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ABSTRACT 
Objective: To describe the use of a statistical tool (Principal Component 
Analysis – PCA) for the recognition of patterns and compression, 
applying these concepts to digital images used in Medicine. 
Methods: The description of Principal Component Analysis is made 
by means of the explanation of eigenvalues and eigenvectors of a 
matrix. This concept is presented on a digital image collected in the 
clinical routine of a hospital, based on the functional aspects of a 
matrix. The analysis of potential for recovery of the original image 
was made in terms of the rate of compression obtained. Results: The 
compressed medical images maintain the principal characteristics 
until approximately one-fourth of their original size, highlighting the 
use of Principal Component Analysis as a tool for image compression. 
Secondarily, the parameter obtained may reflect the complexity 
and potentially, the texture of the original image. Conclusion: The 
quantity of principal components used in the compression influences 
the recovery of the original image from the final (compacted) image.

Keywords: Principal component analysis; Eigenvalues; Eigenvectors; 
Image compressing; Patters; Dimensionality reduction 

RESUMO 
Objetivo: Descrever a utilização de uma ferramenta estatística 
(Análise de Componentes Principais ou Principal Component Analysis 
– PCA) para reconhecimento de padrões e compressão, aplicando 
esses conceitos em imagens digitais utilizadas na medicina. Métodos: 
A descrição da Análise de Componentes Principais é realizada por 
meio da explanação de autovalores e autovetores de uma matriz. 
Esse conceito é apresentado em uma imagem digital coletada na 
rotina clínica de um hospital, a partir dos aspectos funcionais de uma 
matriz. Foi feita a análise de potencial para recuperação da imagem 
original em termos de taxa de compressão obtida. Resultados: As 
imagens médicas comprimidas mantêm as características principais 
até aproximadamente um quarto de seu volume original, destacando 

o emprego da Análise de Componentes Principais como ferramenta 
de compressão da imagem. Secundariamente, o parâmetro obtido 
pode refletir a complexidade e, potencialmente, a textura da imagem 
original. Conclusão: A quantidade de componentes principais 
utilizada na compressão influencia a recuperação da imagem original 
a partir da imagem final (compactada).

Descritores: Análise de componentes principais; Autovalores; Autovetores; 
Compressão de imagens; Padrões; Redução de dimensão

INTRODUCTION 
Principal Components Analysis (PCA)(1) is a 
mathematical formulation used in the reduction of 
data dimensions(2). Thus, the PCA technique allows the 
identification of standards in data and their expression 
in such a way that their similarities and differences 
are emphasized. Once patterns are found, they can 
be compressed, i.e., their dimensions can be reduced 
without much loss of information. In summary, the 
PCA formulation may be used as a digital image 
compression algorithm with a low level of loss. 

In the PCA approach, the information contained 
in a set of data is stored in a computational structure 
with reduced dimensions based on the integral 
projection of the data set onto a subspace generated 
by a system of orthogonal axes(3). The optimal system 
of axes may be obtained using the Singular Values 
Decomposition (SVD) method(4). The reduced 
dimension computational structure is selected so that 
relevant data characteristics are identified with little 
loss of information(3). Such a reduction is advantageous 
in several instances: for image compression, data 
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representation, calculation reduction necessary in 
subsequent processing, etc.

Use of the PCA technique in data dimension 
reduction is justified by the easy representation of 
multidimensional data, using the information contained 
in the data covariance matrix, principles of linear 
algebra(3) and basic statistics. The studies carried out 
by Mashal et al.(5) adopted the PCA formulation in 
the selections of images from a multimedia database. 
According to Smith(6), PCA is an authentic image 
compression algorithm with minimal loss of information. 

The relevance of this work is in the performance 
evaluation of the PCA formulation in compressing 
digital images from the measurement of the degree of 
compression and the degree of information loss that 
the PCA introduces into the compressed images in 
discarding some principal components.

OBJECTIVE
This article has the purpose of describing the PCA of 
a population of data and the possibility of applying it 
to the compression of digital images. The application 
of the technique in pattern recognition is also 
emphasized. 

METHODS
Digital images
Admitting digital processing, a continuous (analogical) 
datum is converted into a matrix of simple elements 
(pixels) that assume discrete values (gray levels), that is:

(expression 1)

In which the values of x and y (x, y) are the 
coordinates of the pixels in the image, and f(x,y) is the 
corresponding level of gray(7). 

