curves (Specific Loudness)
and values (Zwicker Loudness) for the six rpms studied in this paper.
The harmonic content of the excitation forces used in four of these
cases are shown in Fig. 5(b), namely, rpms 1, 2, 5 and 6. The other two
are omitted for the sake of clarity. As mentioned before, the amplitude
and phase relation of the harmonic excitation have been obtained with
the aid of VCS.

 
Figure 7. Specific/Zwickwer Loudness for the nominal case at different
rpms.

Variability Analysis

Variability analysis plays an important role to study uncertainties
in dynamical models. For instance, uncertainties related to structures
excited by internal flow have been recently investigated by Ritto et al.
(2011), uncertainties for hearing protector noise attenuation apparatus
by Lima et al. (2010) and electrical uncertainties of passive/active
structural vibration control have been numerically and experimentally
studied by Santos and Trindade (2011).

In this work, variability analyses are carried out using the Monte
Carlo methods. This strategy is the most straightforward sampling
method to identify the sensitivity of the design to variations of
the variables at any point in the design space. In this method, a
number of simulations is performed by generating suitable random
numbers and by observing the properties of the results. The
parameter generation, model updating and analysis are managed by
the software Optimus, which is capable of reading and changing
the input files to the FE analysis as well as reading the outputs
provided by Virtual.Lab and using the results to calculate the sound
quality metrics in Matlab. A probabilistic approach has been used

for modeling the variability of two parameters of the model under
investigation. In this work, a normal distribution has been selected
to describe the uncertainty of the firewall thickness and the speed
of sound. The maximum allowed variation of these parameters is
10%. Moreover, a widely used Design of Experiment technique
named Latin Hypercube (LH) sampling has been used to improve the
efficiency of the sampling distribution. The LH sampling technique
divides the design parameter space into n equidistant levels, where n
is the number of simulations, guarantying in that way a good coverage
of the whole multidimensional deign space. The evaluating points are
obtained by selecting for each dimension a permutation of the levels
and combining these permutations into a design. Figure 8 shows the
selected design points and their distributions.

 
Figure 8. The selected design points and their distribution.

In this work, Sound Pressure Level (SPL) expressed in dB
and dB(A), as well as Zwicker Loudness have been evaluated for
variations on the firewall thickness and cavity’s fluid speed of
sound. The resulting noise transfer functions (between the driver
hear position and the input forces) calculated for every design
configuration (Fig. 8) are shown in Fig. 9, where the shaded area
represents the collective magnitude range and the nominal case is
highlighted. As it can be seen, there is a significant variation of
the resonance frequencies, mainly due to the 10% variation in both
parameters.

The results for the output parameters are summarized in Table
2. Figure 10 shows the histograms for the four main contrasting
results. It is known that the third-octave filters average the results
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Figure 9. Noise transfer function scattering.
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under their frequency band. Because of this fact, small variations
on the input parameters have little impact on the output responses.
This is the case of dB and dB(A), which range in average 6.5% and
7.5% around the nominal value, respectively. On the other hand,
the variation of the Zwicker Loudness is rather high, which is also
clear from Fig. 10, ranging up to 37% from its nominal value. The
main reason for that is arguably the masking effect, modeled in the
Zwicker Loudness algorithm. Whenever there is an important order
near to one of the vibro-acoustic system resonances, the parametric
variation may change that resonance frequency bringing it closer
to that order consideringly amplifying it, which might lead to the
masking of neighboring ones; in dB calculations, all the orders will
add up to the overall level, while in Zwicker Loudness, the masked
orders will not be considered, resulting in high output variations
for small input variations. It is important to stress that the present
analyses are based on stationary operating conditions, i.e., invariant
harmonic excitations, which are more sensitive to such variations than
excitations of random or transient nature.

From the statistical point of view, Fig. 11 shows the mean
square convergence analysis for the SLP values in dB(A) and dB,
and Loudness in Sones. It is possible to observe that for all cases
400 simulations are enough to assure convergence. Despite that,
the aforementioned statistical analyses consider all 1200 simulations
performed.

Combining information from Figs. 7 and 10, it is possible to
conclude that the system is more sensitive to variations in operating
conditions where there is a clear dominance of a particular order
and/or path, which is the case of 4200 rpm, in contrast with 1800 rpm.
While the former has a clear low frequency dominating component,

 
Figure 10. Responses histograms.

 
Figure 11. Mean square convergence of Monte Carlo simulation.

Table 2. Statistics summary – STD/mean.

Condition SPL SLP ZL
RPM dB dB(A) Sones

1200 1.09% 3.54% 7.97%

1800 2.93% 2.39% 15.1%

2400 1.32% 1.88% 11.7%

3000 1.75% 3.51% 9.78%

3600 2.23% 2.23% 8.61%

4200 4.92% 2.84% 23.9%

the latter presents a more spreaded combination of different orders
that add up to the overall Loudness (as seen in Fig. 7). As a result,
small variations on the system parameters result in a wider spread of
either dB or Loudness metrics for 4200 rpm while it remains quite
narrow for 1800 rpm, as depicted in Table 2.

Conclusions

In this work, the scatter of significant parameter variations on
vibro-acoustic models is calculated on the sound quality space using
Monte Carlo analysis. The mapping from the system parameters to
sound quality metrics is performed by a fully-coupled vibro-acoustic
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finite element model built in LMS Virtual.Lab. The sound quality
equivalent forces used to excite the FE model come from Virtual Car
Sound, a software developed to simulate engine sound in real-time
operation. Two of the main paths have been selected as inputs for the
vibro-acoustic model, and the pressure at the driver’s head position
as the output. Sound quality metrics have been calculated using this
output pressure.

The sound quality scattering due to vibro-acoustic system
variability has been assessed by Monte Carlo analysis with the aid of
Optimus, a simulation management software with embedded statistics
and optimizations tools. A normal distribution has been selected to
describe the uncertainty of the firewall thickness and the speed of
sound in the vibro-acoustic model. The maximum allowed variation
of these parameters, including both structural and acoustic properties,
is 10%.

No significant variation has been perceived when evaluating the
overall SPL in dB and dB(A), which is due to the fact that third-octave
filters average the results under each frequency band. On the other
hand, Zwicker Loudness presents important variations, up to 37%,
which is related to the masking effects; if a certain order amplitude
increases, it may mask the neighboring orders, meaning that those
will not be computed for the Loudness calculation, resulting in a
significant change in this function value. That could mean engineers
have to be carefull when analysing loudness from sharp simulation
data, as small uncertainties in important system parameters can lead
to big variations on the numerical estimates. It is also true that the
present study has considered a rather lowly damped system excited
with a harmonic signal, which both combined can be more sensitive
to the selected parameter variations as a real vehicle application would
do, but in any case it has raised awarness on the subjetc. The study
of the influence of damping as well as the inlcusion of other sound
quality metrics in this study are considered as future research topics.
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