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Abstract

Background: Scorpions are widely known for the neurotoxic effects of their venoms,
which contain peptides affecting ionic channels. Although Colombia is recognized for
its scorpion diversity, only a few studies are available describing the venom content.
Methods: In this descriptive study, we analyzed the MS/MS sequence, electrophoretic
and chromatographic profile linked to a bioinformatics analysis of the scorpions Chactas
reticulatus (Chactidae), Opisthacanthus elatus (Hormuridae), Centruroides edwardsii
(Buthidae) and Tityus asthenes (Buthidae) from Colombia.

Results: Each scorpion showed a specific electrophoretic and chromatographic profile.
The electrophoretic profiles indicate the presence of high molecular mass compounds
in all venoms, with a predominance of low molecular mass compounds in the Buthidae
species. Chromatographic profiles showed a similar pattern as the electrophoretic
profiles. From the MS/MS analysis of the chromatographic collected fractions, we
obtained internal peptide sequences corresponding to proteins reported in scorpions
from the respective family of the analyzed samples. Some of these proteins correspond
to neurotoxins affecting ionic channels, antimicrobial peptides and metalloproteinase-
like fragments. In the venom of Tityus asthenes, the MS" analysis allowed the detection
of two toxins affecting sodium channels covering 50% and 84% of the sequence
respectively, showing 100% sequence similarity. Two sequences from Tityus asthenes
showed sequence similarity with a phospholipase from Opisthacanthus cayaporum
indicating the presence of this type of toxin in this species for the first time. One sequence
matching a hypothetical secreted protein from Hottentotta judaicus was found in three
of the studied venoms. We found that this protein is common in the Buthidae family
whereas it has been reported in other families — such as Scorpionidae - and may be
part of the evolutionary puzzle of venoms in these arachnids.

Conclusion: Buthidae venoms from Colombia can be considered an important source of
peptides similar to toxins affecting ionic channels. An interesting predicted antimicrobial
peptide was detected in three of the analyzed venoms.
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Background

Scorpion venoms have evolved over 400 million years into a
complex, but well elaborated library of toxins that can differ
dramatically in its effects among species [1]. The diversity of
protein compounds (peptides, proteins and enzymes) and non-
protein compounds (salts, neurotransmitters, etc.) make these
venoms a promising source of molecules with antibacterial,
antifungal, antiviral, antimalarial and anticancer activities
[2-5], and a potential source for the design of new drugs [6,7].
The most active molecules displaying such activities are peptides
that can be split into non-disulfide bridge (NDBP) and disulfide
bridge (DBP) peptides, showing alpha helical linear motifs or
inhibitory cysteine knots respectively. The NDBP compounds
were reported recently and the main characteristic of these
molecules is the lack of disulfide bridges, the cationic net charge,
the sequence diversity, the hemolytic and antibacterial activity,
and the relatively low molecular mass (1-4 kDa) [8]. Most of
these peptides possess an amphipathic alpha-helical structure
like those reported for different cationic antimicrobial molecules
[3,8-15]. DBP are the major molecules described in these venoms
and are characterized by containing around 30 to 70 amino acids
residues and three or four disulfide bridges [3,8-15]. The major
targets of these toxins are ionic channels like sodium (Nav),
potassium (Kv), chlorine (Clv) or calcium (Cav) channels in the
nervous system, blocking or gating the channel mechanism and
thereby exhibiting a neurotoxic activity.

Despite the diversity of scorpions in Colombia, only a few
studies are available describing the venom content [16-19].
No studies have been found describing the venom content
of Chactas reticulatus, Opisthacanthus elatus, Centruroides
edwardsii or Tityus asthenes. The only available studies report
the phospholipase A, content and activity in the venom of O.
elatus, and the intraspecific biochemical differences detected in
the venom of C. edwardsii from two regions in Colombia [16,17].
The genus Tityus is probably one of the must studied scorpions
in South America, but from Colombia the only available studies
of this genus are the proteomic analysis of Tityus pachyurus
reporting specific toxins affecting Na* and K* channels [18,20],
and the peptide content description of Tityus macrochirus [19].
There is no study available on T. asthenes. Venom from Ch.
reticulatus is still completely unexplored and the venom of this
species had hitherto not been described or analyzed.