Covariance of an image
The covariance matrix of an image is given by:

 covImg = f(x,y)*f(x,y)T 3	 (expression 2)

PCA
A PCA may be characterized from the data of p variables 
for n individuals, as is indicated on table 1. 

By definition(1), the first principal component is the 
linear combination of variables X1X2;...;Xp, that is,

Z1 = a11X1 + a12X2 +... + a1pXp	 (expression 3)

The second principal component 

Z2 = a21X1 + a22X2 +... + a2pXp	 (expression 4)

Table 1. Format of data for a Principal Component Analysis from n observations 
of variables X1 and Xp 

Case X1 X2 Xp

1 a11 a12 ... a1p

2: a21 a22 ... a2p

... ... ... ... ...

... ... ... ... ...

n an1 an2 ... anp

The third principal component,

Z3 = a31X1 + a32X2 +... + a3pXp	 (expression 5)

and so forth. If there are p variables, then there are 
at most p principal components, always calculated 
according to expressions similar to expressions (3) or 
(4) or (5).

The results of a PCA, that is, the principal 
components Zp are obtained from an analysis that 
consists in finding the eigenvalues(3-6) of a sample 
covariance matrix(8). The covariance matrix is 
symmetrical and has the form:

	  (expression 6),

in which the elements cjj, positioned along the primary 
diagonal, are the variances of Xi (var(Xi)) and the cij’s 
of the secondary diagonal represent the covariance 
between the variables Xi Xj (cov (Xi, Xj)).

The eigenvalues of matrix C are the variances of 
the principal components. There are p eigenvalues. 
They are always numbers greater than or equal to zero, 
represented by the symbol l. Negative l’s are not allowed 
in a covariance matrix(6). Assuming that the eigenvalues 
are ordered as l1>l2>...lp> 0, then l1 corresponds to 
the first principal component (expression 1), and li to 
the i-th principal component, or:

Zi = ai1X1 + ai2X2 +... + aipXp	 (expression 7)
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As was mentioned, var(Zi) = li and the constants 
ai1, ai2,..., aip are the elements of the corresponding 
eigenvector, graduated so that(6)

	 (expression 8)

The fact that cii is the variance of Xi and that li is the 
variance of Zi implies that the sum of variances of the 
principal components is equal to the sum of variances 
of the original variances(6). Thus, in a way, the principal 
components contain all the variation of the original 
data(5,6). 

The steps normally followed in a PCA of a digital 
image can now be established:

Step 1: In the computational model of a digital image, in 
expression 1, the variables X1, X2,...,Xp are the columns 
of the image. The PCA is begun by coding (correcting) 
the image to that its columns have zero means and 
unitary variances. This is common, in order to avoid one 
or the other of the columns having undue influence on 
the principal components(6):

image corrected by the mean = image – mean of the image
(expression 9)

Step 2: The covariance matrix C is calculated using 
expression 6, implemented computationally, that is:

covImage = image corrected by the mean ×  
(image corrected by the mean)T 	 (expression 10)

Step 3: The eigenvalues l1,l2,...,lp and the corresponding 
eigenvectors a1, a2,..., ap. are calculated. 

Step 4: The value of a vector of characteristics is obtained, 
a matrix with vectors containing the list of eigenvectors 
(matrix columns) of the covariance matrix(6).

vc = (av1, av2, av3,..., avn)	 (expression 11)

Step 5: The final data are obtained, that is, a matrix with 
all the eigenvectors (components) of the covariance 
matrix. 

finaldata = vcT × (Image - mean)T	 (expression 12)

Step 6: The original image is obtained from the final 
data without compression using the expression

Image T = (vc)T × finaldata + meanT (expression 13)

Step 7: Any components that explain only a small 
portion of the variation in data for the effect of image 

compression are discarded. The eliminations have the 
effect of reducing the quantity of eigenvectors of the 
characteristics vectors and can produce final data with 
a smaller dimension. The use of expression 13 in these 
conditions allow the recovery of the original image 
with compression.

