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Abstract
Background: Cathepsin D (CatD) is a lysosomal proteolytic enzyme expressed in 
almost all tissues and organs. This protease is a multifunctional enzyme responsible for 
essential biological processes such as cell cycle regulation, differentiation, migration, 
tissue remodeling, neuronal growth, ovulation, and apoptosis. The overexpression and 
hypersecretion of CatD have been correlated with cancer aggressiveness and tumor 
progression, stimulating cancer cell proliferation, fibroblast growth, and angiogenesis. 
In addition, some studies report its participation in neurodegenerative diseases and 
inflammatory processes. In this regard, the search for new inhibitors from natural 
products could be an alternative against the harmful effects of this enzyme. 
Methods: An investigation was carried out to analyze CatD interaction with snake 
venom toxins in an attempt to find inhibitory molecules. Interestingly, human CatD 
shows the ability to bind strongly to snake venom phospholipases A2 (svPLA2), forming 
a stable muti-enzymatic complex that maintains the catalytic activity of both CatD 
and PLA2. In addition, this complex remains active even under exposure to the specific 
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inhibitor pepstatin A. Furthermore, the complex formation between CatD and svPLA2 
was evidenced by surface plasmon resonance (SPR), two-dimensional electrophoresis, 
enzymatic assays, and extensive molecular docking and dynamics techniques. 
Conclusion: The present study suggests the versatility of human CatD and svPLA2, 
showing that these enzymes can form a fully functional new enzymatic complex.

Background
Cathepsins compose a family of lysosomal proteases mainly 

found in acidic endo/lysosomal compartments and are implicated 
in a broad spectrum of physiologic processes, such as intracellular 
protein degradation, energy metabolism, hormonal regulation, 
bone resorption, and immune responses [1]. These proteins belong 
to three protease families, characterized based on differences in 
the following amino acids at their active site: aspartic proteases 
(D and E), serine proteases (A and G), or cysteine proteases (B, 
C, H, F, K, L, O, S, V, X, and W) [1–4].

Furthermore, cathepsins are essential to maintaining 
cell homeostasis [5]. The inactivation, loss of function, and 
overexpression of these proteases can result in inappropriate 
degradation and abnormal accumulation of lysosomal waste 
[1, 6]. In addition, extracellular oversecretion of cathepsins is 
associated with uncontrolled cell proliferation, invasion, and 
differentiation, which in turn may bring about the onset of 
fatal pathologies, including atherosclerosis, cancer, and tissue 
fibrosis [6–12].

Due to its physio-pathological functions, cathepsin D (CatD) 
is one of the most studied lysosomal proteases [13–15]. CatD is 
an aspartic endopeptidase with two conserved Asp residues in 
its active site; these residues tend to deprotonate, indicating that 
the pH-optimum of activity resides at pH values below 5 [16]. In 
addition, CatD has three distinct regions that are characteristic 
of aspartic proteases, an N-terminal domain (residues 1-188), 
a C-terminal domain (residues 189-346), and an interdomain, 
antiparallel/3-sheet formed by the N-terminus (residues 1-7), 
the C-terminus (residues 330-346), as well as the linker residues 
between domains (160-200) [17].

Considered a multifunctional enzyme due to its involvement 
in various biological processes, CatD operates in both cytosolic 
and extracellular environments [13, 18–22]. Studies have 
shown that CatD is involved in the activation of precursors of 
biologically active proteins in pre-lysosomal compartments of 
specialized cells [11, 20, 23]. This enzyme is indispensable for 
cellular functions such as cell migration, differentiation, growth, 
cycle progression, tissue remodeling, and neovascularization 
activation [6, 11, 12, 19, 22, 24–27]. Additionally, CatD is involved 
in initiating the apoptotic cascade [28, 29] in lysosomal cell 
death pathways [22, 25].

CatD is directly related to the pathogenesis and progression of 
degenerative diseases [6, 30], such as lymphoid cell degeneration 
[31], Parkinson’s [32] and Alzheimer’s disease [33], atherosclerosis 
[34], and different types of cancer [35, 36]. For instance, some 
cell types under pathological conditions overexpress and secrete 

CatD to the extracellular environment via lysosomal release 
[20]; this makes CatD an important tumor marker in breast, 
bladder, and mouth cancers, among others [35, 36]. Furthermore, 
due to the participation of cathepsins in a broad spectrum of 
diseases, these proteases are promising therapeutic targets for 
small molecules and peptide drugs [33, 36].

