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 ❚ Highlights
 ۪ Two artificial neural networks, type of multilayer perceptron, 
and a random forest model were developed.

 ۪ Multilayer perceptron and random forest were compared to 
the OASIS, SAPS, SAPS II, SAPS III, LODS, SOFA, and EVCI 
Scores. 

 ۪ Discrimination was assessed with the receiver operator 
characteristic and precision-recall curves.

 ۪ Calibration of the predictive models was evaluated with the 
Brier Score.
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 ❚ ABSTRACT
Objective: The variation in mortality rates of intensive care unit oncological patients may imply 
that clinical characteristics and prognoses are very different between specific subsets of patients 
with cancer. The specific characteristics of patients with cancer have not been included as risk 
factors in the established severity-of-illness scoring systems and comorbidity scores, showing 
limitations in predicting mortality risk. This study aimed to devise a predictive tool for in-hospital 
mortality for adult patients with a respiratory neoplasm admitted to the intensive care unit, using 
an artificial neural network.  Methods: A total of 1,221 stays in the intensive care unit from the 
Beth Israel Deaconess Medical Center were studied. The primary endpoint was the all-cause in-
hospital mortality prediction. An artificial neural network was developed and compared with six 
severity-of-illness scores and one comorbidity score. Model building was based on important 
predictors of lung cancer mortality, such as several laboratory parameters, demographic 
parameters, organ-supporting treatments, and other clinical information. Discrimination and 
calibration were assessed. Results: The AUROC for the multilayer perceptron was 0.885, while 
it was <0.74 for the conventional systems. The AUPRC for the multilayer perceptron was 0.731, 
whereas it was ≤0.482 for the conventional systems. The superiority of multilayer perceptron 
was statistically significant for all pairwise AUROC and AUPRC comparisons. The Brier Score was 
better for the multilayer perceptron (0.109) than for OASIS (0.148), SAPS III (0.163), and SAPS 
II (0.154). Conclusion: Discrimination was excellent for multilayer perceptron, which may be a 
valuable tool for assessing critically ill patients with lung cancer. 

Keywords: Artificial neural network; Intensive care units; Respiratory tract neoplasms; Survival; 
Hospital mortality

 ❚ INTRODUCTION
Neoplasms of the respiratory tract are one of the most frequently diagnosed 
cancers and the leading cause of cancer-related deaths worldwide.(1) An 
increasing number of patients with lung cancer are at risk of admission to an 
intensive care unit (ICU) due to cancer-related complications or treatment 
complications.(2,3) Considering the high incidence of respiratory neoplasms 
and their negative prognosis, it would be highly beneficial to develop effective 
clinical predictors of short-term mortality for ICU patients with lung cancer(4) 
in order to help clinicians to identify lung cancer patients at high risk of mortality 
influencing clinical decisions to improve outcomes.

Scoring systems that measure the severity of illness have been developed for 
the general population of ICU patients. These traditional systems are widely 
established and are used to assess the gravity of critical illness and predict 
mortality. These include the Logistic Organ Dysfunction Score (LODS),(5) 
Oxford Acute Severity-of-Illness Score (OASIS),(6) Simplified Acute Physiology 
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Score (SAPS),(7) SAPS II,(8) SAPS III,(9) and Sequential 
Organ Failure Assessment (SOFA).(10)

Comorbidity scores have also been generated for 
the general population of ICU patients, such as the 
Elixhauser-van Walraven Comorbidity Index (EVCI).(11) 

The EVCI is based on 30 acute and chronic comorbidities 
to predict in-hospital mortality in ICU patients.(12) 
The Elixhauser Score was revised in 2009 by Van 
Walraven et al. into a weighted scoring system.(13) 
In contrast to the previous systems, EVCI can be 
computed at the moment of ICU admission and does 
not require the assessment of laboratory and bedside 
clinical information.(11)

However, these general ICU scores were not 
specifically developed for patients with cancer. Studies 
validating the predictive capabilities of traditional 
ICU scoring systems among ICU patients with cancer 
suggest that their ability to predict mortality remains 
suboptimal.(3)

Additionally, previous research has found highly 
varied in-hospital mortality for  patients with cancer.(14) 
This variation in mortality rates may imply that clinical 
characteristics and prognoses are very different between 
specific subsets of patients with cancer.(14) Therefore, 
not only do patients with cancer need specific mortality 
predictor tools compared to the general ICU patients, 
but also specific subsets of ICU patients with cancer 
would benefit from scoring systems targeted to their 
specific subpopulation, such as the subset of patients 
with lung cancer.

