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Abstract
Background: The resistance against antimalarial drugs represents a global challenge in 
the fight and control of malaria. The Brazilian biodiversity can be an important tool for 
research and development of new medicinal products. In this context, toxinology is a 
multidisciplinary approach on the development of new drugs, including the isolation, 
purification, and evaluation of the pharmacological activities of natural toxins. The present 
study aimed to evaluate the cytotoxicity, as well as the antimalarial activity in silico and in vitro 
of four compounds isolated from Rhinella marina venom as potential oral drug prototypes.
Methods: Four compounds were challenged against 35 target proteins from P. falciparum and 
screened to evaluate their physicochemical properties using docking assay in Brazilian Malaria 
Molecular Targets (BraMMT) software and in silico assay in OCTOPUS® software. The in 
vitro antimalarial activity of the compounds against the 3D7 Plasmodium falciparum clones 
were assessed using the SYBR Green I based assay (IC50). For the cytotoxic tests, the LD50 
was determined in human pulmonary fibroblast cell line using the [3(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay.
Results: All compounds presented a ligand-receptor interaction with ten Plasmodium
falciparum-related protein targets, as well as antimalarial activity against chloroquine resistant
strain (IC50 = 3.44 µM to 19.11 µM). Three of them (dehydrobufotenine, marinobufagin,
and bufalin) showed adequate conditions for oral drug prototypes, with satisfactory
prediction of absorption, permeability, and absence of toxicity. In the cell viability assay,
only dehydrobufotenin was selective for the parasite.
Conclusions: Dehydrobufotenin revealed to be a potential oral drug prototype presenting
adequate antimalarial activity and absence of cytotoxicity, therefore should be subjected
to further studies.
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Background
Malaria is an important human parasitic disease, occurring 
in tropical and subtropical areas of the planet [1]. The malaria 
parasites resistance to ancient antimalarials consists of the 
biggest hurdles to malaria control [2]. Because of the resistance to 
antimalarials, artemisinin and its derivatives have been the first-
line antimalarial agents against Plasmodium falciparum [3,4]. 
Artemisinin-based combination therapies (ACT) are the most 
effective regimens for the first-line treatment for P. falciparum 
infections. Despite of the WHO recommendations for using and 
prescribing the ACTs, pharmacokinetic and pharmacodynamic 
studies with P. falciparum strains have already demonstrated 
the development of resistance to these compounds [5,6,7]. This 
phenomenon is responsible to increase the mortality in endemic 
areas contributing to the appearance and expansion of new 
outbreaks of P. falciparum malaria. Thus, new strategies are 
required to prevent increased resistance to ACTs. In addition, a 
potential strategy would be to add a third drug with independent 
antiparasitic activity [6]. 

Natural products have providing a great contribution to the 
development of new drugs [8]. In fact, many of the antimalarial 
drugs commercially available are derivatives of phytoconstituents 
[9]. In addition to the plant-derived remedies, animal extracts, 
products, and even secretions are also a source of a plethora of 
therapeutical agents [10]. 

The venoms secreted by the paratoid glands of amphibians 
from the order Anura is the first line of defense against predators 
and microorganisms [11,12]. The toads of Bufonidae family have 
been widely studied due to the bioactive properties found in the 
Rhinella marina venom, which have already shown antitumor 
[13,14,15], antiviral [16,17], and antiparasitic activities [18]. The 
cholesterol-derived steroid structures called bufadienolides 
are major active compounds in the venom of Bufonidae family 
and are considered a promising source of bioproducts [19,20]. 
Furthermore, the alkaloids dehydrobufotenin and bufotenine 
also identified in R. marina venom have demonstrated to possess 
antiproliferative and antiviral activity, respectively [20,21, 22, 23].

The development of malaria drugs is slower than that involving 
the antibacterial drugs [24]. However, this process can be speeded 
up with the aid of computational drug planning tools, known as 
molecular modeling or docking, to design new compounds and 
to study their respective protein targets [25, 26]. The docking is a 
robust tool for investigating the chemical interactions of ligands 
and receptors and to explore the structural factors related to 
the biological effect [27, 28]. 

To date, there are almost no studies investigating compounds 
isolated from the bufonides venom as potential new antimalarial 
drugs. Therefore, present study aimed to evaluate the cytotoxicity, 
as well as the antimalarial activity in silico and in vitro of four 
compounds isolated from Rhinella marina venom as potential 
oral drug prototypes.

Methods

Sample collection
The animals (R. marina) were collected in the Branca de Neve 
Community, Mato Grosso, Brazil (Latitude 11°51’51.59 “S/
Longitude 55°22’47.99” W), from January to March of 2015, in the 
municipality of Sinop, Mato Grosso state, North-Western Brazil. 
The vegetation where the individuals were found is classified 
as dense humid forest and the climate of the region is tropical 
with an average temperature of 24° C, relative air humidity of 
~80%, and average annual rainfall of 2,034 mm. 

The amphibians were captured and identified by the biologist 
(D. J. Rodrigues - 95 IBAMA, SISBIO: number 30034-1). The 
secretions were obtained by manual compression of the parotoid 
macrogland and the animals were returned to nature after this 
procedure. The voucher specimens (R. marina - ABAM-H 
2256) were collected and deposited in the zoological collection 
(Acervo Biológico da Amazônia Meridional) of the Federal 
University of Mato Grosso located at Sinop city (the collection 
permit was issued by the Chico Mendes Institute for Biodiversity 
Conservation).