In order to investigate human CatD inhibitors for the 
design and development of tools and agents of scientific and 
therapeutic interest, snake venoms belonging to the genera 
Bothrops, Crotalus, and Lachesis have been used as natural 
sources of biologically active molecules able to act selectively 
and specifically on different cellular targets [37, 38]. Of all the 
bioactive molecules present in snake venoms, phospholipases 
A2 (svPLA2) are among the most frequently encountered and 
studied [39, 40]; these proteins have established physical-chemical 
properties and a variety of pharmacologic and toxic effects in 
snakebite envenomation, such as myonecrosis, anticoagulation, 
platelet aggregation inhibition, neurotoxicity, cardiotoxicity, 
hypotension and edema formation [41–45].

Interestingly, human CatD shows the ability to bind strongly 
to svPLA2s, forming a stable and functional complex that is able 
to remain active even at pH values higher than 5 and is also 
unaffected by the inhibitor pepstatin A. These results, presented 
and discussed below, demonstrate the multifunctionality and 
versatility of CatD, warranting many new possibilities for 
the understanding of cathepsin functions in cytosolic and 
extracellular environments during physiologic and pathologic 
processes. Therefore, the present study aims to demonstrate and 
characterize an enzymatic complex formed by human CatD and 
a snake venom phospholipase A2.

Methods

Cathepsin D

Cathepsin D (cod. C8696) was obtained from Sigma-
Aldrich Ltda and prepared according to the manufacturer’s 
recommendations.

Snake venoms

All snake venoms used in this study were acquired from the 
Venom Bank at CEBio/Fiocruz Rondônia/UNIR (Centro de 
Estudos de Biomoléculas Aplicadas a Saúde), Porto Velho, RO, 
under local government authorization license number: IBAMA 
nº 27131-3 and CGEN/CNPq 010627/2011-1.
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Phospholipases A2 (PLA2s)
The Bothropstoxin-I (BthTX-I) and Bothropstoxin-II (BthTX-

II) from Bothrops jararacussu were obtained from the Venom 
Bank at CEBio (Centro de Estudos de Biomoléculas Aplicadas 
a Saúde/Fiocruz Rondônia/UNIR), located in Porto Velho, RO. 
PLA2 LmtTX from Lachesis muta provided by Diniz-Sousa et 
al. [46], PLA2 BnuTX-I from Bothrops urutu provided by Corrêa 
et al. [47], PLA2 Braziliase-I and Braziliase-II from Bothrops 
brazili provided by Kayano et al. [48] and Sobrinho et al. [49]. 

Bothrops jararaca snake venom fractionation
B. jararaca venom was solubilized in 50mM ammonium 

bicarbonate buffer (AMBIC), pH 8.0 and applied to an anion 
exchange column (CM-Sepharose 10 x 30 cm). The fractions 
were eluted in a linear gradient of 500 mM AMBIC, pH 8.0 
under a flow of 1 mL/min. Absorbances were measured at 215 
and 280 nm. The fractions were subjected to salt removal in a 
15mL filter (AMICON ULTRA-15) with a 50 kDa cutoff.

Binding assays
Surface plasmon resonance (SPR) molecular interaction assays 

were performed in a Biacore T200 system (GE Healthcare). 
Cathepsin D immobilization was done using a CM5 S-type 
sensor chip via amine coupling. The contact time of each cycle 
was set at 60 seconds, with a flow rate of 30 µL/min, followed 
by 60 seconds of dissociation time. For the regeneration stage 
at the end of each cycle, a 0.5% TFA solution was used with 30 
seconds of contact time at a flow of 30 µL/min. All experiments 
were performed at 25 ºC, and binding assays were conducted 
in phosphate-saline buffer (PBS), pH 7.4 and analytes at a 
concentration of 100 µg/mL.

Protein quantification
The protein concentrations present in venom samples were 

determined using Bradford’s method [50]. For spectrophotometric 
measurements, the sample was aliquoted in a 1 mL disposable 
plastic cuvette along with 1:10 (v/v) Bradford reagent, which 
was incubated for 15 minutes. Absorbance was monitored at 
595 nm using a Biomate 3 spectrophotometer. The calibration 
curve was performed using bovine albumin (Sigma).

SDS-PAGE
The relative mass of proteins was determined by SDS-PAGE 

using discontinuous gels, with a stacking gel (4% acrylamide 
in 0.5 M Tris-HCl buffer, pH 6.8) (Sigma Aldrich, USA) and a 
resolving gel (12.5% acrylamide in 1.5 M Tris-HCl buffer, pH 8.8). 
The experimental buffer solution used to fill the wells was 0.06 
M Tris-Base, 0.5 M Glycine, and 10% SDS (Sigma Aldrich, USA). 
The samples with 1M DTT were preheated to 95 °C for 5 min 
and applied to the stacking gel wells along with the Molecular 
Weight standard (7 to 175 kDa - BioLabs P7709S, USA). In 
the electrophoretic run, a current of 15 mA per gel and free 

voltage was fixed for 1 hour and 40 minutes. After this, the gel 
was washed for 15 minutes with a fixing solution (ethyl alcohol 
50% and acetic acid 12%) and then stained with Coomassie 
G-250 blue solution (Sigma Aldrich, USA) for 10-30 minutes. 
After this period, the gel was bleached in a bleaching solution 
(20% ethyl alcohol and 3% acetic acid). The gels’ images were 
scanned using Image Scanner III (GE Lifescience Health Care).