Here we report the first partial amino acid sequences including
the post-translational modifications (PTM) of the venom from
Ch. reticulatus, O. elatus, C. edwardsii and T. asthenes, with
the respective electrophoretic and chromatographic profile
with analysis of their predicted antimicrobial activity and the
report of different partial toxins that may affect ionic channels.

Methods

Species selection

Scorpions with epidemiologic and clinical importance in
Antioquia (North-west Colombian Andean region) according

to Otero et al. [21-23] Chactas reticulatus, Opisthacanthus elatus,
Centruroides edwardsii and Tityus asthenes (with no or scarce
previous reports), were selected for this research and kept in
captivity in the serpentarium of the University of Antioquia,
Medellin (COLBIOFAR-149) with water ad libitum and fed
with insects (Periplaneta americana and Tenebrio molitor).
One specimen of Chactas reticulatus was sourced from the
municipality of El Retiro (El Salado sector) at 2100 meters above
sealevel (m.a.s.l), while seven specimens of Opisthacanthus elatus
born in captivity from an individual from the municipality of
Remedios - Antioquia were used. Four specimens of Centruroides
edwardsii were from two localities in the municipality of Amaga
and Medellin at 1250 m.a.s.l. and 1450 m.a.s.l. respectively.
Furthermore, six specimens of Tityus asthenes originating from
the municipality of Carepa (Urban area) at 26 m.a.s.l. were used.

Venom extraction

Venom extraction was carried out using electro-stimulation. Metal
electrodes, wetted with a saline solution, were carefully positioned
on the metasoma and a block signal with an amplitude of 18V
at 40-60Hz was applied twice with an interval of 5 sec using a
custom-made electro-stimulator (model 01). Collected venom
was transferred to dry low-protein binding vials, freeze-dried and
stored at -20°C until use. These procedures were in accordance
with the ethical principles in animal research adopted by the
World Health Organization for the characterization of venoms.
After each extraction, all animals were kept alive in captivity.

Electrophoretic profiles

All electrophoretic profiles of crude venoms were analyzed using
12% sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE)
according to Laemmli [24], and stained with Coomassie blue
R-250. Molecular weights were estimated using standard low
range markers standards (Bio-Rad). Venoms were loaded at a
concentration of 1.5 mg/ml and a final volume of 20 pL. Venom
concentrations were assessed following the Biuret method using
Bio-Rad Protein Assay reagent and bovine serum albumin (BSA)
as standard [25-27]. A 3D scatterplot representation with the
number of compounds detected in each venom based in their
absence-presence in every species was performed using the
software SIGMAPLOT v. 14 (Systat Software, San Jose, CA).
To do so, compounds detected in each venom were grouped in
four different ranges: 14 kDa to 31 kDa, 31 kDa to 45KDa, 45
kDato 97.4 kDa, and above 97.4KDa, and plotted. Additionally,
venoms showing potentially toxins affecting ion channels in
the MS/MS analysis were run on 10% TRIS-TRICINE gels, and
stained with Coomassie blue R-250. Molecular weights were
estimated using standard broad range standards (Bio-Rad).
Quantification of volumes and calculation of molecular weights
were performed using the software Gel Analyzer 19.1, available
at: http://www.gelanalyzer.com/ [28]. Molecular weights were
calculated using the known values of the standard broad rank
markers (Bio-Rad): 200 kDa, 116 kDa, 97 kDa, 66 kDa, 45 kDa,
31 kDa, 21 kDa, 14 kDa, 6 kDa. To estimate the molecular
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weight, we used a simple exponential fit approximation and
according to the Rf (retention factor, measured as the band
distance migrated/gel length) of each analyzed band.

Chromatographic profile

We followed the methodology proposed by Fernandez et al.
[29] and adapted by Estrada et al. [16,17] for arachnid venoms
separation. One milligram of whole venom was dissolved in
200 pL of solution A (0.1% trifluoroacetic acid - TFA, in water)
and centrifuged at 3500 g. The supernatant was then applied
to a reverse-phase RESTEK C18 column (250 x 4.6 mm), and
separated on a Shimadzu Prominence HPLC. Proteins were
eluted by a gradient towards solution B (0.1% TFA in acetonitrile
— ACN 99%) as follows: 5% B for 5 min, 5-15% B over 10 min,
15-45% B over 60 min, and 45-70% B over 12 min at a flow
rate of 1.0 ml/min. The chromatographic run was monitored
at 215 nm and fractions were collected, freeze-dried and stored
at -20 °C until used.

