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ABSTRACT: The neurotoxin purified from the venom of Bungarus caeruleus causes 

a neuromuscular blockade on acetylcholine-induced muscle twitch response in 

isolated frog rectus abdominis muscle preparation. Neuromuscular blockade 

produced by d-tubocurarine on acetylcholine-induced muscle twitch response in an 

isolated frog rectus abdominis muscle preparation was reversed to normal muscle 

twitch response in presence of neostigmine. Whereas the purified neurotoxin 

produced an irreversible neuromuscular blockade in presence of the same strength 

of neostigmine. As it is already known, botulinum toxin, which also brings about 

neuromuscular blockade, is effectively used as a drug in the treatment of painful 

movement disorders. Since the purified toxin also causes paralysis of the muscle, we 

propose its possible efficacy in the treatment of neuromuscular disorders.  
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INTRODUCTION 
Toxins isolated from the venoms of Elapidae and Crotalidae snakes exert potent 

neurotoxic action by inhibiting the release of acetylcholine from nerve terminals in 

neuromuscular junctions. Such toxins so far isolated from snake venoms are 

bungarotoxin (18), from Bungarus multicinctus; notexin (15), from Notechis scutatus 

scutatus; and taipoxin (11), from Oxyuranus scutellatus. 

Almost all vital biological processes are open to disruption from snake toxins. Many 

species of snake contain toxins that act either to destroy muscle tissue or to interfere 

with the function of the neuromuscular junction. They are classified according to their 

pharmacological activity (12, 13, 27, 28,) as presynaptic and postsynaptic toxins. 

Postsynaptically active toxins bind to the acetylcholine receptors at the postsynaptic 

membrane of the neuromuscular junction and prevent the binding of acetylcholine. 

The effect is to produce a non-depolarizing type of neuromuscular blockade. The 

classical example is α-bungarotoxin from the venom of Bungarus multicinctus. 

Presynaptically active toxins act on motor end terminals to either facilitate or block 

neurotransmitter release, e.g. β-bungarotoxin, also from the venom of Bungarus 

multicinctus (6, 7). 

Earlier work on Bungarus caeruleus (4) included the biochemical and 

pharmacological characterization of neurotoxic phospholipase A2. The toxin β-

bungarotoxin from krait (24) has been isolated, purified, crystallized, and preliminary 

x-ray analyzed.  

In this study we intend to demonstrate the neuromuscular blocking action of a toxin 

purified from Bungarus caeruleus venom and also propose the use of this toxin for 

treatment of neuromuscular disorders. Bungarus caeruleus (Indian krait) neurotoxin 

is suggested as a possible alternative for the treatment of painful movement 

disorders (focal dystonias) because botulinum toxin (14), which is currently used, is 

regarded as the most toxic substance and is also known to have many side effects. 

Botulinum toxin is a large peptide eliciting the production of high antibody titers in 

patients, making subsequent injections of the same botulinum toxin subtype 

ineffective (8) and thus compelling the patient to receive different subtypes of this 

toxin. Botulinum toxin can also enter the spinal cord region and has the ability to bind 

to the brain synaptosomes. Botulinum toxin paralysis results from a permanent 

blockade (9) of neurotransmission at the motor end plate. This blockade is caused by 

the inhibition of acetylcholine release from nerve endings. As a consequence of 
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neuroparalysis, secondary changes occur (e.g. limited atrophy of affected muscle 

fibers and sprouting of the terminal nerve fibers). The toxin also interferes with the 

uptake of cytoplasmic acetylcholine by the presynaptic vesicles in the motor end 

plate (10). Localized injection of minute doses of Botox (botulinum toxin) has been 

shown to alleviate muscle spasms in dystonia and other movement disorders. 

 

MATERIALS AND METHODS 
Materials used: 
- Lyophilized Bungarus caeruleus snake venom, a generous gift from Haffkine 

Institute, Mumbai, India; 

- Albino mice (Mus musculus), 20-40g body weight, 10 months old; 

- Frog’s isolated rectus abdominis muscle preparation, Dale’s organ bath, kymograph 

with recording drum, aerator and writing lever, and Ringer’s solution (0.6%NaCl + 

0.14%KCl + 0.012%CaCl2 + 0.02%NaHCO3);  

- Acetylcholine, d-tubocurarine and neostigmine, Bungarus caeruleus crude venom, 

and purified toxin. 

 

Isolation and purification of toxin 
Bungarus caeruleus crude venom was fractionated on a CM-Sephadex C-25 column 

(17, 21). Venom (100mg) dissolved in 5ml of 0.05M ammonium acetate buffer, pH 

5.8, was loaded on a previously equilibrated CM Sephadex C-25 column (1.5x30cm). 