The 2D electrophoresis consisted of two steps: isoelectric 
focusing and 1D SDS-PAGE. For the first dimension, the sample 
was prepared in a rehydration solution (8 M urea, 2% CHAPS, 
0.5/2% IPG buffer, 0.002% bromophenol blue, and 1 M DTT); 
this same solution was then incubated with a 7-cm strip (pH 
3-10, linear) for 12-20 h. After rehydration, the strip was applied 
to an Ettan IPGphor 3 (GE Healthcare) isoelectric focusing 
system and later stored at − 80 °C. For the second dimension, 
the strip was washed with DTT and iodoacetamide diluted in 
5 mL of equilibration buffer solution (6 M urea, 2% SDS, 30% 
glycerol, 50 mM Tris- HCl, pH 7.4, 0.002% bromophenol blue). 
Then, the strip was applied to a 15% polyacrylamide gel. The 
gel was stained with Coomassie Blue G-250 and scanned in a 
GE Image Scanner III apparatus.

Metalloprotease contamination analysis of BthTX-II
Proteolytic activity was evaluated according to the method 

described by Rodrigues and coworkers [51], with adaptations, 
using casein as a substrate. Samples (12 µg/mL) were incubated 
with 250 µL of 2% casein in 0.1 M sodium citrate (pH 3, 4, 5, 
6, 7) for 30 minutes at 37 °C, interrupted by the addition of 
250 μL of 20% trichloroacetic acid (TCA). Similarly, sample 
contamination by metalloprotease at different pHs was analyzed 
by adding 10uL of ethylenediaminetetraacetic acid (EDTA). The 
solution was left to rest for 30 minutes at room temperature 
and then centrifuged at 10,000 x g for 15 minutes at 25 °C. The 
proteolytic activity was estimated based on the absorbance of 
the supernatant at 280 nm, with trypsin as a positive control.

Proteolytic activity on casein
The proteolytic activity was evaluated according to the method 

described by Rodrigues et al. [51], with adaptations, using casein 
as a substrate. Samples (6.3 µg/mL) were incubated with 250 µL of 
2% casein in 0.1 M sodium citrate (pH 3, 4, 5, 6, 7) for 30 minutes 
at 37 °C and then interrupted by the addition of 250 µL of 20% 
trichloroacetic acid (TCA). The solution was left to stand for 30 
minutes at room temperature and then centrifuged at 10,000 x g 
for 15 minutes at 25 °C. Proteolytic activity was estimated based 
on the absorbance of the supernatant at 280 nm. The proteolytic 
activity monitored in SDS-PAGE electrophoresis was performed 
according to the protocol described above. Inhibition was carried 
out by means of exposure to high temperatures (90 ºC).

Phospholipasic activity on 4N3OBA
This procedure was carried out as described by Petrovic and 

coworkers [52]. 5 mg of the substrate 4-nitro-3-octanoyloxy-
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benzoic acid (4N3OBA) (Enzo Lifescience, USA) was diluted in 
5.4 mL of acetonitrile. 0.2 mL aliquots were dried and stored at 
-20 °C. Each tube containing 4N3OBA was diluted in 2 mL of 
sample buffer (0.01 M Tris-HCl at pH 8.0, 0.01 M CaCl2, and 0.1 
M NaCl) (Sigma Aldrich, USA) and maintained on ice. In order 
to determine the phospholipasic activity, a total of 190 μL of 
4N3OBA reagent combined with 10 μL of sample (cathepsin + 
BthTX-II, and inhibitor) was applied in a 1:1 ratio, pre-diluted 
in water and incubated at 37 °C; subsequently, the substrate 
was added to the samples and immediately incubated at 37 
ºC. The absorbance was measured at 425 nm for 30 minutes 
(interval of 1 min). Phospholipase activity was considered 
directly proportional to the increase in absorbance values and 
expressed as the mean ± standard deviation; the results were 
submitted to analysis of variance (ANOVA) followed by Tukey’s 
post-test for p < 0.05.