Peptide mass determination by high-resolution LC-
MS

For Ch. reticulatus, C. edwardsii and T. asthenes we selected the
peaks with the best intensity and resolution from the RP-HPLC
chromatograms. For O. elatus, we collected the major peak of
the phospholipase region according to Estrada et al. [17], looking
for a deeper characterization of this region. We wanted to see if
this region exclusively contained phospholipase proteins or if
there were more components co-eluting in the region. Selected
dried fractions were digested and submitted to the MS/MS
equipment as explained below.

Sample digestion

Sequence grade Lys-C/Trypsin (Promega) was used to
enzymatically digest the venom samples. The samples were
reduced and alkylated. All digestions were carried out in the
Barocycler NEP2320 (PBI) at 50°C under 20 kpsi for 2 hours.
Digested samples were cleaned over C18 spin columns (Nest
Group) and dried. Resulting pellets were re-suspended in 97%
purified H,0/3% ACN/0.1% formic acid (FA). A volume of 5 uL
was used for nano LC-MS/MS analysis.

LC-MS/MS

Fractions were run on a nano Eksigent 425 HPLC system coupled
to the Triple TOF 5600 plus (Sciex, Framingham, MA). The
method used for analysis was 120 minutes at 300 nL/minute
over the cHiPLC nanoflex system. The trap column was a Nano
cHiPLC 200 um x0.5 mm ChromXP C18-CL 3 um x 120 A
followed by the analytical column, the Nano cHiPLC 75 pm x
15 cm ChromXP C18-CL 5 um x 120 A. The sample was injected
into the Triple TOF 5600 and through the Nanospray III source
equipped with an emission tip (New Objective, Woburn, MA,
USA). Peptides from the digestion were eluted from the columns
using a mobile phase A of purified H,0/0.1% formic acid (FA)

and a mobile phase B of ACN/0.1 % FA. With a flow rate of 0.3
pL/min, the method started at 95% A for 1 minute followed by
a gradient of 5% B to 35% B in 90 minutes and from 35% B to
80% B in 2 minutes. Eighty percent of B was held for 5 minutes
before being brought to 5% B and held for 20 minutes. PTM are
reported for each containing peptide.

Data analysis

The data acquisition was performed monitoring 50 precursor
ions at 250 ms/scan. Mascot Daemon v.2.4.0 (Matrix Science)
was used for similarities searches against the different databases
downloaded from the UniProt and NCBI websites. Data analysis
was run in the Bindley Bioscience Center at Purdue University.
Multiple sequence alignment was completed using the Clustal
Omega software (http://www.ebi.ac.uk/Tools/msa/clustalo/) of
MS/MS sequences from each venom with the respective similar
peptide/protein.

Bioinformatics analysis

The search for similar peptides/proteins matching KISSV[X]
NKDKI peptide was performed in Protein Information Resource
(PIR) databases [30,31]. Specifically peptide matching using
Apache Lucene-based search engine [32], using as query sequence
the peptide without specifying the residue in the bracket [X],
and each of the following residues A,LV,S and N according to
MS/MS analysis. The search was performed in the databases
UniProtKB/Swiss-Prot with isoforms.

Evaluation of the physicochemical properties

The corresponding physicochemical properties of identified
peptides following an in silico analysis, resulting in metrics for
peptide length (residues), molecular weight, total hydrophobic
ratio, net charge at physiological pH, and the Boman Index,
were determined using the Antimicrobial Peptide Database
Calculator and Predictor (APD3 http://aps.unmc.edu/AP/) [33].

Results

Electrophoretic and chromatographic profiles

The venom from each species showed a specific electrophoretic
profile, and some differences were detected among the species
(Figure 1A). Visibly, differences are specially observed in the high
molecular mass compound (HMMC) region above 31 kDa (where
HMMC like metalloproteinases are commonly found), with
some compounds migrating close to 14 kDa and 21 kDa (where
HMMC like phospholipases are commonly found) (Figure 1A).
Venoms from C. edwardsii and T. asthenes (Buthidae) showed a
very similar profile with the majority of compounds distributed
above 31 kDa and with few compounds around 14 kDa (according
to Figure 1B). The non-buthidae venoms from O. elatus, Ch.
reticulatus shows electrophoretic profiles with visible differences;
most compounds are distributed among 97 kDa and 45 kDa



Estrada-Gémez et al. | Venom Anim Toxins incl Trop Dis, 2021, 27:¢20200173

Page 4 of 13

(see Figure 1B). A specific difference was observed below 31 kDa
in the O. elatus venom, were at least 3 compounds were detected
migrating close to 14 kDa (see Figure 1B).