After washing the column with 500ml of ammonium acetate buffer, pH 5.8, venom 

components were eluted using ammonium acetate buffer linear gradient (0.05M, pH 

5.8, to 0.95M, pH 6.8) at a flow rate of 40ml/h and 4ml-fractions were collected. 

Protein elution profile was monitored at 280nm on a spectrophotometer. Fractions 

showing enzymatic activity were pooled, desalted, and lyophilized. 

The major fraction was subsequently subjected to gel filtration on a Sephadex G-50 

column (1.5x90cm) and eluted with 0.1M ammonium acetate (pH 7.0). The protein 

was eluted at a flow rate of 20ml/h. Fractions (3ml) were collected and elution was 

monitored at 280nm on a UV-spectrophotometer. The major protein peak eluted from 

the column was next subjected to SDS-PAGE, as shown in Figure 1, and further 

characterized. 

Protein concentrations (19) were determined by measuring their absorbance at 

280nm using bovine serum albumin as standard. 
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Determination of LD50 of crude venom and purified toxin 
The LD50 determination (22) was carried out for both Bungarus caeruleus crude 

venom and its purified toxin. 

Mice were maintained on standard food pellets overnight, however fasting animals 

were used in the present study. Six groups, each group comprising of six overnight 

fasting animals were treated as follows: 

Group 1: Saline administered animals (control group). 

Groups 2-6: Crude venom / purified toxin administered animals. 

Saline (0.4ml) was injected into the control group, and crude venom / purified toxin 

was injected at varying doses, intraperitoneally, into the other groups. Animals were 

observed for 48h. 

 

Physio-pharmacological studies 
To demonstrate the neuromuscular blocking action (24), frog rectus abdominis 

muscle preparation was isolated and mounted in Dale’s organ bath containing 

aerated frog Ringer’s solution. Tissue was stabilized for 20 minutes; 0.1ml 

acetylcholine (80µg/ml) was added to the bath fluid, allowed to act for three minutes 

and the twitch response was recorded. After two minutes relaxation, 1ml d-

tubocurarine (10µg/ml) was added to the bath and allowed to act for three minutes. 

Muscle twitch response in the presence of acetylcholine was recorded with needle 

electrodes (sensitivity of mv/cm) using a kymograph. Muscle preparation was washed 

with frog Ringer’s solution and allowed to relax for two minutes. 

Again, 1ml of acetylcholine (80µg/ml), 1ml of d-tubocurarine (10µg/ml), and 1ml of 

neostigmine (100µg/ml) were added to the bath at an interval of three minutes and 

the muscle twitch response was recorded. The muscle preparation was washed 

again with frog Ringer’s solution. 

Next, acetylcholine-induced muscle twitch response was recorded for increasing 

doses of purified Bungarus caeruleus toxin until complete neuromuscular blockade 

was obtained. Acetylcholine-induced muscle twitch responses were recorded at an 

interval of three minutes in presence of neostigmine (100µg/ml). 
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RESULTS 
Purification of the neurotoxin 
Figure 1 shows SDS-PAGE of purified Bungarus caeruleus toxin. Electrophoresis 

was carried out in 12% gel of 1mm thickness. 

 

Determination of LD50 of crude venom and purified toxin 
Bungarus caeruleus neurotoxin when administered intravenously demonstrated 

lethality in mice with typical neurotoxic symptoms and had a LD50 value of 160 µg/kg 

mice, as shown in Figure 2. Dosage of the purified neurotoxin was calculated on the 

basis of total protein content. Bungarus caeruleus crude venom had a LD50 value of 

40 µg/kg mice, which died with typical neurotoxic symptoms like shivering and 

tremors, as shown in Figure 2. 

 

Physio-pharmacological studies 
Acetylcholine-induced muscle twitch tension of frog rectus abdominis muscle was 

treated as control. 

Figure 3 shows the neuromuscular blockade by d-tubocurarine on the acetylcholine-

induced muscle twitch response in an isolated frog rectus abdominis muscle 

preparation. A concentration of 10µg of d-tubocurarine produced 44% inhibition of 

muscle twitch response as compared to the normal response produced by 

acetylcholine within 3 minutes. Neuromuscular blockade produced by d-tubocurarine 

was reversed to normal muscle twitch response in presence of neostigmine 

(100µg/ml). 

d-Tubocurarine-induced blockade was compared with the neuromuscular blockade 

by Bungarus caeruleus neurotoxin. Purified neurotoxin produced an irreversible 

neuromuscular blockade in presence of the same strength of neostigmine. 

Figure 4 shows the neuromuscular blockade brought about by purified Bungarus 

caeruleus neurotoxin on acetylcholine-induced muscle twitch response in an isolated 

frog rectus abdominis muscle preparation at different concentrations (25µg; 50µg; 

75µg; 100µg; 125µg; 150µg; 175µg; 200µg; 225µg; 225µg + 100µg neostigmine)  

A concentration of 225µg purified neurotoxin produced 100% inhibition of muscle 

twitch response within 3 minutes, as shown in Figure 5. 
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a         b         c         d         e         f         g 

 

Figure 1: SDS-PAGE of purified Bungarus caeruleus toxin. 