In silico molecular interactions

All PLA2s used in the in vitro assays were assessed through 
molecular docking against cathepsin D (CatD). The available 
structures of CatD (4OD9), BthTX-I (3CXI), BthTX-II (2OQD), 
and Crotoxin B (3R0l) were extracted from the RCSB Protein 
Data Bank. The structures of Braziliase II (UniProtKB: P0DUN4) 
and LmutTX (UniProtKB: P0DUN7) were generated by means 
of comparative modeling using the Rosetta web server [53]. 
The structural conformation guiding the interaction and 
complexation of CatD and PLA2 were predicted through a 
consensus of 5 protein/protein docking tools (pyDock, ZDOCK, 
HDOCK, ClusPro, and GRAMX). The CatD + BthTX-II complex 
was subjected to molecular dynamics, with five replicas of 100 ns 
using GROMACS 2020.2 employing the CHARMM36-mar2019 
force field [54]. All simulations were carried out with a neutral 
net charge box of 4 Å radius from the farthest atom, solvated 

with TIP3P water, and equilibrated with 100 mM NaCl. The 
system was minimized with the steeper descent minimization 
until it reaches the power levels below 100 kJ/mol/nm. 

Then, the box was equilibrated under an isochoric-isothermal 
(NVT) ensemble for 1 ns, generating speeds according to 
the distribution of Maxwell-Boltzmann at 310.15 K using the 
V-Rescale thermostat [55] followed by an isothermal-isobaric 
(NPT) ensemble using the Berendsen barostat at 1 bar [56]. 
Subsequently, five replicas of unrestrained 100 ns simulations 
were executed using the Nose-Hoover Thermostat [57] and 
Parrinello-Rahman barostat [58].

Nonbonded interactions were calculated within a radius 
of 12 Å using a switching function between 10 and 12 Å. 
Afterwards, the trajectories were analyzed, and radius of gyration 
and backbone RMSD measurements were extracted from the 
main interacting parties for stability assessment. Further, the 
trajectories were subjected to clusterization using the gromos 
method [59] with an RMSD distribution of 2 Å. All images and 
interaction maps were created using UCSF Chimera 1.13.1 [60].

Results

Snake venom binding assays
Snake venoms were screened as to their potential interactions 

with human CatD, aiming to generate an extensive analysis of 
binding responses featuring the unique molecular content found 
in each venom. In this fashion, the bioactive compounds with the 
most affinity towards CatD could be inferred based on venom 
composition. For this purpose, thirteen venoms from different 
species were used (Fig. 1 and Table 1). Among these species, 
Bothrops brazili, B. jararaca, B. jararacussu, and B. leucurus 
stood out as promising due to their association and dissociation 
profiles and the maximum number of responses reached. 

Figure 1. SPR assays between snake venoms and human cathepsin D (CatD). Sensorgrams were generated in a screening round of snake venoms against CatD. 
All interactions are plotted according to the response upon binding in RU (resonance units). 
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Bothrops jararaca venom is one of the most well-characterized 
and studied venoms and showed a significant binding response 
(1,625 RU mg/mL) with CatD; for those reasons, it was selected 
for further analysis. In order to identify the venom components 

responsible for the majority of interaction signals, B. jararaca 
crude venom was fractionated through cation exchange 
chromatography (Fig. 2A). The chromatography resulted in 12 
fractions that were later submitted to SPR assays against CatD.

Figure 2. Chromatographic profile of B. jararaca snake venom, SDS-PAGE, and binding assays of the isolated fractions. (A) The chromatographic profile 
demonstrates fractionation on a CM-Sepharose column previously equilibrated with 50 mM AMBIC, pH 8.0, and fractions eluted with a 0-100% gradient of 500 
mM AMBIC, pH 8.0, at a constant flow rate of 1 mL/min, monitored at 215 (red) and 280 nm (blue). The twelve fractions collected were numbered from 1 to 
12, the fractions of interest 10, 11, and 12 being indicated with asterisks (*). SDS-PAGE of the 12 fractions from B. jararaca venom. (B) MM: molecular mass, 
V: crude venom, and eight fractions named F1 to F8. (C) MM: molecular mass, and fractions from F9 to F12. (D) Fraction interaction responses: 10 (blue), 11 
(green) and 12 (red) with responses of 125, 10 and 12 RUs, respectively.

Table 1. SPR binding assay of immobilized human cathepsin D with crude snake venoms.