Asobservedin the electrophoretic pattern, the chromatographic
profile showed clear differences between venoms from each species
(Figure 2). In all cases, we obtained complex chromatograms
with good resolution and well defined peaks. As seen in the
electrophoretic profile, venoms from C. edwardsii and T. asthenes
(Buthidae) showed a similar profile within this sub-group, while
the Ch. reticulatus venom showed a specific profile, displaying

differences between families. Compounds from Buthidae venoms
elute below 38% of ACN, while the non-Buthidae compounds
elutes up to 50 % of ACN or 60% of ACN for O. elatus and Ch.
reticulatus respectively. In all cases, we selected well defined
peaks for the MS/MS analysis (arrows in Figure 2).

MS/MS analysis

From all selected peaks, we obtained internal peptide sequences,
matching different proteins from Buthidae scorpions. Only in
the venoms from C. edwardsii and T. asthenes we found internal

Figure 1. (A) Crude venom SDS-PAGE profile in a 12% gel under reducing conditions of Opisthacanthus elatus, Chactas reticulatus, Centruroides edwardsii and Tityus
asthenes. (B) 3D scatterplot of the number of compounds found in each molecular mass range of every species. Both figures show visible differences among species
in relation to electrophoretic pattern and number of compounds, with the T. asthenes and C. edwardsii profiles being more similar. Green dots indicate compounds
with a molecular range between 14 kDa and 31 kDa. Yellow dots indicate compounds with a molecular range between 31 kDa and 45 kDa. Blue dots indicate
compounds with a molecular range between 45 kDa and 97.4 kDa. Red dots indicate compounds with a molecular range of 97.4 kDa or above. Letter C: compound.
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Figure 2. Venom chromatographic profile. RP-HPLC chromatographic profiles of the crude venom of all scorpions using a C18 column (250 mm-4.6 mm): (A)
T. asthenes, (B) C. edwardsii, (C) Ch. reticulatus and (D) O. elatus. Elution gradient used: 0-70% of acetonitrile (99% ACN in TFA 0.1%). The run was monitored at

215 nm. Arrows indicate fraction subjected to MS/MS analysis.

peptides matching neurotoxins affecting ion channels. A TRIS-
TRICINE gel corroborate the presence of compounds with an
estimated molecular masses similar to these neurotoxins (around
to 6.5 kDa) in both venoms (see Figure 3).

The MS/MS analysis of all scorpion venoms showed toxins
similar to neurotoxins affecting potassium or sodium channels,
beta-neurotoxin, antimicrobial peptides and metalloproteinase-
like or phospholipase-like fragments (Figure 4).

In Ch. reticulatus venom we found only one sequence that
matched a hypothetical secreted protein from Hottentotta
judaicus (Table 1). From the venom of O. elatus, we detected
different sequences matching antimicrobial peptides, scorpine-
like peptides and opistoporin, additional to the previous reported
sequence matching a phospholipase A, from O. cayaporum (also
found here) (Table 1). These compounds were all previously
reported in the venom of O. cayaporum. Of the six fragments
detected in C. edwardsii, three sequences showed similarity with
three different peptides affecting ion channels. One fragment
matched a potassium channel toxin alpha-KTx 2.2 from
Centruroides margaritatus and other with a potassium channel
toxin alpha-KTx 2.1 from Centruroides noxius (Table 1). Other
sequences showed similarity with peptides from Hottentotta

judaicus and Mesobuthus gibbosus. Venom from T. asthenes
showed more than 26 hits with different proteins and peptides
and the main matched organism of T. asthenes sequences belongs
to a species from the same genus, Tityus discrepans (Table 1). As
observed in the electrophoresis, with compounds in the range
of 14-31 kDa and 31-45 kDa, some fragments from T. asthenes
matched metalloproteinases (venom metalloprotease-1) and
phospholipases from other Buthidae (Mesobuthus eupeus) and
Hormuridae (Opisthacanthus cayaporum) scorpions.