All experiments were performed according to internationally 
accepted guidelines for the care and use of laboratory animals 
and were previously approved by the Federal University of Mato 
Grosso Institutional Animal Care and Use Committee (Protocol 
23108.700260/14-7) and National System for the Management 
of Genetic Heritage and Associated Traditional Knowledge 
(SisGen AE 19081).

Extraction of R. marina Venom samples and isolation
R. marina toad venoms were dried, powdered and extracted three
times (3 x 20 mL) with 100% methanol (MeOH) in ultrasound
waves for 10 minutes at room temperature [14]. The extract was
fractionated on Sephadex LH-20 column using methanol as eluent.
Four fractions were obtained: CRV-6 (783.8 mg); CRV-28 (102.9
mg); CRV-52 (315.8 mg) and CRV-70 (394.1 mg). The structure
of the isolated compounds marinobufotoxin, dehydrobufotenin,
marinobufagin, and bufalin are presented in Figure 1 [29].

Evaluation of molecular docking
The compounds were designed using MarvinSketch® software 
(ChemAxon, Cambridge, MA, USA) and the molecular structures 
were refined through MOPAC® software (Stewart Computational 
Chemistry, Colorado Springs, CO, USA) using the PM7 semi-
empirical method. The compounds dehydrobufotenine, 
marinobufotoxin, marinobufagin and bufalin were submitted 
to the molecular docking calculations in the AutoDock 
Vina® program [30] using OCTOPUS® platform [31] and the 
configuration files were determined through a re-docking 
step [32]. Thus, the virtual screening of antimalarial drugs 
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was performed using the BraMMT data bank according [33]. 
From the generated binding energy values, ∆ (binding energy of 
the crystallographic ligand - binding energy of the compound) 
values were calculated. Thus, ∆ values greater than “0”, show 
that it has higher binding energy than the crystallographic 
ligand, suggesting greater interaction with the target. Table 1 
lists the molecular targets used to build the BraMMT platform.

Evaluation of physicochemical and ADMET 
properties

The physicochemical and ADMET properties of the compounds 
dehydrobufotenin, marinobufotoxin, marinobufagin and bufalin 
(CRV-28, CRV-6-28-51, MB-1 and MB-3, respectively) were 
analyzed using DataWarrior® software and SwissADME website 
[34]. The properties of molecular mass, partition coefficient 
(ClogP), number of hydrogen donor groups, and number of 
hydrogen acceptor groups were predicted. The toxicological 
characteristics of the ligand, such as mutagenicity, tumogenicity, 
and irritability, were analyzed [35]. Finally, the pharmacokinetic 
processes of absorption, distribution, metabolism, excretion, 
and toxicity were estimated [34].

In vitro culture of P. falciparum

P. falciparum W2 strain (chloroquine resistant) [36, 37, 38]
was cultured in blood stage culture to test the antiplasmodial
efficacy of toad venom compounds (1, 2, 3, and 4). P. falciparum
continuous culture was maintained as previously described [36,39]
with minor modifications. Parasites were maintained at 5%
hematocrit using type O+ human erythrocytes in RPMI 1640
medium (Sigma-Aldrich®, St. Louis, Missouri, USA) supplemented
with 25 mM NaHCO3, 1.0% albumax, 45 mg/L hypoxanthine, 40
µg/mL gentamycin and incubated at 37º C under approximately
5% of CO2. The parasites at early stages were synchronized at ring

stage by sorbitol treatment [40]. Initial parasitemia was adjusted 
to 0.5% with 2% hematocrit in all experiments.

In vitro antiplasmodial activity

In vitro antiplasmodial activity of the bufadienolides (compounds 
dehydrobufotenin, marinobufotoxin, marinobufagin and 
bufalin) was done in 96 well plates [41]. The growth inhibition 
of intraerythrocytic forms and parasite morphology in culture 
was assessed by microscopic observation of the Giemsa-stained 
thin blood films. Ring stage parasites (0.5% parasitemia and 2% 
hematocrit) were added to each well of 96-well microculture 
plates. The compounds (dehydrobufotenin, marinobufotoxin, 
marinobufagin and bufalin) were dissolved in DMSO and 
diluted to concentrations ranging from 0.78 to 100 µg/mL using 
complete medium and stored a 4º C. After incubation at 37º C 
for 48 hours, P. falciparum growth inhibition was assessed in 
Giemsa-stained smears by observing 5,000 erythrocytes per 1 
thin blood film in triplicate. The culture medium was replaced 
with fresh medium with or without test samples/control drugs. 
Chloroquine (CQ) was used as a reference antimalarial. The 
activity of the compounds (dehydrobufotenin, marinobufotoxin, 
marinobufagin and bufalin) was expressed as the percentage 
reduction in parasitemia relative to controls without drugs. 
All experiments were performed in triplicate. The results were 
expressed as the mean of the IC50 (Drug concentration that 
reduced parasite viability in 50%).

In vitro cytotoxicity

In vitro cytotoxicity of each compound was assessed on WI-
26VA4 (ATCC CCL-95.1, USA) human pulmonary fibroblast 
cells. The cells were cultured in RPMI-1640 (Sigma-Aldrich®, St. 
Louis, Missouri, USA) medium supplemented with 10% heat-
inactivated fetal bovine serum and 100 µg/mL of gentamycin in a 
5% CO2 atmosphere at 37º C. The cells were washed with culture 

Figure 1. Molecular structures of R. marina venom fractions. (1) Dehydrobufotenine (CRV - 28), (2) marinobufotoxin (CRV-6-21-58), (3) marinobufagin (MB-1) 
and (4) bufalin (MB-3). 
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Table 1. Molecular targets, location and enzymatic class of the 35 molecular targets obtained from the Tropical Disease Research (TDR target database) for 
building the Brazilian Malaria Molecular Targets (BraMMT).