Several prognostic parameters have been recognized 
as potential predictors of short-term mortality in 
patients with lung cancer. One such parameter is blood 
urea nitrogen (BUN).(1)

Cancer-associated hypercoagulable conditions, 
inflammation, and malnutrition are common in patients 
with cancer. Moreover, they are closely linked to cancer 
initiation, progression, and metastasis.(15) The plasma 
fibrinogen level increases in a hypercoagulable and 
inflammatory state.(16) Serum albumin has been shown 
to be a prognostic factor in lung and other cancers.(17) 
Wen et al. found that fibrinogen-to-albumin ratio was 
an independent prognostic factor for all-cause cancer 
mortality.(18) Therefore, BUN, albumin, and fibrinogen 
were selected for the developed model.

Several investigations have reported that red 
blood cell distribution width (RDW) is associated with 
mortality in ICU patients with cancer(4) and patients 
with lung cancer.(19,20) Lactate dehydrogenase (LDH) 
is considered as a relevant prognostic biomarker in 
neoplastic diseases,(21,22) including lung cancer.(23) 
Therefore, RDW and LDH were selected for the 
developed model.

The laboratory parameters described have important 
prognostic significance for patients with cancer; 
however, they are not included in any traditional 
ICU-related or comorbidity scores. These scores are 
broadly utilized in general ICU patients, but may be 
less accurate in the case of ICU patients with cancer.(3) 
Therefore, the developed model intends to provide 
better predictive performance than the general ICU 
scoring systems. Additional features that have been 
demonstrated to have an important prognostic value 
for mortality in ICU patients with cancer were included 
in the developed model.

The developed model uses an artificial intelligence 
approach to increase predictive performance compared to 
traditional systems. The traditional systems mentioned 
previously use logistic regression or a weighted summation of 
scores, except for OASIS which was created using machine 
learning algorithms of type particle swarm optimization.(6) 
Logistic regression has several disadvantages. For 
example, nonlinear problems cannot be solved 
adequately with logistic regression because logistic 
regression has a linear decision surface, and linearly 
separable data are rarely found in medical scenarios. 
Advanced algorithms such as artificial neural networks 
(ANN) have overcome their limitations.

An example in the literature on using artificial 
intelligence for ICU patients with cancer is the study 
of Santos et al. The study compared the predictive 
capabilities of artificial intelligence algorithms to 
estimate the risk of quality-adjusted life years of ≤30 
days for 777 patients in ICUs of two Brazilian public 
hospitals specialized in cancer care. Except for the 
decision trees, the predictive models derived from 
machine learning were almost equivalent, presenting 
good discrimination.(24)

To date, no artificial intelligence method has been 
developed to predict short-term mortality for ICU 
patients with lung cancer. Artificial neural networks 
are especially appropriate for multivariate datasets 
with nonlinear dependencies and they do not need 
variables to fit any theoretical distribution. In contrast 
to the static traditional severity-of-illness systems, the 
developed ANN captures the dynamic variation in 
laboratory parameters over time in the ICU. The short-
term prognosis of in-hospital mortality reflects the 
realistic goals of clinicians treating patients in the ICU.

 ❚ OBJECTIVE
This study aimed to devise a predictive tool for all-cause 
in-hospital mortality for individual adult patients with 
a respiratory neoplasm admitted to the intensive care 
unit, using an artificial neural network.