The MS analysis of T. asthenes allowed the detection of
sequences covering above 50% of two toxins affecting sodium
channels. Six fragments matched one toxin affecting sodium
channels (Na,) from Centruroides noxius (Toxin Cnl11), covering
84% of this toxin (Figure 5A). Additionally, two more fragments,
with a similarity of 100%, covered 50% of the toxin Tsl from T.
serrulatus (Buthidae), a proven voltage-gated sodium channel
(Nav) gating-modifier (see Figure 5B).

Bioinformatics analysis

In all venoms, except O. elatus, we found a sequence fragment-
KISSV[IN]NKDKI - with residue number six varying between
I (isoleucine) or N (asparagine), depending on the species.
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Figure 3. (A) TRIS-TRICINE electrophoresis analysis of T. asthenes (lane #1) and C. edwardsii (lane #2) venoms. (B) Intensity profile of each detected lane and
bands in the TRIS-TRICINE electrophoresis gel. The bottom of each image shows the respective electrophoretic run. The intensity of each band is reported in
arbitrary units. (C) Estimated molecular weights of bands detected below 6.5 kDa, red box for lane #1 (T. asthenes) and yellow box for lane #2 (C. edwardsii).
Molecular weight estimation according the MW calibration curve analyzed with a simple exponential fit approximation with a R of 0.99. Rf: retention factor, MW:

estimated molecular weight.

Figure 4. Matrix plot performed with presence/absence data of matched peptide family with MS/MS peptide sequence found in Chactas reticulatus, Opisthacanthus
elatus, Centruroides edwardsii and Tityus asthenes venoms.
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Figure 5. (A) Pairwise alignment of fragments TaP16a, TaP16b, TaP16c, TaP16d, TaP16e, from T. asthenes, matching peptide Cn11 (sp|P58296|) from Centruroides
noxius, sodium channels blocker (Nav). (B) Pair-wise alignment of fragments TaP13a and TaP13b from T. asthenes, matching mature peptide beta-mammal/insect

toxin Ts1 a voltage-gated sodium channels (Nav) gating-modifier.

The search for similar sequences that included the fragment,
without specifying the residue in position number six [X], did
match with a sequence of Hottentotta judaicus with accession
number F1CJ08. When the search was performed with the residue
“A”, it matched with seven sequences, five of Androctonus bicolor
(AOAOKOLCB5, AOAOKOLCC6, AOAOKOLCC9, AOAOKOLCD6 and
AO0AOKOLCD?7), one of Odontobuthus doriae (AOAOU3YCWO),
and one of Mesobuthus eupeus (E4VP36). Finally, with one of
the residues “IVSN?, it matched with a previously reported
fragments in the venoms of Androctonus amoreuxi, Pandinus
imperator, Tityus fuhrmanni and Grosphus grandidieri [34].
Figure 6 shows the families and species where the fragment
has been reported before.

Evaluation of the physicochemical properties

Predicted physicochemical properties of - KISSV[AIVSN]
NKDKI - based in the amino acid content and the net charge
of this peptide, indicates that the fragment may be part of an
antimicrobial protein (Table 2). Despite all possible amino
acids sequences detected in the KISSV[X]NKDKI peptide, all
conformations show a net predicted charge of 2+ and a similar
hydrophobic residue percentage. Only peptides with residues
KISSV[AIVINKDKI are predicted to form an alpha helix
showing a higher hydrophobic residue percentage. According
to our MS/MS results, only KISSV[X]NKDKI with the Isoleucine
(I) amino acid residue in the sequences from Chactas reticulatus,
Centruroides edwardsii and Tityus asthenes may enhance
antimicrobial activity in these venoms.

Discussion

Peptides are the dominant components of scorpion venoms
and the primary source of their pharmacological diversity,
becoming a natural source of bioactive compounds [6,36]. For
this reason, scorpions are the focus of different studies attempting
to describe the peptide content of their venoms in recent years.

Although most scorpion venom electrophoresis are carried
out using TRIS-TRICINE gels to visualize low molecular mass
compounds, using SDS-PAGE gels allowed us to see the rich
content of HMMC in each species.