Species Protein concentration  
(mg/mL)a Response (RU)b RU/mg

Bothrops alternatus 1.096 342.0 312.0

B. atrox 0.954 378.6 396.9

B. brazili 1.023 1,549 1,514.2

B. diporus 1.051 973.8 927.0

B. erythromelas 1.147 76.5 66.7

B. insularis 0.544 134.0 246.0

B. jararaca 0.867 1,409.3 1,625.5

B. jararacussu 0.887 2,003.1 2,258.3

B. leucurus 0.965 1,508.0 1,562.7

B. mattogrossensis 1.122 665.6 593.2

B. pauloensis 0.734 804.3 1,095.8

B. urutu 1.457 1,663.3 1,141.6

Crotalus atrox 1.470 185.0 125.9

C. d. cascavella 2.934 100.0 34.1

C.d. terrificus 0.779 65.0 83.4

Lachesis muta 1.689 216.7 128.3

a Protein quantification using the Bradford Method. bResponse: maximum response values are presented in resonance unit (RU).
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The subsequent assays revealed that only fractions 10, 11, 
and 12 presented significant interactions with CatD, showing 
responses from 25, 12, and 10 RUs at a concentration of 50 
mM (Fig. 2D). Next, the protein profile of each fraction was 
determined by SDS-PAGE, resulting in clear monophoretic bands 
around 13 kDa for all three fractions (Fig. 2C), compatible with 
svPLA2 mass and bands between 30 to 40 kDa, suggesting snake 
venom metalloproteases (SVMPs) in the fractions 10 and 11 (Fig. 
2C). When these fractions were tested for their phospholipase 
activity, fractions 3, 8, 10, 11, and 12 showed relevant activity 
against the substrate 4N3OBA (results not shown), confirming 
the presence of phospholipases in the fractions of interest.

These data strongly suggested that human CatD has the ability 
to interact with svPLA2s. In order to investigate this tendency and 
evaluate the specific affinity between both proteins, six svPLA2s 
from the genera Bothrops and Lachesis were submitted to SPR 
assays at concentrations of 15 and 50 mM (Table 2).

The binding analysis via SPR spectroscopy revealed that the 
toxins tested (except BthTX-I and Braziliase I) displayed tight 
binding to immobilized CatD (Fig. 3). For instance, BthTX-II 
(an enzymatic Asp-49-PLA2) [61] presented interaction showing 

dose-dependent SPR responses ranging from 420 to 1,420 at 
concentrations of 15 and 50 mM, respectively (Fig. 3C).

Different from Braziliase-I, Braziliase-II showed a dose-
dependent sensorgram of 245 RUs (15 mM) and 837 RUs 
(50 mM) with a prolonged dissociation phase suggesting a 
possible low dissociation rate constant (Kd) (Fig. 3A), which 
could be investigated through further analysis. Both BnuTX-I 
from B. urutu and LmutTX from L. muta also interacted 
with immobilized CatD (Fig. 3B), showing sensorgrams with 
different intensities of 552 and 2,180 RU at 50 mM [46, 47]. In 
any case, both showed a similar shape in their association and 
dissociation curves.

Despite the high level of homology among svPLA2s, the 
binding analysis between CatD and these toxins exhibited 
interactions with different intensity profiles. Nevertheless, 
the binding profile of CatD towards svPLA2 displayed high 
similarity, suggesting a common recognition site. It is worth 
pointing out that overall, svPLA2s present a characteristic and 
consistent tridimensional structure, which could be the driving 
factor behind the ability of CatD to interact with the svPLA2s 
tested in this study [61, 62].

Table 2. SPR interaction assays of immobilized human cathepsin D with svPLA2s from Bothrops and Lachesis snake species.

svPLA2 Type Species Concentration (mM) Response (RU)

BthTX-I Lys-49 B. jararacussu 50/15 NC

BthTX-II Asp-49 B. jararacussu 50/15 1,420/420

Braziliase-I Asp-49 B. brazili 50/15 NC

Braziliase-II Asp-49 B. brazili 50/15 837/245

BnuTX-I Lys-49 B. urutu 50 552

LmutTX Asp-49 L. muta 50 2,180

Samples that showed distorted results were considered inconclusive (NC).

Enzymatic activity of the cathepsin  
D + BthTX-II complex

Initially, the apparent molecular mass and isoelectric point (pI) 
of the CatD + BthTX-II complex, as well as that of both enzymes 
separately, BthTX-II and CatD, were verified through two-
dimensional electrophoresis (Fig. 4), determining a molecular 
mass of approximately 60 kDa and pI of 5.79 for the CatD + 
BthTX-II complex. Next, the proteolytic activity of CatD and of 
its complex with svPLA2 (BthTX-II) were evaluated using casein 
as a substrate at pH values of 3, 4, 5, 6, and 7, and Pepstatin A as 
a specific inhibitor. The optimal enzymatic activity of CatD was 
observed at pH 5, which is in agreement with previous studies 
[63]. On the other hand, the CatD + BthTX-II complex proved 
to be functional at different pH values reaching maximum 

activity at pH 6 (Fig. 5), revealing that the binding between 
these two proteins changes CatD’s functionalities, increasing 
its pH-dependent activity to higher values. Additionally, the 
CatD + BthTX-II complex is resistant to the inhibitor Pepstatin 
A at pH 6, suggesting the possibility of changes in enzyme 
specificity (Fig. 6A). 