Compression rate
According to Castro(9,10), low-loss compression 

afforded by the present method may be expressed in 
terms of the compression factor of (r) and of the mean 
squared error (MSE) committed in the approximation 
of A (original image) by Ã (image obtained from the 
disposal of some of the components). The compression 
factor is defined by:

(expression 14)

And the MSE committed in the approximation of 
A by Ã is:

MSE =
 	 (expression 15)

RESULTS
This section shows examples of compression of 
digitalized images using the PCA formulation. Various 
situations are presented as examples.

Example 1: Recovering a TIFF image with 512x512 
pixels with all the components (512) of image covariance 
matrix (without compression, i.e., steps 1 to 6).

Original image: TIFF with 512x512 pixels*
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Recovered image (512x512 pixels) from 512 principal components

Memory necessary (final data)=512x512=262144 units of memory
Compression factor (r)=262144/262144=1
Compression rate (1-r)=1-1=0
Mean squared error (MSE)=0

Example 2: Recovery of a TIFF image with 512x512 
pixels with 112 principal components of the covariance 
matrix of the image (with compression, that is, steps 
from 1 to 5 to 7). 

Original image: TIFF with 512x512 pixels*

Image recovered (512x512 pixels) from 112 principal components

Memory necessary (final data)=112x512=57344 units of memory
Compression factor (r)=57344/262144=0.219
Compression rate (1-r)=1-0.219=0.781
Mean squared error (MSE)=0213

Example 3: Recovery of an image with 32 principal 
components of the image covariance matrix (with 
compression). 

Original image: TIFF with 512x512 pixels*

Recovered image (512x512 pixels) from 32 principal components

Memory necessary (final data)=32x512=16384 units of memory
Compression factor (r)=16384/262144=0.0625
Compression rate (1-r)=1-0.0625=0.9375
Mean squared error (MSE)=0.8825

Example 4: Recovery of an image with 12 principal 
components of the covariance matrix of the image (with 
compression). 

Original image: TIFF with 512x512 pixels*



139Principal Component Analysis applied to digital image compression

einstein. 2012;10(2):135-9

Recovered image (512x512 pixels) from 12 principal components

Memory necessary (final data)=12x512=6144 units of memory
Compression factor (r)=6144/262144=0.0234
Compression rate (1-r)=1-0.0234=0.9766
Mean squared error (MSE)=0.9505
* Structural image of the brain acquired at the Magnetic Resonance Department of Hospital Israelita Albert Einstein. The im-
age was acquired using a T1-weighted Spoiled Gradient Recalled Asymmetric Steady State (SPGR) sequence, in a magnetic 
resonance clinical examination apparatus from GE Sigma LX 1.5T (Milwaukee, USA). One hundred and twenty eight 1-mm 
isotropic slices of the cerebral cortex were acquired. 

DISCUSSION 
Examples 1 to 4 show the effects of the reduction in 
number of principal components (elevation of the image 
compression rate) in the increased loss of information. 
This application may bring great savings in storage of 
medical images. However, the level of information 
preserved depends on the parameters (compression 
rate), and should be modulated by the user’s interest. 
The higher the compression rate (the fewer principal 
components are used in the characteristics vector) 
the more degraded the quality of the image recovered 
(examples 3 and 4).

In certain applications, such as brain function 
images, the central principle is the variation of the 
resonance signal over time. In these conditions, the 
spatial information may be maintained in a reference 
file, making it possible to compress subsequent images 
with no loss. On the other hand, it is still necessary 
to evaluate the pertinence of the application of high 
compression rates when an assessment of structures of 
reduced dimensions relative to the size of the voxels is 
needed.

Furthermore, the observation of the results from 
the application of the PCA technique in medical 
images may be considered a complexity measure. 
In other words, images with dense texture patterns 
tend to produce different results with the use of the 

technique described. Nevertheless, this hypothesis 
was not tested in this project; it only points to the line 
of investigation, in which the results may certify and 
quantify this possibility. 

New secondary applications (based on the results 
here described) may encompass various conditions 
in the medical routine. These applications benefit 
from the procedures described herein. In this way, 
the comprehension of the principles here presented is 
important for the better use of medical applications 
based on these foundations. 

CONCLUSION
The quantity of principal components used in 
compression influences the recovery of the original 
image from the compacted image. This tool allows 
significant savings of storage space, which can be critical 
in clinical applications and in processing large volumes 
of data. As a secondary property, these components 
also have the potential of reflecting the complexity of 
the image, enabling their correlation with the texture 
of the image. 
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