Buthidae venoms from Colombia are rich in peptides affecting
ionic channels and peptides with antimicrobial activity [34].
Although Tityus and Centruroides are widely distributed
and studied in Colombia, most of the studies are focused on
epidemiological aspects. Only four studies are available analyzing
the composition of the venom of these two epidemiologically
relevant scorpion genera; two characterizing the venom from
T. pachyurus, one characterizing the peptide content of Tityus
macrochirus, and one reporting an intraspecific difference in the
biochemical and biological activity of C. edwardsii venom from
two populations in different regions in Colombia [16]. In the
former, the authors described the presence of a potent potassium-
channel blocker and putative sodium scorpion channel toxins
(NaScTxs) in the Tityus genus [18,20]. The present work indicates
that T asthenes and C. edwardsii seems to be an important source
of toxins affecting ionic channels. Matched toxins from T. asthenes
and C. edwardsii correspond to neurotoxins reported in other
Buthidae scorpions like Tityus discrepans, Tityus pachyurus,
Tityus obscurus, Centruroides margaritatus or Centruroides
noxius, from Colombia, México, Venezuela or Brazil [18,37].
In T. asthenes we detected 16 different fragments from this
venom (TaP2a, TaP3a, TaP6a, TaP7a, TaP8a, TaP9a, TaP9b,
TaP13a, TaP13b, TaP15a, TaP16a, TaP16b, TaPl6c, TaP16d,
TaP16e, TaP17a), matching nine different toxins affecting sodium
channels and one affecting potassium channels [37-39]. All these
toxins, reported in other scorpions, can inhibit sodium currents,
inhibit the inactivation of the activated channels, affect sodium
channel activation by shifting the voltage of activation toward
more negative potentials, or block the voltage-gated potassium
channels. Some of these toxins were described in other Tityus
species from different countries. Fragments TaP16a, TaP16b,
TaPl6c, TaP16d, TaPl6e, matching 84% of the Cnll amino
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Figure 6. (A) Families and (B) species where the fragment KISSV[AIVSN]NKDKI had been reported. *Species published in this study; t: match with query
peptide. Distribution of scorpion families according to Sharma et al. [35]. Figure adapted from Sharma et al. [35].

Table 2. Physicochemical properties of the KISSV[AIVSN]NKDKI peptide calculated in APD3 (Antimicrobial Peptide Calculator and Predictor).

MS/MS peptide sequence

Physicochemical properties

AxE (B2 Vi S N
Length (residues) 11 11 11 11 11
Molecular weight (MW) 1.202.406 1.244.487 1230.46 1.218.405 1.218.405
Net charge at physiological PH (7.4) 2 2 2 2 2
Hydrophobic residues (%) 36 36 36 27 27
Borman Index (kcal/mol) 21 1.81 1.89 257 257
Similar Peptide /% AP01814/45.45 AP02863/ 42.85 AP02863/ 41.66

*According to APD3 prediction, this peptide cannot form an alpha helix that is long enough to be an AP. #*Predicted short alpha-helical cationic antimicrobial peptide.

acid sequence from C. noxius (Buthidae) and fragments TaP13a
and TaP13b covering 50% of the toxin Tsl from T. serrulatus
(Buthidae) with a similarity of 100% in both cases, indicating
the presence of sodium channel blockers in this venom. In
the venom of C. edwardsii, two more fragments (CedPla and
CedP2a) were detected, matching peptides affecting potassium
channels, and were described as potent inhibitors of voltage-
gated potassium channels [40,41]. Although there is no previous
report of the peptide or protein content of these two Buthidae
scorpions from Colombia (T. asthenes and C. edwardsii), venom
characterization of other Buthidae indicates that neurotoxins are

the major content of these venoms, just as seen in our results
[42-44]. We found four more fragments (TaPla, TaP1b, TaP14a
and CedP4a) from T. asthenes and C. edwardsii that are similar
to antimicrobial peptides (AMP), active against Gram-negative
and Gram-positive bacteria and fungi [13]. Many AMP have
been described before in scorpion venoms [3,45], but this is the
first report of the presence of these bio-active compounds in
scorpion venoms from Colombia. Venom content from O. elatus
seems to be very similar to that reported in O. cayaporum from
Brazil [46]. All five fragments matched toxins reported in O.
cayaporum, including a phospholipase-like protein and a probable
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antimicrobial peptide [46]. The O. elatus phospholipase region
analyzed seems to be not exclusive for the elution of this proteins
but also antimicrobial peptides. We expected to find many more
sequences in major fraction in the Ch. reticulatus venom (as
observed in the T. asthenes venom), the lack of recovered peptide
families may be due to their absence, or due to there being very
few Chactas sequences in the reference database.