Similar outcomes were observed in the SDS-PAGE assay, 
revealing that the bands formed after casein hydrolysis by CatD 
and CatD + BthTX-II are slightly different (Fig. 6B), suggesting 
potential differences in cleavage sites and further confirming 
the in vitro enzymatic activity. Furthermore, to rule out any 
residual contamination from the BthTX-II sample due to venom 
proteases, this sample was also submitted to the same conditions, 
and showed no proteolytic activity (results not shown).
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Figure 3. Binding assays between CatD and snake venom PLA2s. (A) Interactions of CatD with Braziliase-I and Braziliase-II (concentrations of 15 and 50 
µM). (B) Responses were obtained from the interaction between CatD and svPLA2s from Bothrops neuwiedi urutu (BnuTX-I) and Lachesis muta (LmutTX). (C) 
Interaction test between CatD and BthTX-II (concentrations of 15 and 50 mM). The analyzed samples were submitted to salt removal in a 5 mL Hitrap desalting 
(GE) column. 

Figure 4. Two-dimensional SDS-PAGE: CatD, BthTX-II, and enzymatic complex. (A) Two-dimensional SDS-PAGE of CatD showing a pI of 4.74 and 
approximate molecular mass of 35 kDa. (B) Two-dimensional SDS-PAGE of BthTX-ll with a pI of 8.74, with an approximate molecular mass of 14 kDa. (C) 
Two-dimensional SDS-PAGE of the complex with a pI of 5.79, and approximate molecular mass of 49 kDa.
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Figure 5. Proteolytic activity of CatD and the CatD + BthTX-II complex. The evaluation was performed at pHs 3, 4, 5, 6, and 7, identified in the figure legend, 
highlighting CatD in white (positive control) and the CatD + BthTX-II complex in black. As a negative control, the buffer itself (sodium citrate) was used at 
different pHs. The toxin used in the tests (BthTX-II) was submitted to contamination analysis (described in the second section). Two-way analysis of variance 
(ANOVA) with Tukey’s multiple comparison post-test with significance level p < 0.05. 

Figure 6. Proteolytic activity on casein. (A) Samples identified in the legend results: CatD, CatD + BthTX-II, CatD + BthTX-II + pepstatin A were considered 
negative controls; buffer (sodium citrate) was used at different pHs. (B) Proteolytic activities SDS-PAGE. Samples: (1) CatD; (2) pepstatin A (PepA); (3) casein; 
(4) CatD + PepA + casein; (5) CatD + casein; (6) CatD + BthTX-II Casein + PepA; (7) CatD + BthTX-II + casein (30 min); (8) CatD + BthTX-II + casein (15 min); 
(9) CatD + BthTX-II + casein (5 min). Samples 3 through 6 were incubated for 30 min at 27 ºC. Positive control: CatD; negative control: pepstatin A (PepA).

Regarding the effects of the interaction of the CatD + BthTX-
II complex on BthTX-II’s catalytic function, the phospholipase 
activity assay (Fig. 7) shows that the complex’s formation does 
not interfere with nor hinder BthTX-II’s capability to cleave 
the artificial substrate 4N30BA. Interestingly, the presence of 
Pepstatin A slightly diminishes the catalytic output of the CatD 
+ BthTX-II complex.

Structural analysis and molecular  
interaction simulations

All svPLA2s showing interaction with CatD in the SPR 
assay and enzymatic assays were selected for further in silico 

investigation, seeking details about the mechanism coordinating 
these interactions at the atomic level and the existence of 
common recognition sites for svPLA2s on CatD’s surface. Thus, 
five molecular docking methodologies were applied, effectively 
employing a consensus approach, which generated sets of docking 
conformations (Fig. 8) for each of the svPLAs2 (BthTX-II, 
Braziliase-II and LmutTX). Additionally, the CatD + BthTX-II 
complex (Fig. 9) was subjected to a more intensive inspection 
due to its enzymatic activity. Molecular dynamics (MD) was 
used to evaluate the structural stability of this macromolecular 
assembly. Five independent replicas were simulated for 100 ns 
each. The processing and analysis of the generated trajectories 
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included an assessment of the CatD + BthTX-II complex’s 
behavior in solution considering the radius of gyration (Fig. 10A) 
and RMSD (Fig. 10B) variations during the simulations. There 
were few noticeable fluctuations in the complex’s backbone and 
its compactness. Nevertheless, the assembly formed between 
these two proteins remained stable through all five replicas. The 
interaction between CatD and BthTX-II was evaluated, using as 

reference the central structures from the three most populated 
clusters generated in the clusterization performed with the sum 
of all five trajectories, exhibiting in that way an approximation 
of the most predominant conformation assumed by the CatD + 
BthTX-II complex during 500 ns of simulation (Fig. 10C). The 
absence of any remarkable shift in the complex’s shape suggests 
an overall stable and cohesive interaction. 