PDB Code Name Enzymatic class Location

1LF3 Plasmepsin II Hydrolase Digestive vacuole

1LYX Triosephosphate Isomerase (PfTIM)-Phosphoglycolate Isomerase Cytoplasm

1NHW Enoyl-acyl-carrier-protein reductase Oxidoreductase Apicoplast

1O5X Triosephosphate Isomerase Isomerase Cytoplasm

1QNG Peptidyl-prolil cis-trans isomerase Isomerase Cytoplasm

1RL4 Formylmethionine deformylase Hydrolase Apicoplast

1TV5 Dihydroorotate dehydrogenase Oxidoreductase Cytoplasm e Nucleus

1U4O L-lactate dehydrogenase Oxidoreductase Cytoplasm

1YWG glyceraldehyde-3-phosphate dehydrogenase Oxidoreductase Cytoplasm

2AAW Glutathione s-transferase Transferase Cytoplasm

2ANL Plasmepsin IV Hidrolase Digestive vacuole

2OK8 Putative ferredoxin--NADP reductase Oxidoreductase Apicoplast

2PML Ser/Thr protein kinase Transferase Cytoplasm

2Q8Z Orotidine-monophosphate-descarboxylase Liase Nucleus

2VFA Hypoxantine-guanine phosphoribosyltransferase Transferase Apicoplast

2VN1 70 KDA peptidylprolyl isomerase Isomerase Nucleus

2YOG Thymidylate kinase Transferase Nucleus

3AZB Beta-hydroxyacyl-ACP dehydratase Lyase Cytoplasm

3BPF Falcipain II Hydrolase Digestive vacuole

3CLV Rab5 Protein Signaling protein Cytoplasm

3FNU HAP Protein Hydrolase Digestive vacuole

3K7Y Aspartate aminotransferase Transferase Cytoplasm

3N3M Orotidine 5’-phosphate decarboxylase Lyase Apicoplast

3PHC Purine nucleoside phosphorylase Transferase Nucleus

3QS1 Plasmepsin I Hydrolase Digestive vacuole

3T64 Deoxyuridine 5’-triphosphate nucleotidohydrolase Hydrolase Nucleus

3TLX Adenylate kinase 2 Transferase Cytoplasm and mitochondria

4B1B Thioredoxin reductase Oxidoreductase Cytoplasm

4C81 22-C-Methyl-D-Erythritol 2,4-Cyclodiphosphate synthase Lyase Apicoplast

4J56 Thioredoxin reductase 2 Oxidoreductase Cytoplasm

4N0Z Glutaredoxin Oxidoreductase Cytoplasm

4P7S Macrophage migration inhibitory factor-like protein Cytokine inhibitor Cytoplasm

4QOX Calcium-dependent protein kinase 4 Transferase Cytoplasm

PfATP6 Calcium pump ortholog ATPase Transporter Membrane

PfHT  
(10.5452/ma-aej21) Hexose carrier protein Transporter Membrane
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medium, trypsinized, distributed in a flat-bottomed 96-well plate 
(5×103 cells/well), and incubated for 18 hours at 37º C for cell 
adherence [42]. The compounds (20 µL) were diluted in different 
concentrations ranging from 0.2 - 200 µg/mL and incubated with 
the cells for 24 hours in a 5% CO2 atmosphere at 37º C.
A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) solution (5 mg/mL; 20 µL/well) was added to evaluate 
mitochondrial viability; after a further 3 hours incubation, the 
supernatants were carefully removed, 100 µL of DMSO was 
added to each well, and the reactions were mixed to solubilize 
the formazan crystals. The optical density was determined at 540 
nm to measure the signal and background, respectively (Spectra 
Max340PC384, Molecular Devices, Sunnyvale, California, USA) 
[43, 44, 45, 46, 47, 48]. The cell viability was expressed as a 
percentage of the control absorbance in the untreated cells after 
subtracting the appropriate background.

The minimum lethal dose for 50% of the cells (LD50) was 
determined as described [49].

Selectivity index (SI)

A selectivity index (SI) corresponding to the ratio between the 
cytotoxic and antiplasmodial activities of each compound tested. 
The values greater than 10 were considered indicative of lack 
of toxicity, whereas the substances with values below 10 were 
considered toxic [38]. The SI index was calculated as follow: 

SI =
LD50 Cell

IC50 P. falciparum

Statistical analysis

The concentrations of compounds able to inhibit 50% of parasite 
growth (IC50) were determined based on the equation of the 
curve obtained by plotting the % of parasitemia regression vs 
the log of the concentration of compound. The coefficients of 
regression of these curves were calculated using the method of 
least squares. The LD50 were determined based on the equation 
of the curve obtained by plotting the % of cellular death versus 
the concentration of compound (GraphPad Prism Software, 
version 5.0 for Windows, San Diego, California, USA). The 
average IC50 and LD50 were compared using ANOVA. Statistical 
significance was defined at the 5% level (P<0.05).