Outcome prediction for critical care patients with respiratory neoplasms

3
einstein (São Paulo). 2023;21:1-10

 ❚METHODS
Data source and study population
Data were obtained retrospectively from the Medical 
Information Mart for Intensive Care (MIMIC)-III 
critical care database version v1.4. per the ethical 
guidelines of the Institutional Review Board of the Beth 
Israel Deaconess Medical Center (BIDMC) and the 
Massachusetts Institute of Technology. The MIMIC-
III database is a large dataset containing de-identified 
clinical data of individual patients admitted to ICUs 
between June 2001 and October 2012 at the BIDMC 
(United States).(25)

The study included all ICU patients admitted with at 
least one diagnosis of a respiratory and/or intrathoracic 
neoplasm according to the corresponding International 
Classification of Diseases (ICD)-9 codes,(2) under any 
hospital service. Since all patient diagnoses were 
sequenced by priority in the MIMIC dataset, having a 
diagnosis code of a respiratory neoplasm could be at 
any diagnosis position.

In addition, adult patients aged ≥16 years with a 
length of ICU stay and survival ≥18 hours following 
ICU admission and all admissions to the ICU for a 
patient were included in the study. A total of 1,221 ICU 
stays were recorded for patients who met the previous 
criteria and were used as the final cohort. The threshold 
of 18-hours length of stay was selected to permit the 
extraction of laboratory parameters at four time points 
during the ICU stay. Code in PostgreSQL language 
generated for selecting the ICU stays is available at.(26) 

The primary endpoint was all-cause in-hospital 
mortality prediction, for the same hospital admissions 
of the corresponding ICU stays. For this primary 
outcome, the ANN was compared with the OASIS, 
SAPS, SAPS II, SAPS III, LODS, SOFA, and EVCI 
Scores. Developed code from the MIMIC Code 
Repository was used to generate the previous scores 
for the studied population.(27)

Variables extracted and processing
The extracted variables were laboratory parameters 
measured at four consecutive time points and categorical 
patient features (Table 1). The laboratory variables were 
serum albumin, BUN, serum anion gap, blood LDH, 
RDW, and fibrinogen levels. The four time points when 
these values were extracted were at ICU admission and 
at the 6-, 12-, and 18-hours after ICU admission. In a 
secondary analysis, for a fair comparison between the 
ANN and traditional systems, only available features 
at the time of ICU admission were considered (one 
time point).

Serum albumin was included, as it has been shown to be 
a prognostic predictor of mortality in lung cancer(1,17) and  
general patients with cancer.(18) Blood urea nitrogen was 
selected for the same reasons.(1) The serum anion gap was 
selected because it is a general predictor of mortality 
in the ICU. Lactate dehydrogenase was selected as it 
has been demonstrated to be a negative prognostic 
marker in lung cancer(23) and several tumors.(21,22) 
Red blood cell distribution width was selected as it 
has been shown to be a prognostic factor of short-term 
mortality following hospitalization in lung cancer.(4,19,20) 
Fibrinogen was included, as it has been proposed that 
it may predict the probability of cancer mortality.(15,16,18) 
Typical serum tumor markers used in lung cancer 
prognosis, such as carcino embryonic antigen and 
cancer antigen 125, were not included because these 
are not usually measured in the ICU.(23)

The categorical features obtained included 
demographic parameters, organ-supporting treatments, 
and clinical information. Among the demographics, 
age at ICU admission was included as it is a traditional 
prognostic marker for mortality.(1,4,14,23) Sex was also 
included as a traditional prognostic marker.(23) Ethnicity 
was included, as it is an important patient characteristic 
associated with outcomes.(2,4) The admission type was 
also included, as it has been shown to be an important 
characteristic affecting mortality.(2,14)

The obtained clinical information features included 
the first hospital service under which the patient was 
admitted. Evidence shows that the clinical service provider 
for ICU patients with cancer impacts mortality.(2,14) The 
variable of do-not-resuscitate order was selected as 
supported by Sauer et al.,(2) including several code 
statuses described in table 1, given at any time through 
the ICU stay. The metastatic variable was included, which 
was reported to be associated with mortality.(1,14,28) The 
variable sepsis was included as it has been demonstrated 
to negatively affect cancer mortality in ICU.(1-3,29)