SDS-PAGE and TRIS-TRICINE electrophoresis together with
the MS/MS analysis allowed the detection of different HMMC
and low molecular mass compounds (LMMC) in both Tityus
and Centruroides venoms matching molecular weighs similar to
neurotoxins, phospholipases or metalloproteinases. In Colombia,
this HMMC had only been described in the venom from the
scorpion Opisthacanthus elatus and the spider Pamphobeteus
verdolaga [17,47], but never in Buthidae scorpions. HMMC are
quite commonly distributed proteins in arachnids. Their main
biological activities include housekeeping functions or enzymatic
activities, like phospholipases or hyaluronidase [48-52]. Despite
the clinical importance of these proteins, they are among the less
studied venom components. These HMMC had been previously
reported in the venoms from T. bahiensis, where the 32.69% of
its venom content correspond to metalloproteinases [42].

In all cases, further proteomic studies are necessary to
complete the MS/MS analysis of these important sources of
bioactive compounds.

In three of the four venoms analyzed by mass spectrometry,
we detected a common fragment with a variant in the 6
amino acid residue where a Isolecucine (I) can be replaced by
an Asparagine (N) (K-ISSV[IN]NKDXK-I) with a PTM with (K)
acetylations. This fragment matches a hypothetical secreted
protein from Hottentotta judaicus with unknown biological
activity. We previously detected the same fragment in the
venoms from Pandinus imperator, Grosphus grandidieri, Tityus
fuhrmanii and Androctonus amoreuxi with an additional variant
in the 6™ amino acid residue where the amino acids mentioned
above can be replaced by Alanine (A), Valine (V) or cysteine (C)
[34]. Is very important to consider that according to prediction
results, only KISSV[X]NKDKI with the Isoleucine (I) amino acid
residue in their sequences from Chactas reticulatus, Centruroides
edwardsii and Tityus asthenes may enhance an antimicrobial
activity in these venoms.

Currently, 20 scorpion families are recognized [35,53], and
only 45 species have a transcriptomic analysis available, including
Buthidae (with 22 species) and non-buthidae families (with 23
species). Considering that the Buthidae family has the highest
number of species with a transcriptome available, proteins
similar with our peptide (KISSV[IN]NKDKI) have mainly
been described in the family Buthidae, with some reports in the
Chactidae and Scorpionidae families. The presence of this protein
mainly in the Buthidae family may suggests a recruitment of
this peptide before Buthidae split from non-buthid species, as
suggested by He et al. [54] for Chaerilus tricostatus and Chaerilus
tryznaithe (Chaerilidae). Their evolutionary analysis showed that
the NaTx, p-KTx, and bpp-like toxin types were recruited into
the venom before the lineage split between Buthidae and non-

Buthidae families. Similarly, Ma et al. [55] studied the evolution
of the scorpion venom by comparative transcriptome analysis
of venom glands and phylogenetic analysis of shared types of
venom peptides and proteins between buthids and euscorpiids.
This analysis revealed that at least five of the seven common
types of venom peptides and proteins were likely recruited into
the scorpion venom proteome before the lineage split between
Buthidae and Euscorpiidae (i.e. basal in extant scorpions) with
their corresponding genes undergoing individual or multiple
gene duplication events.

Conclusion

The analyzed Buthidae venoms from Colombia may be
considered a rich source of peptides similar to toxins affecting
ionic channels. The Opisthacanthus elatus phospholipase region
is composed not only of phospholipases but also of peptides with
compounds similar to antimicrobial peptides. An interesting
predicted antimicrobial peptide was detected in three of the
analyzed venoms. When compared with the literature, this
peptide is present in other scorpion families indicating a probable
ancient peptide. The search for similar proteins that match with
query peptides suggest that multiple types of venom peptides,
including antimicrobial peptides, could have been recruited into
the venom proteome during, before or at the basal split in the
phylogeny of extant scorpions. In all cases, further proteomic
studies are necessary to complete the MS/MS analysis of these
important sources of bioactive compounds.
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