Figure 7. PLA2 enzymatic activity on artificial substrate 4N3OBA. Samples: (1) BthTX-II; (2) CatD + BthTX-II; (3) CatD + BthTX-II + PepA; (4) BthTX-I; (5) 
CatD; (6) PepA. Positive control: BthTX-II. Negative control: BthTX-I.

Figure 8. Molecular modeling of the interaction between three snake venom PLA2s (LmuTX, Braziliase-II and BthTX-II) and human CatD using different docking 
tools (HDOCK, pyDOCK, GRAM-X, ClusPro, and ZDOCK). The CatD surface is represented in dark gray (light chain) and light gray (heavy chain). The svPLA2s 
are colored according to the docking tool used.
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Figure 9. Molecular modeling of the CatD + BthTX-II complex. The complex formed between human CatD is shown in gray (light chain in dark gray and heavy 
chain in light gray) and BthTX-II is shown in orange. The interactions were enlarged to show amino acid residues in the interface and their interactions. H-bonds 
are highlighted by green dashed lines, and hydrophobic interactions are depicted as protrusions colored to match each amino acid residue.

Figure 10. CatD + BthTX-II complex molecular dynamics. CatD is shown in gray (light chain in dark gray and heavy chain in light gray) and BthTX-II is shown 
in orange. The radius of gyration and backbone RMSD graphics are located on the left side of the figure. All five replicas are plotted in an overlapped manner 
in order to highlight all minor variations and overall stability throughout the 100 ns of each replica. The structures on the right end of the figure show a 
superposition respective to each of the three CatD + BthTX-II complexes representing the most predominant conformations during the total 500 ns simulated. 
These superposed complexes are the central structures extracted from the three most populated clusters generated in the clusterization analysis performed 
with the trajectories of all five replicas. 

Discussion
In order to proceed with the characterization of the CatD + 

BthTX-II complex, different methodologies were used, such as 
Surface Plasmon Resonance (SPR), a detection method capable of 
performing real-time, label-free, and high-sensitivity monitoring 
of molecular interactions [64], and molecular docking, a key 
tool in structural molecular biology and computer-aided drug 
design, useful to predict structural data about a potential 

protein-protein interaction using known three-dimensional 
structures [65].

SPR assays carried out with immobilized human CatD 
showed different levels of interaction with components of all 
snake venoms tested, ranging from 34.1 RU mg/mL for C. d. 
cascavella to 2,258.3 RU mg/mL for B. jararacussu (Table 1). 
The interaction of venom components with human cathepsin 
D, especially those from bothropic venoms, strongly suggests 
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that this could be an important and relevant new biological 
mechanism involving the participation of CatD and svPLA2 in 
snake envenomation and other physiopathological processes 
with the participation of homologous proteins.

The use of B. jararaca venom cation exchange chromatographic 
fractions for further SPR assays (Fig. 2) showed that immobilized 
CatD interacted only with the last fractions (10, 11, and 12), 
which corresponds to well-known svPLA2s, according to the 
monophoretic bands observed in the electrophoresis profile. 
This data indicated that the svPLA2s presented in the samples 
tested in SPR binding assays with CatD could be the respective 
ligands. The SPR analyses carried out with the isolated svPLA2s 
BthTX-II, Braziliase-II, BnuTX-I, and LmutTX revealed their 
ability to bind with immobilized human CatD (Fig. 3). 

Two-dimensional electrophoresis showed that human CatD 
and BthTX-II form a stable complex of approximately 60 kDa and 
pI of 5.79. Initially, the apparent molecular mass and isoelectric 
point (pI) of the CatD + BthTX-II complex, as well as that of 
both enzymes separately, BthTX-II and CatD, were verified 
through two-dimensional electrophoresis (Fig. 4), determining 
a molecular mass for the CatD + BthTX-II complex. Next, the 
proteolytic activity of CatD and its complex with svPLA2 (BthTX-
II) was evaluated using casein as a substrate at pH values from 3 
to 7, and Pepstatin A as a specific inhibitor. The pH optimum of 
the CatD + BthTX-II complex was found to be 6, while isolated 
CatD shows optimal activity at pH 4 [66]. Furthermore, Pepstatin 
A doesn’t affect the CatD + BthTX-II complex activity with the 
substrate (Casein) at different pH values. 

Interestingly, the change in CatD pH-dependent activity, 
when compared to that of the CatD + BthTX-II complex, is 
consistent with previous CatD studies in tumoral cell lines [67], 
suggesting that in the physiologic scenario, CatD’s interaction 
with proteins such as svPLA2 might be the factor allowing it 
to function in different pH ranges. Additionally, the CatD + 
BthTX-II complex was not inhibited by Pepstatin A, with CatD’s 
catalytic activity remaining steady, further corroborating the 
CatD + BthTX-II complex’s increased activity capacity. Moreover, 
the investigation of the CatD + BthTX-II complex’s impact on 
BthTX-II’s phospholipase activity suggests that the orientation of 
BthTX-II when coupled with CatD is ideal and allows BthTX-II 
to remain fully functional.