Among the organ-supporting treatments, vasopressor 
use was included, indicating whether a patient was on 
a vasopressor during their ICU stay. This is frequently 
regarded as affecting mortality.(1-3,14) The utilization of 
renal replacement therapy at any time during ICU stay 
was included, as reported as a clinical factor associated 
with mortality in patients with cancer.(1-4,14,28) The use of 
mechanical ventilation at any time during ICU stay was 
included as an important prognostic variable for ICU 
patients with cancer.(1-3,14)

Konstanz Information Miner (KNIME AG, Zurich, 
Switzerland)(30) was used to build the machine learning 
models. The input dataset was split by stratified 
sampling into two partitions: 80% for training and 
20% for testing (Figure 1). The machine learning models 
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Figure 1. KNIME workflow design used to build the multilayer perceptron. The values of the measurements obtained and categorical patient features were used to 
represent the values of the input neurons of the multilayer perceptron after they were normalized. The value representing the primary outcome was used to describe the 
activity of the output neuron

Table 1. Patient variables obtained for constructing the machine learning models with four time points. Categorical features are attributes, except for patient age which 
is a continuous measure. The traditional systems compared use a few of these features as well

Sequential features obtained at four time points (continuous features)* Categorical features*

Laboratory#

Albumin (g/dL), 
BUN (mg/dL),

anion gap (mEq/L),
LDH (IU/L),
RDW (%),

Fibrinogen (mg/dL)

Type of ICU admission 
(admission_type)

Elective, urgent, or emergency

Ethnicity White, Black, Hispanic, Asian, Native, Unknown, other

Sex

Age at ICU admission

First hospital clinical service 
that the patient was admitted 

under (service)

Cardiac Medical; Cardiac Surgery; Dental; Ear, nose, and throat; Genitourinary; Gynecological; 
Medical; Neurologic Medical; Neurologic Surgical; Obstetrics; Orthopaedic; Orthopaedic 

medicine; Plastic; Psychiatric; Surgical; Trauma; Thoracic Surgical; Vascular Surgical 

Sepsis Patients with a primary diagnosis of sepsis were identified using the Angus methodology,(29) 
which is based on ICD-9 codes for either a bacterial or fungal infection in combination 

with acute organ dysfunction

Vaso_flag Norepinephrine, epinephrine, phenylephrine, vasopressin, dopamine, isoprenaline

RRT Renal replacement therapy

Vent If patients received any mechanical ventilation “events” during their ICU stay. 
Certain elements end the current ventilation event:

a) documented extubation ends the current ventilation
b) initiation of non-invasive ventilation and/or oxygen ends the current ventilation

Summary_dnr CMO= comfort measures only
DNR= do not resuscitate

DNI= do not intubate
DNCPR= cardiopulmonary resuscitation not indicate

Metastatic Metastatic cancers were identified independently of the anatomic site based on ICD-9 codes(2) 
* All features are normalized before being used as input by the machine learning models becoming continuous, including the nominal attributes; # The interval between each time point was a 6-hour window, except for the first time point that allowed 
collection of laboratory parameters from 24 hours backwards rendering them available at the time of ICU admission.
BUN: blood urea nitrogen; LDH: lactate dehydrogenase; RDW: red blood cell distribution width; ICU: intensive care unit.
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were built with the training data and their performance 
was evaluated on the testing set. The training set was 
resampled using a Synthetic Minority Oversampling 
Technique to balance the target class, and the predicted 
class probabilities were corrected based on the a priori class 
distribution of the data. The same testing set (n=245) was 
used to assess the performance of all models.

Multilayer perceptron model
The ANN used was a multilayer perceptron (MLP) based 
on WEKA 3.7, which uses backpropagation to classify the 
instances. The MLP is a feedforward-network without 
shortcut connections. The backpropagation algorithm 
has the learning parameters specified in table 2, which 
were optimized through a loop (Figure 1) that attempts 
to maximize the area under the receiver operator 
characteristic curve (AUROC) during the simulations 
for the primary outcome. The best parameter values 
obtained during the simulations are listed in table 2. The 
MLP models were compared in performance to other 
machine learning model, a random forest (RF), which 
also used four time points as the main MLP model.