Results

Compounds

Compound 1 (CRV - 28)

Dehydrobufotenin - molecular formula: C15H12N2O; IT-ESI-
MS [M+H]+ 203.1; 1H NMR (CD3OD- 600 MHz): δ 7.11(s, 1H), 
δ 6.81(d, J = 8.6 Hz, 1H), δ 7.29(d, J = 8.7 Hz, 1H), δ 3.29(d, J = 
5.8 Hz, 2H), δ 4.1(t, J = 5.9 Hz, 2H) and δ 3.68(s, 6H). 13C NMR 
(CD3OD - 150 MHz): δ 122.5, δ 120.6, δ 104.6, δ 121.1, δ 149.0, 
δ 115.0, δ 118.9, δ 128.9, δ 20.0, δ 69.6 and δ 54.0.

The CRV-6 fraction was submitted to the Sephadex LH-20 
column with MeOH. The sub-fractions CRV-6-28 was further 
fractionated by silica gel column, eluted in CHCl3/MeOH with 
an increasing polarity gradient system. The subgroup obtained 
was CRV-6-28-51 (35.1 mg) and through NMR analysis and mass 
spectrometry was identified as marinobufotoxin (2).

Compound 2 (CRV-6-28-51)

3-(N-suberoylargininyl) marinobufagin (marinobufotoxin) - 
molecular formula: C38H56N4O9; IT-ESI-MS [M+H]+ 713.5; 1H 
NMR (CD3OD - 600 MHz): δ 5.14 (m), δ 3.68 (s, 1H), δ 2.56 (d, 
J= 9.9 Hz, 1H), δ 0.73 (s, 3H), δ 0.94 (s, 3H), δ 7.46 (d, J = 1.8 Hz, 
1H), δ 7.90 (dd, J = 9.8 and 2.4 Hz, 1H), δ 6.28 (t, J = 9.6 Hz, 1H), 
δ 4.28 (dd, J = 8.4 and 4.9 Hz, 1H), δ 1.88 (m, 2H), δ 1.61 (m, 2H), 
δ 3.20 (m, 2H), δ 2.20-2.38 (m, 4H), δ 1.71 (m, 4H) and δ 1.36 (m, 
4H). 13C NMR (CD3OD - 150 MHz) δ (ppm): 26.4, 25.7, 72.2, 36.4, 
74.3, 36.1, 24.3, 33.9, 43.2, 41.6, 22.5, 39.7, 46.1, 75.7, 61.1, 27.7, 
48.3, 17.0, 17.1, 124.5, 150.6, 149.7, 115.4, 164.6, 55.2, 31.1, 25.8, 
42.0, 174.8/175.7, 35.4/37.3, 26.3/26.6, 29.4/30.0, 178.8 and 158.6.
The CRV-70 fraction (394.1 mg) was fractionated in silica gel 
column. The CRV-70-04 sub-fraction was analyzed by NMR and 
mass spectrometry, and its majority compound was identified as 
marinobufagin (3). Subsequently, this sub-fraction was submitted 
to purification by High Performance Liquid Chromatography 
(HPLC) using ultrapure water (eluent A) and acetonitrile (eluent 
B), the system was eluted in isocratic mode with 60% eluent B, 
obtaining the group MB-3 (7.9 mg), which was identified as 
bufalin (4). The spectral data of the isolated compounds are 
in accordance with the literature [25, 46, 47, 48] and described 
below. The structures are shown in Figure 1.

Compound 3 (MB-1)

Marinobufagin - molecular formula: C24H32O5; IT-ESI-MS 
[M+H]+ 401.3; 1H NMR (CDCl3 - 600 MHz): δ 4.16-4.19 (m), δ 
3.49 (s, 1H), δ 2.46 (d, J= 10.1Hz, 1H), δ 0.77 (s, 3H), δ 0.97 (s, 
3H), δ 7.23 (d, J = 9.8 Hz, 1H), δ 7.76 (dd, J = 9.8 and 2.5 Hz, 1H) 
and δ 6.24 (dd, J = 9.8 and 0.8 Hz, 1H). 13C NMR (CDCl3 - 150 
MHz): 24.9, 28.1, 68.1, 39.5, 74.7, 34.8, 23.4, 32.7, 42.8, 41.0, 21.6, 
39.5, 45.2, 74.7, 59.9, 32.4, 47.7, 16.9, 16.9, 122.4, 149.8, 147.0, 
115.4 and 162.2.

Compound 4 (MB-3)

Bufalin - molecular formula: C24H34O4; IT-ESI-MS [M+H]+ 387.3; 
1H NMR (CDCl3 - 600 MHz): δ 4.13-4.18 (m), δ 2.56 (dd, J = 9.7 
and 6.6 Hz, 1H), δ 0.69 (s, 3H), δ 0.94 (s, 3H), δ 7.22 (d, J = 1.8 
Hz, 1H), δ 7.84 (dd, J = 9.7 and 2.6 Hz, 1H) and δ 6.26 (d, J = 
9.7 Hz, 1H) 13C NMR (CDCl3 - 150 MHz): 29.8, 28.0, 66.9, 33.4, 
36.1, 26.6, 21.5, 42.5, 35.8, 35.5, 21.5, 41.0, 48.5, 85.5, 32.8, 28.8, 
51.3, 16.7, 23.9, 122.8, 148.6, 146.9, 115.5 and 162.6. 

