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Dynamic behaviour under moving concentrated masses of
simply supported rectangular plates resting on variable Winkler
elastic foundation

Abstract

The response of simply supported rectangular plates carrying

moving masses and resting on variable Winkler elastic foun-

dations is investigated in this work. The governing equation

of the problem is a fourth order partial differential equation.

In order to solve this problem, a technique based on separa-

tion of variables is used to reduce the governing fourth order

partial differential equations with variable and singular co-

efficients to a sequence of second order ordinary differential

equations. For the solutions of these equations, a modifica-

tion of the Struble’s technique and method of integral trans-

formations are employed. Numerical results in plotted curves

are then presented. The results show that response ampli-

tudes of the plate decrease as the value of the rotatory inertia

correction factor R0 increases. Furthermore, for fixed value

of R0, the displacements of the simply supported rectangular

plates resting on variable elastic foundations decrease as the

foundation modulus F0 increases. The results further show

that, for fixed R0 and F0, the transverse deflections of the

rectangular plates under the actions of moving masses are

higher than those when only the force effects of the moving

load are considered. Therefore, the moving force solution

is not a safe approximation to the moving mass problem.

Hence, safety is not guaranteed for a design based on the

moving force solution. Also, the analyses show that the re-

sponse amplitudes of both moving force and moving mass

problems decrease both with increasing Foundation modu-

lus and with increasing rotatory inertia correction factor.

The results again show that the critical speed for the moving

mass problem is reached prior to that of the moving force for

the simply supported rectangular plates on variable Winkler

elastic foundation.
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1 INTRODUCTION

The analyses of elastic structures (beams, plates and shells), resting on a subgrade, such as

railway tracks, highway pavements, navigation locks and structural foundations, constitute

an important part of the Civil Engineering and applied Mathematics literatures. In general,

such analyses are mathematically complex due to the difficulty in modeling the mechanical

response of the subgrade which is governed by many factors. When these structures are acted

upon by moving loads, the dynamic analyses of the system become more cumbersome [7]. The

crudest approximation known to the literatures to this problem is the so called “moving force”

problem, in which the vehicle-track interaction is completely neglected, and the action of the

vehicle is described as a concentrated force moving along the beam [12].

Several researchers have considered vehicle-track interaction in their analyses. These they

commonly termed moving mass problems. These researchers include Stanisic et al [22], Milornir

et al [11], Clastornic et al [3], Sadiku and Leipholz [19] and Gbadeyan and Oni [8]. Douglas et

al [5] solved the problem of plate strip of varying thickness and the center of shear. In their

work, they considered a free-vibrating strip with classical boundary conditions, precisely, they

assumed the plate strip clamped at one end and free at the other end. Pesterev et al [18]

came up with a series expansion method for calculating bending moment and shear force in

the problem of vibration of a damped beam subject to an arbitrary number of moving loads.

This kind of solution, though could be accurate, cannot account for vital information such as

the phenomenon of resonance in the dynamical system.

Recently, several other researchers have made tremendous efforts in the study of dynamics

of structures under moving loads, these include Oni [13], Oni and Omolofe [17], Oni and

Awodola [14], Omer and Aitung [2], Adams [1], Savin [20], Jia-Jang [23]. In all of these,

considerations have been limited to cases of one-dimensional (beam) problems. Where two-

dimensional (plate) problems have been considered, the foundation moduli are taken to be

constants. No considerations have been given to the class of dynamical problems in which the

foundation is the type with stiffness variation. In an attempt to solve such two-dimensional

problem, all the methods used in the above works break down due to the variation of the

foundation model.