The null hypothesis was set a priori as that there 
are no differences in discriminatory capability among 
the machine learning models and the severity-of-illness 
systems and comorbidity score compared. Pairwise 
comparisons of all ROCs and PRCs were used to test the 
statistical significance of the discriminatory differences 
between the machine learning models and traditional 
systems. The difference between the AUROCs was 
calculated using the DeLong method. The level of 
significance was set at a two-sided p<0.05.

Hypothesis testing and calculation of AUPRC were 
performed using MedCalc® Statistical Software version 
20.027 (MedCalc Software Ltd, Ostend, Belgium; 
https://www.medcalc.org; 2022).

The Brier Score was used to assess the calibration 
of the predictive models. This was computed for the 
machine learning models, OASIS, SAPS II, and SAPS 
III.

 ❚ RESULTS

Of the 1,221 ICU stays, 262 resulted in death during 
the same hospital admission of the corresponding 
ICU stay, and 959 resulted in survival, representing a 
prevalence of 21.457% for in-hospital mortality.

The violin plots in figure 2 show comparisons of 
the laboratory parameters analyzed between the cohort 
of survivors and non-survivors in-hospital. A greater 
variation in laboratory parameters was observed for 
fibrinogen and LDH in survivors and non-survivors, 
where violin shapes were more clearly displayed. 
Regarding these particular violins, we can observe that 
the values for the non-survivors are higher than for the 
survivors and also seem to increase over time for the 
non-survivors.

Figure 3 displays the ROC curves for the machine 
learning models, severity-of-illness systems, and EVCI, 
which show an AUROC of 0.885 for MLP (four-time 
points), 0.876 for MLP (one-time point), 0.87 for RF, 
and ≤0.739 for the conventional systems (Table 3).

Figure 4 shows the PRCs for the machine learning 
models, SAPS II, OASIS, and SAPS III, which yielded 
an AUPRC of 0.731 for MLP (four-time points), 0.717 
for MLP (one-time point), 0.67 for RF, and ≤0.482 for 
the traditional systems (Table 3).

The pairwise comparisons of all AUROCs between 
the machine learning models and the traditional systems 
are presented in table 4. The machine learning models 
were substantially superior to all conventional systems, 
with p≤0.0001 for all comparisons (Table 4).

Table 2. The best parameters found during the optimization loops for  
in-hospital mortality prediction for the multilayer perceptron model  
developed with four time points

Multilayer perceptron 
(four time points)

Learning rate parameter η, which indicates the step width 
of the gradient descent(30) 

0.41

momentum term μ applied to the weights during 
updating(30)

0.91

Training time: the number of epochs to train through(30) 2,881

Validation set size: the percentage size of the validation 
set to use to terminate training(30)

51

Validation threshold: the consecutive number of errors 
allowed for validation testing(30)

26

Hidden neurons of the hidden layer of the network 4

Learning rate decay will occur(30) True

Performance measures
Discrimination was assessed using receiver operating 
characteristic (ROC) curves, AUROC, precision-
recall curves (PRC), and area under the precision-
recall curve (AUPRC). Precision-recall curves provide 
a measure of performance that ignores the number 
of true negatives and can be useful for problems with 
class imbalance, as in this population.
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OASIS: Oxford Acute Severity-of-Illness Score; SAPS II: Simplified Acute Physiology Score II; SOFA: Sequential Organ Failure Assessment; LODS: Logistic Organ Dysfunction Score; SAPS: Simplified Acute Physiology Score; APSiii: Simplified Acute 
Physiology Score III; MLP: multilayer perceptron; RF: random forest. 

Figure 3. Receiver operator characteristic curves for in-hospital mortality prediction for the machine learning models built, severity-of-illness systems, and Elixhauser-
van Walraven Comorbidity Index compared

ALB: albumin; BUN: blood urea nitrogen; FIBRI: fibrinogen; GAP: anion gap; LDH: lactate dehydrogenase; RDW: red blood cell distribution width.