Electrophoresis was carried out in 12% gel of 1mm thickness. 

Lanes: a = standard molecular weight markers; b and c = crude Bungarus caeruleus 

venom; d and e = gel filtration; f and g = purified toxin. 
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Figure 2: Bungarus caeruleus crude venom showed a LD50 value of 40µg/kg mice, 

and its neurotoxin had a LD50 value of 160µg/kg mice. 

•⎯⎯• = Crude venom. 

ο−⎯ο = Purified toxin. 

 

 
Figure 3: Neuromuscular blockade by d-tubocurarine on the acetylcholine-induced 

muscle twitch response in an isolated frog rectus abdominis muscle preparation. 
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(a)     (b)     (c)     (d)     (e)     (f)     (g)      (h)     (i)       (j) 

Figure 4: Neuromuscular blockade caused by purified Bungarus caeruleus 

neurotoxin on acetylcholine-induced muscle twitch response in an isolated frog 

rectus abdominis muscle preparation at different concentrations: (a) = 25µg; (b) = 

50µg; (c) = 75µg; (d) = 100µg; (e) = 125µg; (f) = 150µg; (g) = 175µg; (h) = 200µg; (i) 

= 225µg; (j) = 225µg + 100µg neostigmine.   
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Figure 5: Percentage of reduction in the height of muscle twitch tension after 

treatment with purified toxin. A concentration of 225mg purified neurotoxin produced 

100% inhibition of muscle twitch response within 3 minutes. 

 
DISCUSSION 
Phospholipases found in some snake venoms are potent neurotoxins that target their 

enzymatic action on the synaptic membrane. One of these is the heterodimeric 

neurotoxin β-bungarotoxin, which acts by inhibiting the release of acetylcholine from 

motor nerve endings, one of the most investigated steps in neuromuscular 

transmission (1,16,18,). Six isoforms of β-bungarotoxin (β1-β6) from the venom of 

Bungarus multicinctus (17) and five isoforms of β-bungarotoxin (β1-β5 caeruleotoxin) 

from the venom of B. caeruleus (2) have been identified and characterized. 

Structurally, β-bungarotoxin is a heterodimeric neurotoxin (25) consisting of a 

phospholipase A2 (PLA2) subunit linked by a disulfide bond to a K+ channel binding 

subunit, which is a member of the Kunitz protease-inhibitor superfamily. It acts 

presynaptically by binding via the protein-inhibitor-like subunit to a presynaptic 

potassium channel and then blocking neurotransmission with the second subunit, 

which has phospholipase A2 activity, thus altering acetylcholine release in both the 

peripheral and central nervous systems. Although the presynaptic action of β-

bungarotoxin has been established, there is also evidence for its postsynaptic action 

(26) in mammalian skeletal muscle. 

Following exposure of nerve muscle preparation to toxin, the frequency of miniature 

end plate potentials (MEPP) generally undergoes a triphasic change. The three 
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phases are: 1) an initial reduction of MEPP frequency; 2) a phase of enhanced 

MEPP frequency; and 3) a decline in MEPP frequency leading to complete failure. β-

bungarotoxin does not change MEPP amplitude, indicating that the sensitivity of end 

plates toward acetylcholine remains unchanged. Usually the muscle membrane 

potential and the directly elicited muscle action potential remain unchanged (23). On 

frog sartorius preparation (1, 3, 20), it has been reported that β-bungarotoxin causes 

a marked decrease in MEPP frequency in a matter of minutes after being added to 

the bath, and that it may last about 10 min. It has been suggested (5) that phase one 

is caused by the binding of β-bungarotoxin to the presynaptic membrane, but the 

reason why this binding results in changes in the MEPP frequency has not been 

explained. 

Aimed at discovering and developing drugs, we initiated our efforts to isolate, purify 

and characterize Bungarus caeruleus toxin to treat painful neurological movement 

disorders, also known as dystonias, in lieu of botulinum toxin, which is highly 

antigenic, expensive, and nerve damaging in nature. 

Though this suggestion is largely hypothetical in nature, it is sound when biochemical 

characteristics of both toxins are compared. Causing selective muscle paralysis is the 

main concern to alleviate human suffering. Development of this concept is mainly a 

result of intuitive empirical work by the clinicians with collaborative scientific studies 

generated secondarily. 

While some toxins have lead directly to their use as therapeutic agents, others have 

provided insight into selective pharmacological actions. Although many toxins are too 

large or too poorly absorbed to be used as drugs, advances in techniques for 

analyzing three-dimensional structure and computer-aided drug design should make 

it likely that toxins will act as model compounds in drug discovery. 
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