It is generally known that the dynamical problems of structures under moving load and

resting on a foundation is generally complex, the complexity increases if the foundation stiffness

varies along the structure. Aside the problem of singularity brought in by the inclusion of the

inertia effects of the moving load, the coefficients of the governing fourth order partial differ-

ential equation are no longer constant but variable. Earlier researchers into beam member on

variable elastic foundation include Franklin and Scott [6] who presented a closed-form solution

to a linear variation of the foundation modulus using contour-integrals. Closely following this,

Lentini [10] presented a finite difference method to solve the problem where the foundation

stiffness varies along x as a power of x. Much later, Clastornik et al [4] presented a solution for

the finite beams resting on a Winkler elastic foundation with stiffness variation that can be pre-

sented as a general polynomial of x. Though works in [4, 6, 10] are useful, the loads acting on

the beams are not moving loads. In a recent development, Oni and Awodola [15] extended the
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works of these previous authors to investigate the dynamic response to moving concentrated

masses of uniform Rayleigh beams resting on variable Winkler elastic foundation. Their work

shows that for all variants of classical boundary conditions, the displacements of a uniform

Rayleigh beam resting on variable elastic foundation and traversed by moving masses decrease

both with increase in the foundation moduli and the rotatory inertial correction factor.

More recently, Oni and Awodola [16] considered the dynamic response under a moving load

of an elastically supported non-prismatic Bernoulli-Euler beam on variable elastic foundation.

The technique was based on the generalized Galerkin’s method and integral transformations.

In all these previous investigations, extension of the theory to cover two-dimensional (plate)

problem has not been effected, when the plate is on variable foundation. Therefore, this study

concerns the response to moving concentrated masses of simply supported rectangular plate

resting on Winkler elastic foundation with stiffness variation.

2 GOVERNING EQUATION

The equation governing the dynamic transverse displacement W (x, y, t) of a rectangular plate

when it is resting on a variable Winkler foundation and traversed by several moving concen-

trated masses is the fourth order partial differential equation given by

D∇4W (x, y, t) + µ∂
2W (x, y, t)

∂t2
+ F (x)W (x, y, t) = µR0

∂

∂t2
∇2W (x, y, t) + P (x, y, t) (1)

where

D = Eh2

12(1 − v)
(2)

is the bending rigidity of the plate, ∇2 is the two-dimensional Laplacian operator, W (x, y, t)
is the transverse displacement, h is the plate’s thickness, E is the Young’s Modulus, v is the

Poisson’s ratio (v < 1), µ is the mass per unit area of the plate, R0 is the Rotatory inertia

correction factor, F (x) is the variable foundation’s stiffness, P (x, y, t) is the Moving load, x

and y are respectively the spatial coordinates in x and y directions and t is the time coordinate.

When the effect of the mass of the moving load on the response of the plate is taken into

consideration, the external moving surface load takes on the form

P (x, y, t) = Pf(x, y, t) [1 −
∆∗

g
W (x, y, t)] (3)

where Pf(x, y, t) is the continuous moving force, ∆∗ is the substantive acceleration operator

and g is the acceleration due to gravity.

The structure under consideration is assumed to be carrying an arbitrary number (say N)

of concentrated massesMi moving with constant velocities ci, i = 1,2,3, . . . ,N along a straight

line parallel to the x-axis (no difficulty arises by assuming that masses travel in an arbitrary

path) issuing from point y = s on the y-axis. Thus, the moving force acting on the plate is

defined as
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Pf(x, y, t) =
N

∑
i=1
Migδ(x − cit) δ(y − s) (4)

where δ(.) is the Dirac-Delta function.

The operator ∆∗ used in equation (3) for masses traveling in an arbitrary path in the x-y

plane is defined as

∆∗ = ∂2

∂x2
(dx
dt
)
2

+ ∂2

∂y2
(dy
dt
)
2

+ ∂2

∂t2
+ 2 ∂2

∂x∂y

dx

dt

dy

dt

+2 ∂2

∂x∂t

dx

dt
+ 2 ∂2

∂y∂t

dy

dt
+ ∂

∂x

d2x

dt2
+ ∂

∂y

d2y

dt2
(5)

On the assumptions of the paragraph above, this operator takes the form

∆∗ = ∂2

∂t2
+ 2ci

∂2

∂x∂t
+ c2i

∂2

∂x2
(6)

As an example in this problem, a variable elastic foundation of the form

F (x) = F0(4x − 3x2 + x3) (7)

where F0 is the foundation constant, is considered.