Figure 2. Violin plots showing the comparisons of laboratory parameters between the cohort of survivors (right) and non-survivors (left) in-hospital. Each violin plot 
displays a traditional boxplot with quartile notations for each feature, mean, median, as well as single points for outliers. Features’ numerical values are represented on 
the y-axis, which correspond to the unit of measurement for each parameter as detailed in table 1
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Table 3. Comparison of performance between the machine learning models, severity-of-illness systems, and Elixhauser-van Walraven Comorbidity Index  

MLP 
(four-time points)

MLP 
(one-time point)

RF 
(four-time points) OASIS** SAPS III** SAPS II** LODS** SOFA** EVCI SAPS**

AUROC* for 
in-hospital 
mortality
(95%CI)#

0.885
(0.836-0.934)

0.876
(0.824- 0.928)

0.87
(0.821-0.918)

0.733
(0.657- 0.809)

0.699
(0.615-0.784)

0.739
(0.666-0.813)

0.683
(0.604-0.762)

0.696
(0.612-0.779)

0.616
(0.533-0.699)

0.638
(0.551-0.725)

AUPRC* for 
in-hospital 
mortality
(95%CI)†

0.731
(0.596-0.833)

0.717
(0.582- 0.821)

0.67
(0.534- .782)

0.482
(0.352-0.614)

0.429
(0.304-0.565)

0.452
(0.324-0.586)

0.355
(0.239-0.492)

0.406
(0.283-0.542)

0.277
(0.173-0.411)

0.341
(0.227-0.477)

Brier 
Score‡ for 
in-hospital 
mortality*

0.109 0.116 0.139 0.148 0.163 0.154

* Results shown were calculated from test data (n=245); # The 95%CI was calculated as AUROC±1.96 standard error; † The 95%CI was calculated with the Logit method; ‡ The Brier Score was calculated as the mean squared error of the prediction; ** 
The severity-of-illness systems’ scores are calculated from the first 24 hours of intensive care unit stay, except for the SAPS III which requires 1 hour. 
MLP: multilayer perceptron; RF: random forest; OASIS: Oxford Acute Severity-of-Illness Score; SAPS III: Simplified Acute Physiology Score III; SAPS II: Simplified Acute Physiology Score II; LODS: Logistic Organ Dysfunction Score; SOFA: Sequential Organ 
Failure Assessment; EVCI: Elixhauser-van Walraven Comorbidity Index; SAPS: Simplified Acute Physiology Score; AUROC: area under the receiver operator characteristic curve; 95%CI: 95% confidence interval; AUPRC: area under the precision-recall 
curve.

MLP: multilayer perceptron; OASIS: Oxford Acute Severity-of-Illness Score; SAPS II: Simplified Acute Physiology Score II; SAPS III: Simplified Acute Physiology Score III.

Figure 4. Precision-recall curves for the machine learning models built, SAPS II, OASIS, and SAPS III for in-hospital mortality prediction

Pairwise comparisons of all AUPRCs between the 
machine learning models and the traditional systems 
are presented in table 4. The machine learning models 
were substantially superior to all traditional systems as 
the 95% bootstrap confidence intervals did not include 
0 (Table 4).

Lower Brier Scores indicate better calibration; it 
was 0.109 for MLP (four-time points), 0.116 for MLP 
(one-time point), 0.139 for RF, and ≥0.148 for the 
traditional systems analyzed (Table 3).

The relative importance of the features in the MLP 
(four-time points) is presented in table 5.
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Table 4. Pairwise comparisons of all AUROC and AUPRC between the machine learning models and the severity-of-illness systems and Elixhauser-van Walraven 
Comorbidity Index for predicting in-hospital mortality 

AUROC*† AUPRC*#

MLP  
(four-time points)

MLP  
(one-time point) RF (four-time points) MLP (four-time points) MLP (one-time point) RF (four-time points)

OASIS 95%CI=0.0831-0.221
p<0.0001

95%CI=0.0707- 0.215
p=0.0001

95%CI=0.0685-0.205
p=0.0001

Bootstrap 95%CI =0.1975-0.3010 Bootstrap 95%CI=0.1841- 0.2898 Bootstrap 95%CI=0.1506-0.2297