In silico: Virtual screening

Table 1 shows the molecular targets, location, and enzymatic 
class of the 35 molecular targets obtained from the Tropical 
Disease Research (TDR targets database) for building the 
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Brazilian Malaria Molecular Targets (BraMMT). The compounds 
(dehydrobufotenin, marinobufotoxin, marinobufagin, bufalin) 
were assayed for the docking methodology in the BraMMT data 
bank. Virtual screening performed against the 35 molecular 
targets in the database using OCTOPUS software presented 
10 potential targets for all compounds tested (Table 2). These 
results were found when the binding energy values are lower 
than the crystallographic control.

PfHT is characterized as glucose transporter of P. falciparum. 
The docking, QM/MM and molecular dynamics simulations were 
already performed by our group [49, 50, 51]. The Figures 2, 3, 4, 
5 and 6 shows 2D ligand-receptor interactions maps with PfHT. 
The figures show the chemicals bonds that occurred between the 
compound and the target, which enables the identification of 
pharmacophoric groups and possible structural improvements 
for better oral permeability, absorption, and bioavailability. 
The 3D binding diagram of the compounds is show in Figure 7. 
Docking with D-Glucose and PfHT was performed as a control.

Marinobufagin binds to 2-pyrone group in PfHT protein by 
residue ILE-176 while the perhydrophenanthrene nucleus binds 
by residues ILE-401 and PRO-149 (Figure 2). Marinobufotoxin 
binds to 2-pyrone group by residue VAL-144 while the 
perhydrophenanthrene nucleus binds by residues ILE-172 (Figure 3). 
Bufalin interacts with the protein electrostatically from the same 
active sites with residues ILE-141 and ILE-176 (Figure 4).

The compound dehydrobufotenin is an alkaloid derivative 
with consequent presence of the quinoline ring like the quinine 
and its analogs. Among the interactions involving the binding to 
the PfHT protein, the quinoline nucleus performs electrostatic 
bonding with the PRO149 residue (Figure 5). Although there is 
an unfavorable interaction between compound dehydrobufotenin 
and PfHT, this negative event is offset by other interactions.

D-glucose interacts in the same biding site of PfHT with
electrostatic bonding in the residues GLN169 and THR145 
(Figure 6).

Table 3 presents the information obtained from the physical-
chemical properties by the DataWarrior® software. The compound 
marinobufotoxin presented CLogP < 5 (2.80), molecular mass was 
greater than 500 (712.88 g/mol), the hydrogen accepting groups 
that performed interactions are more than 10 (13 groups), and 
the hydrogen donor groups are more than 5 (6 groups). Thus, 
based on the rules of Lipinski, compound marinobufotoxin is 
expected to present unfavorable pharmacokinetics properties 
(absorption, distribution, metabolization, excretion, and toxicity).

The compounds dehydrobufotenin, marinobufagin and bufalin 
presented molecular mass below 500 (203.26 g/mol; 400.51 g/mol 
and 383.53 g/mol, respectively), CLogP <5 (0.51; 1.87 and 2.99, 
respectively), less than 10 hydrogen acceptor groups (3 groups; 
5 groups and 4 groups, respectively) and less than 5 hydrogen 
donor groups (2 groups). Thus, these results, based on the rules 
of Lipinski, the compounds dehydrobufotenin, marinobufagin 
and bufalin have sufficiently acceptable ADMET properties. 

Gleeson [52] suggests in his study that compounds with CLogP 
less than 4 and molecular weight less than 400 have a more 
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Figure 2. Residues in the active site of PfHT target interacting with the compound marinobufagin (MB-1).

Figure 3. Residues in the active site of PfHT target interacting with compound the marinobufotoxin (CRV-6-21-58).
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Figure 4. Intermolecular interactions of the compound bufalin (MB-3) with PfHT.

Figure 5. Intermolecular interactions of the compound dehydrobufotenine (CRV-28) with PfHT.
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Figure 6. Intermolecular interactions of D-glucose with PfHT.

Figure 7. Three-dimensional structure of PfHT complexed with of R. marina venom fractions. (A) Dehydrobufotenine (CRV-28), (B) marinobufotoxin (CRV-6-
21-58), (C) marinobufagin (MB-1), (D) bufalin (MB-3) and (E) D-glucose.
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Table 3. Molecular mass (g/mol), partition coefficient (CLogP), number of hydrogen donor groups and number of hydrogen acceptor groups of tested 
compounds.

Compounds Molecular mass CLogP H+ Acceptors H+ Donors

Dehydrobufotenine 203.26 0.51 3 2

Marinobufotoxin 712.88 2.80 13 6

Marinobufagin 400.51 1.87 5 2

Bufalin 386.53 2.99 4 2

Table 4. Toxicological characteristics of compounds obtained from R. marina venom.

Compounds Mutagenicity Tumorgenicity Irritability

Dehydrobufotenine Absent Absent Absent

Marinobufotoxin Absent Absent Absent

Marinobufagin Absent Absent Absent

Bufalin Absent Absent Absent

Table 5. The lethal drug concentration that reduced parasite viability in 50% (IC50), lethal drug concentration that reduced WI-26VA4 cells viability in 50% (LD50), 
and selectivity index (SI) values obtained from in vitro tests with venom fractions from R. marina venom, and chloroquine (CQ) against P. falciparum W2 strain.