Thus, substituting (3), (4), (5) and (7) into (1), one obtains

D∇4W (x, y, t) + µ∂
2W (x, y, t)

∂t2
= µR0 [

∂4

∂t2∂x2
+ ∂4

∂t2∂y2
]W (x, y, t)

−F0 [4x − 3x2 + x3]W (x, y, t) +
N

∑
i=1
[Migδ(x − cit)δ(y − s)

−Mi (
∂2

∂t2
+ 2ci

∂2

∂t∂x
+ c2i

∂2

∂x2
) W (x, y, t)δ(x − cit)δ(y − s)] (8)

The initial conditions, without any loss of generality, is taken as

W (x, y, t) = 0 = ∂W (x, y, t)
∂t

(9)

3 ANALYTICAL APPROXIMATE SOLUTION

The method of analysis involves expressing the Dirac-Delta function as a Fourier cosine series.

Because of the variable foundation term, the elegant method of the generalized integral trans-

form breaks down while the generalized Galerkin’s method used in one-dimensional structural

problems (Beam problems) could not handle the two-dimensional structural problem (Plate
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problems). Hence, the technique based on separation of variables is used to reduce the fourth

order partial differential equation governing the motion of the plate to a set of coupled second

order ordinary differential equations. Then, the modified asymptotic method of Struble is used

to simplify these resulting equations. The method of integral transformation and convolution

theory are then employed to obtain the closed form solution of the two-dimensional dynamical

problems.

In order to solve equation (8), in the first instance, the deflection is written in the form [21]

W (x, y, t) =
∞
∑
n=1

ϕn(x, y)Tn(t) (10)

where ϕn are the known eigenfunctions of the plate with the same boundary conditions. The

ϕn have the form of

∇4ϕn − ω4
nϕn = 0 (11)

where

ω4
n =

Ω2
nµ

D
(12)

Ωn, n = 1,2,3, . . . , are the natural frequencies of the dynamical system and Tn(t) are amplitude

functions which have to be calculated.

In order to solve the equation (8), it is rewritten as

D

µ
∇4W (x, y, t) + ∂

2W (x, y, t)
∂t2

= R0 [
∂4

∂t2∂x2
+ ∂4

∂t2∂y2
]W (x, y, t)

−F0

µ
[4x − 3x2 + x3]W (x, y, t) +

N

∑
i=1
[Mig

µ
δ(x − cit)δ(y − s)

−Mi

µ
( ∂

2

∂t2
+ 2ci

∂2

∂t∂x
+ c2i

∂2

∂x2
) W (x, y, t)δ(x − cit)δ(y − s)] (13)

At this juncture, the right hand side of equation (13) is written in the form of a series, we

have

R0 [
∂4

∂t2∂x2
+ ∂4

∂t2∂y2
]W (x, y, t) − F0

µ
[4x − 3x2 + x3]W (x, y, t) +

N

∑
i=1
[Mig

µ
δ(x − cit)δ(y − s)

−Mi

µ
( ∂

2

∂t2
+ 2ci

∂2

∂t∂x
+ c2i

∂2

∂x2
) W (x, y, t)δ(x − cit)δ(y − s)] =

∞
∑
n=1

ϕn(x, y)Bn(t) (14)

Substituting equation (10) into equation (14) we have
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∞
∑
n=1
{R0 [ϕn,xx(x, y)Tn,tt(t) + ϕn,yy(x, y)Tn,tt(t)] −

F0

µ
[4x − 3x2 + x3]ϕn(x, y)Tn(t)

+
N

∑
i=1
[ Mig

µ
δ(x − cit)δ(y − s) −

Mi

µ
(ϕn(x, y)Tn,tt(t) + 2ciϕn,x(x, y)Tn,t(t)

+c2iϕn,xx(x, y)Tn(t) ) δ(x − cit)δ(y − s) ] } =
∞
∑
n=1

ϕn(x, y)Bn(t) (15)

where
ϕn,x(x, y) implies ∂ϕn(x,y)

∂x
, ϕn,xx(x, y) implies ∂2ϕn(x,y)