SAPS III 95%CI=0.106-0.266
p<0.0001

95%CI=0.097- 0.256
p<0.0001

95%CI=0.0933- 0.247
p<0.0001

Bootstrap 95%CI=0.2442-0.3505 Bootstrap 95%CI=0.2294- 0.3432 Bootstrap 95%CI=0.1935-0.2856

SAPS II 95%CI=0.0843-0.207
p<0.0001

95%CI=0.0724- 0.201
p<0.0001

95%=0.0631- 0.198
p=0.0001

Bootstrap 95%CI=0.2219-0.3287 Bootstrap 95%CI=0.2053- 0.3153 Bootstrap 95%CI=0.171-0.2639

LODS 95%CI=0.137-0.267
p<0.0001

95%CI=0.123- 0.262
p<0.0001

95%CI=0.118- 0.256
p<0.0001

Bootstrap 95%CI=0.3316-0.4310 Bootstrap 95%CI=0.3106- 0.4129 Bootstrap 95%CI=0.2752-0.3643

SAPS 95%CI=0.169-0.325
p<0.0001

95%CI=0.156- 0.32
p<0.0001

95%CI=0.154- 0.31
p<0.0001

Bootstrap 95%CI=0.3227-0.4474 Bootstrap 95%CI=0.307- 0.4285 Bootstrap 95%CI=0.2688-0.3816

SOFA 95%CI=0.115-0.264
p<0.0001

95%CI=0.104- 0.257
p<0.0001

95%CI=0.0942- 0.254
p<0.0001

Bootstrap 95%CI =0.2648-0.3842 Bootstrap 95%CI=0.249- 0.3669 Bootstrap 95%CI=0.2129-0.3158

EVCI 95%CI=0.176-0.362
p<0.0001

95%CI=0.167- 0.352
p<0.0001

95%CI=0.161- 0.346
p<0.0001

Bootstrap 95%CI=0.4024-0.5097 Bootstrap 95%CI=0.391- 0.4887 Bootstrap 95%CI=0.3414-0.4441

* Results shown were calculated from test data (n=245); † The 95%CI for the difference between two AUROCs was calculated as AUROC difference±1.96 standard error; # The bootstrap technique was used to calculate the 95%CI of the difference 
between the AUPRCs. 
MLP: multilayer perceptron; RF: random forest; 95%CI: 95% confidence interval; AUROC: area under the receiver operator characteristic curve; AUPRC: area under the precision-recall curve; OASIS: Oxford Acute Severity-of-Illness Score; SAPS III: 
Simplified Acute Physiology Score III; SAPS II: Simplified Acute Physiology Score II; LODS: Logistic Organ Dysfunction Score; SAPS: Simplified Acute Physiology Score; SOFA: Sequential Organ Failure Assessment; EVCI: Elixhauser-van Walraven Co-
morbidity Index.

 ❚ DISCUSSION
Studies carried out on the MIMIC-III database suggest 
that the survival of overall oncologic ICU patients 
increased between 2002 and 2011.(2) Although they 
observed that mortality rates decreased significantly 
over that period for all patients, there was substantial 
variation in survival rates among cancer types with 
hematologic malignancies exhibiting drastic decreases 
in adjusted mortality rates. However, for solid cancers, 
the overall improved survival was mainly driven by a 
drop in genitourinary cancers, while no improvement in 
respiratory cancers was observed.(2)

This is in agreement with the study of Peng et al.,(1) 
which observed an in-hospital mortality rate of 26.0% in 
ICU patients with lung cancer in a posterior cohort of 
patients also at the BIDMC and 26.4% in a posterior 
cohort at different hospitals. In the current study, 
the in-hospital mortality prevalence for ICU patients 
with respiratory cancer was 21.457%. Therefore, until 
recently, no improvements in survival for respiratory 
cancers have been observed at the BIDMC. This 
highlights the need for accurate methods of predicting 
the mortality risk in patients with respiratory cancer 
to improve outcomes.