Computational simulations revealed a clear pattern of 
interaction between CatD and svPLA2s, in such a way that all 
svPLA2s tested in this study exhibited affinity by the concave 
surface formed between the heavy and light chain of CatD. This 
interaction profile was observed in every docking performed in 
this study. Furthermore, MD simulations done with the CatD 
+ BthTX-II complex demonstrated that this may be the stable 
conformation assumed by CatD interacting with svPLA2s in 
solution. Alone, the CatD + svPLA2 complex’s interface of 
interaction observed in the simulations performed herein is not 
able to enlighten the molecular mechanisms behind the boost 
in CatD’s catalytic activity observed in the enzymatic assays. 
However, the conformation of the CatD + BthTX-II complex 

generated in the docking predictions and later validated in the 
500 ns of simulations agrees with the phospholipase activity 
assays. The capability of the CatD + BthTX-II complex to 
retain svPLA2 makes perfect sense given BthTX-II’s orientation 
upon attachment to CatD (Fig. 9 and 10C), in such a way that 
BthTX-II’s hydrophobic channel and active site remain fully 
exposed to solvent.

Taking into account all these data, the in silico exploration of 
CatD’s complex with svPLA2 provides a clear basis for these two 
enzymes’ interaction in the physiologic scenario. Nevertheless, 
it is necessary to carry out more experimental structural 
studies in order to confirm the modes of interaction between 
these enzymes. These results also raise new questions in the 
investigation of pathological and inflammatory symptoms of 
snake envenomation, in which CatD’s interaction with svPLA2 
and the complexes formed could play an important role in 
the cascade of systemic and local effects present in snakebite 
accidents. 

The interaction between CatD and svPLA2 demonstrated 
herein will possibly have future implications for snakebite 
therapeutics. However, the most significant results extracted 
from this study may foreshadow more fundamental physiological 
issues involving the role of CatD in inflammatory processes, 
apoptosis and tumor progression. In this regard, the proteolytic 
process in neurons, in which CatD actively participates, is an 
essential maintenance step for the clearance of protein aggregates 
that reach the lysosomes through endocytosis and autophagy [24]. 

Di Domenico and coworkers proposed that the lack of 
control in protein repair (proteasome and lysosomal system) 
is a characteristic of degenerating neurons in Alzheimer’s disease 
(AD), which highlights CatD’s involvement in these conditions 
due to its essential role in the management of lysosomal integrity 
[33]. Thus, the rise in PLA2 (IIA) in the cerebrospinal fluid of 
patients with AD indicates these enzymes as potential biomarkers 
in neuroinflammation [68, 69]. Furthermore, human brains 
affected by AD present a significant increase in PLA2 mRNA 
in the hippocampus [70]. Interestingly, reports of PLA2s’ 
involvement in the destabilization of lysosomal membranes 
have been made in different experimental systems [29, 71, 72]. 

Overall, many approaches have discussed the involvement of 
PLA2s in inflammatory processes [73–75]. In addition, PLA2s 
also act on cell membrane metabolism and the production 
of arachidonic acid, a known precursor of prostaglandins, 
leukotrienes, and thromboxanes [76–78]. Johansson and 
coworkers demonstrated that incubation of PLA2s with rat 
liver lysosomes resulted in the extravasation of its lysosomal 
constituents [29]. Additionally, Beaujouin and coworkers 
demonstrated CatD’s involvement in apoptosis and showed 
that cancer cells that were pretreated with Pepstatin A, could 
not halt CatD nor hinder apoptosis, supporting the results 
described herein in the proteolytic activity assays. Moreover, 
CatD’s capability to induce cancer cell growth, even when 
mutated, suggests an alternative mechanism for this enzyme [79].
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Conclusion
For the first time, this study describes the formation of 

a functional muti-enzymatic complex between the human 
protease cathepsin D and snake venom phospholipases A2. 
Collectively, the in vitro assays and in silico predictions carried 
out in this study demonstrated interaction and the formation of 
a new muti-enzymatic and catalytically active complex between 
CatD and svPLA2. Additionally, the agreement between the 
data from previous studies regarding the pathways in which 
these enzymes are involved and the new data presented herein 
indicates the possibility of PLA2 and CatD acting in conjunction 
in the extracellular environment [41]. Nevertheless, in the face 
of the many possible outcomes of this new enzymatic complex, 
the conclusions drawn must be taken with caution and, most 
importantly, warrant more extensive investigation on the subject.
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