Compounds IC50 ± SD (μM)* LD50
a ± SD (μM)* SIa

Dehydrobufotenine 19.11 ± 0.20 235.76 ± 4.03 12.33

Marinobufotoxin 5.31 ± 0.25 8.89 ± 2.66 1.67

Marinobufagin 3.89 ± 0.42 3.04 ± 0.25 0.78

Bufalin 3.44 ± 0.43 25.9 ± 7.04 7.52

Chloroquine (CQ) 1.04 ± 0.21 >100 >100

aLD50 and SI values were obtained with MTT cytotoxic test in human pulmonary fibroblast cells (WI-26VA4).
*Mean and standard deviation (SD) of triplicate experiments.

favorable ADMET profile than those suggested by Lipinski. 
Following the Gleeson theory, all compounds have CLogP < 3 
and compounds dehydrobufotenin, marinobufagin and bufalin 
have molecular mass below 400. 
Toxicological characteristics of the four compounds using 
the DataWarrior® software, factors such as mutagenicity, 
tumogenicity or irritability were not evidenced (Table 4).

In vitro antiplasmodial activity

The compounds dehydrobufotenin, marinobufotoxin, 
marinobufagin and bufalin diluted in DMSO were assayed 
for antiplasmodial activity against chloroquine-resistant P. 
falciparum W2. Table 5 shows the antiplasmodial activity of 
dehydrobufotenin, marinobufotoxin, marinobufagin and bufalin 
in two different experiments. Starting from 100 µg/mL, the 
compounds were diluted to various concentrations (0.78-100 µg/
mL) to calculate the IC50 values. The samples (dehydrobufotenin, 
marinobufotoxin, marinobufagin and bufalin) showed IC50 values ​​
ranged from 3.44 to 19.11 µM (Table 5). The marinobufagin and 
bufalin had the IC50 values ​​close to chloroquine, the antimalarial 
used as a positive control.

Cytotoxic activity on human pulmonary fibroblast cells

To evaluate the cytotoxic activity of the compounds 
dehydrobufotenin, marinobufotoxin, marinobufagin and 
bufalin, the MTT assay conducted in human pulmonary 
fibroblast cells (WI-26VA4). It was observed that the compounds 
marinobufotoxin, marinobufagin and bufalin showed high 
cytotoxicity to this cell line with low LD50 values (marinobufotoxin 
= 8.89 µM; marinobufagin = 3.04 µM and bufalin = 25.9 µM, 
respectively) while dehydrobufotenin showed low cytotoxic 
with high LD50 value (235.76 µM) (Table 5).

Evaluating the selectivity index (SI), although compounds 
marinobufotoxin, marinobufagin and bufalin have shown 
potentially active, only the compound dehydrobufotenin showed 
high selectivity for the parasites when analyzed by MTT assay 
(SI>10) (Table 5).

ADMET likeness properties

Pharmacokinetic behavior of a compound can determine the 
success or failure of its biological activity [53]. New potential 
antimalarial candidates must present good oral bioavailability 
and good membrane permeability as properties that can lead 
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the in vivo experiments to reach success [54]. In this sense, 
SwissADME web tool [30] allows an in silico inference of the 
main physical-chemical and pharmacokinetic properties of the 
compounds. In Table 6 are presented the SwissADME profile 
of the four compounds. 

Bufalin, the most active compound, exhibits numbers of 
hydrogen bond acceptors (NHA) and hydrogen bond donors 
(NHD) in accordance with the rule of five by Lipinski. The LogS 
predicition of bufalin is -5.2, comparable with chloroquine (-6.92), 
indicating a good solubility. Although, the predicted polar surface 
area (PSA) of 70.67 Å2 for bufalin suggests that the polarity of 
this compound is a limiting factor for oral bioavailability [55]. In 
counterpoint, the synthetic accessibility of bufalin (5.56) is within 
the range of a non-complicated synthetic accessibility. bufalin 
could be a potential template for new antimalarial candidates.

Discussion
The drug discovery process is a major challenge in the 
pharmaceutical science due the time and money employed in 
all the phases of developing of a new drug entity [31]. Aiming 
to reduce cost and time in this process, structure-based virtual 
screening is an important in silico technique for drug design [56].
In this context, BraMMT database with 35 molecular targets of 
Plasmodium falciparum was used in this work. Table 1 shows 
all the targets and location of the proteins that were used for in 
silico binding assays with compounds isolated from R. marina. 
Three compounds interacted significantly with 10 potential 
targets (Table 2). 

Of all 35 potential targets of BraMMT, the hexose transporter 
of Plasmodium falciparum (PfHT) interacted significantly with 
all tested compounds (Table 2). The target PfHT is a membrane 
protein of the parasite responsible for glucose transport. During 
the biological development of the parasites in the host ś red 

Table 6. Physicochemical properties of dehydrobufotenin, marinobufotoxin, marinobufagin, bufalin and the antimalarial chloroquine according to SwissADME web tool.