Multilayer perceptron (four-time points) showed 
the highest AUROC (0.885), followed by MLP (one-
time point) and RF. Regarding the AUPRCs, the value 
for MLP (four-time points) was higher (0.731), followed 
by MLP (one-time point) and RF. The superiority of 

machine learning models was statistically significant for 
all pairwise AUROC and AUPRC comparisons.

The high AUROC and AUPRC for the MLP (four-
time points) indicate that its discriminatory capability 
for predicting in-hospital mortality was excellent, 
significantly outperforming the conventional systems. Its 
stronger calibration supports its superiority in this study.

The better performance of the machine learning 
models is understandable as they capture the specific 
characteristics of oncological patients admitted to 
the ICU, especially respiratory cancer. In addition, 
severity-of-illness systems collect only one time point 
for the laboratory parameters. Dynamic monitoring of 
these values may be more accurate. However, when 
using only one-time point, the performance of the 
MLP dropped only slightly, indicating that the dynamic 
monitoring did not have a major impact.

The worst performance was observed for EVCI, 
which agrees with previous studies that showed low 
AUROCs for short-term mortality in ICU patients for 
EVCI.(11) This is mainly because comorbidity scores are 
not physiology-based like the severity-of-illness systems.

Peng et al. identified the BUN-to-serum albumin 
ratio as an independent predictor of in-hospital 
mortality in ICU patients with lung cancer.(1) The 
relative high significance of BUN was indeed observed 
in MLP, as it ranked as the 1st and 4th most important 
feature (Table 5).
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Li et al. found that RDW is an independent 
prognostic factor for short-term mortality in ICU 
patients with cancer.(4) Red blood cell distribution width 
is traditionally used to study anemia. Nonetheless, 
research has demonstrated that RDW is associated 
with other diseases.(4) Its relative significance was also 
evidenced in MLP, as RDW1 ranked 7th in importance 
(Table 5).

Lactate dehydrogenase is an active enzyme in the 
anaerobic metabolic pathway. An elevated LDH level 
has been demonstrated to be a negative prognostic 
marker for lung cancer.(23) Its relative significance was 
evidenced in MLP, as LDH1 and LDH3 ranked 5th and 
9th respectively in importance (Table 5).

Albumin and fibrinogen are frequently utilized 
circulating inflammatory proteins.(16) Serum albumin is 
also a common nutritional parameter. Their relative 
significance in MLP was lower compared to the top 
10 features.

This study had some limitations. Future studies 
with more detailed lung cancer specific information 
should be considered to study if the performance of the 
MLP could be further improved. Traditional prognostic 
markers such as TNM classification, histopathological 
features, and patient performance status such as the 
Eastern Cooperative Oncology Group score could be 
included. Information about oncological treatment type 
and time since last administration of chemotherapy 
could also be included if available.(2)

Studies have evidenced that inflammation is 
linked to tumor progression and metastasis.(4) Among 
inflammatory indicators, levels of serum C-reactive 
protein were not analyzed because of the few 

measurements performed in the population studied. 
Other parameters closely associated to the inflammatory 
response which also have been evidenced to play a 
prognostic role in cancers could be considered such as  
neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, 
lymphocyte/monocyte ratio, and interleukin-6.(4) The 
identification of novel serum biomarkers in lung cancer 
by proteomics and metabolomics is essential and may 
help to further refine predictor tools.

This was a single-center retrospective study. Further 
prospective multicenter studies with larger cohorts are 
recommended to demonstrate the potential clinical 
usefulness of the artificial intelligence method proposed.

 ❚ CONCLUSION
The performance of the multilayer perceptron 
developed for prediction of in-hospital mortality for 
critical care patients with respiratory neoplasms 
was considerably superior to that of the severity-
of-illness systems and comorbidity score compared. 
The multilayer perceptron provided excellent 
discrimination and better calibration than the systems 
compared. The artificial neural network developed 
might be a good predictor for identifying patients at 
high risk of in-hospital mortality among critically ill 
lung cancer patients.
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