PHYSICOCHEMICAL 
PROPERTIES Dehydrobufotenine Marinobufotoxin Marinobufagin Bufalin Chloroquine

Formula C12H15N2O C38H56N4O9 C24H32O5 C24H34O4 C18H26ClN3

Molecular weight 203.26 g/mol 712.87 g/mol 400.51 g/mol 386.52 g/mol 319.87 g/mol

Num. heavy atoms 15 51 29 28 22

Num. arom heavy atoms 9 6 6 6 10

Fractions Csp3 0.33 0.76 0.79 0.79 0.50

Num. rotable bonds 0 18 1 1 8

Num. H-bond acceptors 2 10 5 4 2

Num. H-bond donors 2 6 2 2 1

Molar Refractivity 66.18 190.16 108.86 109.86 97.41

TPSA 36.02 Å² 217.57 Å² 83.20 Å² 70.67 Å² 28.16 Å²

LIPOPHILICITY

Log Polw (ILOGP) -1.27 3.47 3.27 3.34 3.95

Log Polw (XLOGP3) 1.64 3.23 2.50 3.2 4.63

Log Polw (WLOGP) 1.62 4.10 3.37 4.24 4.62

Log Polw (MLOGP) -2.19 2.12 2.75 3.58 3.20

Log Polw (SILICOS-IT) 2.15 4.89 3.82 3.99 4.32

Consensus Log P olw 0.39 3.56 3.14 3.67 4.15

WATER SOLUBILITY

Log S (ESOL) -2.58 -5.19 -3.99 -4.35 -4.55

Solubility 5.38e-01 mg/mL; 
2.65e-03 mol/L

4.56e-03 mg/mL; 
6.40e-06 mol/L

4.14e-02 mg/mL; 
1.03e-04 mol/L

1.75e-02 mg/mL; 
4.52e-05 mol/L

9.05e-03 mg/mL; 
2.83e-05 mol/L

Class Soluble Moderately soluble Soluble Moderately 
soluble Moderately soluble

Log S (Ali) -2.01 -7.47 -3.89 -4.36 -4.95

Solubility 1.99e+00 mg/mL; 
9.78e-03 mol/L

2.40e-05 mg/mL; 
3.37e-08 mol/L

5.13e-02 mg/mL; 
1.28e-04 mol/L

1.70e-02 mg/mL; 
4.41e-05 mol/L

3.61e-03 mg/mL; 
1.13e-05 mol/L
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PHYSICOCHEMICAL 
PROPERTIES Dehydrobufotenine Marinobufotoxin Marinobufagin Bufalin Chloroquine

Class Soluble Poorly soluble Soluble Moderately 
soluble Moderately soluble

Log S (SILICOS-IT) -4.09 -7.46 -4.73 -5.2 -6.92

Solubility 1.63e-02 mg/mL; 
8.04e-05 mol/L

2.45e-05 mg/mL; 
3.44e-08 mol/L

7.42e-03 mg/mL; 
1.85e-05 mol/L

3.68e-03 mg/mL; 
9.53e-06 mol/L

3.86e-05 mg/mL; 
1.21e-07 mol/L

Class Moderately soluble Poorly soluble Moderately soluble Moderately 
soluble Poorly soluble

PHARMACOKINETICS

GI absorption High Low High High High

BBB permeant Yes No No Yes Yes

P-gp substrate Yes Yes Yes Yes No

CYP1A2 inhibitor Yes No No No Yes

CYP2C19 inhibitor No No No No No

CYP2C9 inhibitor No No No No No

CYP2D6 inhibitor No No Yes No Yes

CYP3A4 inhibitor No Yes No No Yes

Log Kp (skin permeation) -6.38 cm/s -8.36 cm/s -6.97 cm/s -6.39 cm/s -4.96 cm/s

DRUGLIKENESS

Lipinski Yes; 0 violation

No; 3 violations: 
MW>500, 
NorO>10, 

NHorOH>5

Yes; 0 violation Yes; 0 violation Yes; 0 violation

Ghose Yes

No; 3 violations: 
MW>500, 
NorO>10, 

NHorOH>5

Yes Yes Yes

Veber Yes
No; 2 violations: 

Rotors>10, 
TPSA>140

Yes Yes Yes

Egan Yes No; 1 violation: 
TPSA>131.6 Yes Yes Yes

Muegge Yes

No; 4 violations: 
MW>600, 
TPSA>150, 
Rotors>15, 
H-don>5

Yes Yes Yes

Biovailability Score 0.55 0.17 0.55 0.55 0.55

MEDICINAL CHEMISTRY

PAINS 0 alert 0 alert 0 alert 0 alert 0 alert

Brenk 1 alert quaternary_
nitrogen_2

3 alerts: Three-
membered_
heterocycle, 

imine_1, imine_2

1 alert: Three-
membered_
heterocycle

0 alert 0 alert

Leandlikeness No; 1 violation: 
MW<250

No; 2 violations: 
MW>350, 
Rotors>7

No; 1 violation: 
MW>350

No; 1 violation: 
MW>350

No; 2 violations: 
Rotors>7, 

XLOGP3>3.5

Synthetic accessibility 2.14 7.71 6.07 5.56 2.76

Table 6. Cont.
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blood cells, the plasmodium requires glucose whose uptake 
is driven by carrier proteins. In red blood cells infected by 
P. falciparum glucose consumption is increased provided by
PfHT. Inhibition of glucose transport to infected red blood cells
impairs the parasite’s metabolism, leading to death. Therefore,
compounds that inhibit PfHT can be considered promising in
the development of new bioactive compounds capable of treating
malaria infections [53]. Additional potential targets analyzed
are related to other structures of the parasite, such as apicoplast,
cytoplasm, digestive vacuole, and sarcoplasmic reticulum.

The PfHT protein is a P. falciparum hexose transporter. Figures 
2, 3, 4, 5 and 6 show the interaction of test compounds with PfHT. 
It is possible to visualize in the figures the chemical bonds that 
occurred between the compound and the target. All compounds 
interact at the same PfHT binding site of D-glucose [53] with 
residues GLN169 and THR145. The compounds interact with 
the PfHT receptor mainly through Van der Walls interactions, 
hydrogen bonds, and electrostatic bonds.

Figures 2, 3 and 4 shows that the electrostatic bonds 
interact with the PfHT receptor by the 2-pyrone group and 
the perhydrophenanthrene nucleus, demonstrating that the 
expression of antimalarial activity is associated with the presence 
of these structures. These groups are common to bufodianolides 
suggesting that the expression of antimalarial activity is 
associated with the presence of these structures.

One of the parameters introduced in the rational development 
of new drugs is Lipinski’s rules “rule of five”. These parameters 
include molecular weight (M.M.) ≤ 500 g/mol, number of 
hydrogen bonding donor atoms ≤ 5, number of hydrogen bond 
acceptor atoms ≤ 10, and calculated octanol/water partition 
coefficient (cLogP) ≤ 5 [42]. The partition coefficient (CLogP) 
is a measure of the lipophilicity of a substance related to the 
interaction of the compound with the medium. This is an 
important tool regarding the study of absorption and transport. 
Furthermore, the program for the evolution of hazardous 
compounds recommends this measure, as it also provides 
estimates of toxicological factors [57].

Gleeson [58] suggests in his study that compounds with 
CLogP less than 4 and molecular weight less than 400 have a 
more favorable ADMET profile than those suggested by Lipinski. 
Following the Gleeson theory, all compounds have CLogP 
< 4 and compounds dehydrobufotenin, marinobufagin and 
bufalin have molecular mass below 400. Therefore, these three 
compounds (dehydrobufotenin, marinobufagin and bufalin) also 
fit Gleeson’s theory. Therefore, compounds dehydrobufotenin, 
marinobufagin and bufalin showed sufficiently acceptable 
absorption, distribution, metabolism, excretion, and toxicity 
properties, according to Lipinski’s rule and Gleeson’s theory. 

Compounds with high molecular weight and with an excessive 
number of hydrogen acceptor and donor groups, have greater 
difficulty in crossing the lipid bilayer of cell membranes. This 
is because such characteristics increase the lipophilicity of the 
compound, hindering solubility, and therefore impacting and 
the drug oral bioavailability [59]. Based in all these definitions, 

among the four compounds investigated in this study, the 
dehydrobufotenin was the one that presented the most favorable 
ADMET properties. 

Secretions from 2 toad species, R. marina and R. guttatus, 
were chemically investigated previously. Two extracts and a pure 
substance (telocinobugagin) presented potential antimalarial 
activity [18]. When analyzed the IC50 values of all compounds 
tested ensure that IC50 values ​​for the tested compounds ranged 
from 3.44 µM to 19.11 µM (dehydrobufotenin, marinobufotoxin, 
marinobufagin and bufalin). 

According Mahmoudi [60], a potentially effective antimalarial 
compound possess an IC50 than 10 µM. The results published 
by Torres [52], indicated that alkaloids isolated from different 
parts of the Aspidosperma ulei plants, were moderately active 
against P. falciparum. These compounds presented IC50 
values close to 20 µM. Based on this theories, the compounds 
marinobufotoxin (5.31 µM), marinobufagin and bufalin (3.89 
µM and 3.44 µM, respectively) were considered potentially active 
while dehydrobufotenin (19.11 µM) expresses moderate activity.

The compounds marinobufotoxin, marinobufagin and bufalin 
showed cytotoxic activities against human pulmonary fibroblast 
cells (WI-26VA4) in MTT assay (LD50 = 8.89 µM; 3.04 µM and 
25.9 µM, respectively). These results corroborate with previous 
studies that have reported a higher cytotoxic activity of venom 
extracts from R. marina in comparison to those from R. guttatus 
due the presence of 2 other bufadienolides (telocinobufagin, 
and resibufogenin) [13]. Similarly, extracts of R. marina venom 
from Peruvian Amazon with different compositions showed 
higher cytotoxic activity in antiproliferative tests with different 
tumor cell lines [21].

In our study the dehydrobufotenin compound showed the 
highest LD50 value (235.76 µM), indicating no cytotoxic effect 
against human pulmonary fibroblast cells. Low cytotoxicity of 
the bufadienolides fractions (telocinobufagin) against cancer 
cell lines (HL-60, SF-295, MDA-MB-435, and HCT-8) was also 
demonstrated [61]. However, to date, this was the first time 
that isolated dehydrobufotenine molecule was evaluated in 
cytotoxic test.

According to Bézivin [62], values higher than 10 (SI>10) is 
indicative of high selectivity values, whereas values below 10 
(SI<10) are considered as low selectivity. In this study, although 
compounds 2, 3 and 4 were shown to be potentially active, only 
compound 1 was selective for the parasite, as it presented a 
selectivity index value greater than 10 (IS> 200). 

In this work, it was important to assess the cytotoxic activity 
and evaluate the selectivity index for testing natural compounds 
with possible antimalarial potential. The exclusive observation 
of the IC50 values would result in wrong conclusions about the 
antimalarial potential of the compounds. 

Conclusions
In summary, in docking assay all compounds tested promoted 
interaction between ligand-receptor with 10 targets of P. 
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falciparum. Although in silico assays predicted good absorption, 
permeability, and absence of toxicity for three test compounds, 
in vitro assays demonstrated that only one compound expressed 
antimalarial activity and absence of cytotoxicity. The compound 
dehydrobufotenin can serve as a prototype molecule for the 
development of more active compounds.
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