∂x2 ,

ϕn,y(x, y) implies ∂ϕn(x,y)
∂y

, ϕn,yy(x, y) implies ∂2ϕn(x,y)
∂y2 ,

Tn,t(t) implies dTn(t)
dt

, and Tn,tt(t) implies d2Tn(t)
dt2

(16)

Multiplying both sides of equation (15) by ϕp(x, y) and integrating on area A of the plate,

we have

∞
∑
n=1
∫
A
{R0 [ϕn,xx(x, y)ϕp(x, y)Tn,tt(t) + ϕn,yy(x, y)ϕp(x, y)Tn,tt(t)]

−F0

µ
[4x − 3x2 + x3]ϕn(x, y)ϕp(x, y)Tn(t) +

N

∑
i=1
[ Mig

µ
ϕp(x, y)δ(x − cit)δ(y − s)

−Mi

µ
(ϕn(x, y)ϕp(x, y)Tn,tt(t) + 2ciϕn,x(x, y)ϕp(x, y)Tn,t(t)

+c2iϕn,xx(x, y)ϕp(x, y)Tn(t) ) δ(x − cit)δ(y − s) ] } dA =
∞
∑
n=1
∫
A
ϕn(x, y)ϕp(x, y)Bn(t)dA (17)

Considering the orthogonality of ϕn(x, y)

Bn(t) =
1

P ∗

∞
∑
n=1
∫
A
{R0 [ϕn,xx(x, y)ϕp(x, y)Tn,tt(t) + ϕn,yy(x, y)ϕp(x, y)Tn,tt(t)]

−F0

µ
[4x − 3x2 + x3]ϕn(x, y)ϕp(x, y)Tn(t) +

N

∑
i=1
[ Mig

µ
ϕp(x, y)δ(x − cit)δ(y − s)

−Mi

µ
(ϕn(x, y)ϕp(x, y)Tn,tt(t) + 2ciϕn,x(x, y)ϕp(x, y)Tn,t(t)

+c2iϕn,xx(x, y)ϕp(x, y)Tn(t) ) δ(x − cit)δ(y − s) ] } dA (18)

where

P ∗ = ∫
A
ϕ2pdA

Using (18), equation (13), taking into account (10) and (11), can be written as
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ϕn(x, y) [
Dω4

n

µ
Tn(t) + Tn,tt(t)] =

ϕn(x, y)
P ∗

∞
∑
q=1
∫
A
{R0 [ϕq,xx(x, y)ϕp(x, y)Tq,tt(t)

+ϕq,yy(x, y)ϕp(x, y)Tq,tt(t)] −
F0

µ
[4x − 3x2 + x3]ϕq(x, y)ϕp(x, y)Tq(t)

+
N

∑
i=1
[ Mig

µ
ϕp(x, y)δ(x − cit)δ(y − s) −

Mi

µ
(ϕq(x, y)ϕp(x, y)Tq,tt(t)

+2ciϕq,x(x, y)ϕp(x, y)Tq,t(t) + c2iϕq,xx(x, y)ϕp(x, y)Tq(t) ) δ(x − cit)δ(y − s) ] } dA (19)

Equation (19) must be satisfied for arbitrary x, y (that is, each point of the plate) and this

is possible only when

Tn,tt(t) +
Dω4

n

µ
Tn(t) =

1

P ∗

∞
∑
q=1
∫
A
{R0 [ϕq,xx(x, y)ϕp(x, y)Tq,tt(t)

+ϕq,yy(x, y)ϕp(x, y)Tq,tt(t)] −
F0

µ
[4x − 3x2 + x3]ϕq(x, y)ϕp(x, y)Tq(t)

+
N

∑
i=1
[ Mig

µ
ϕp(x, y)δ(x − cit)δ(y − s) −

Mi

µ
(ϕq(x, y)ϕp(x, y)Tq,tt(t)

+2ciϕq,x(x, y)ϕp(x, y)Tq,t(t) + c2iϕq,xx(x, y)ϕp(x, y)Tq(t) ) δ(x − cit)δ(y − s) ] } dA (20)

The system in equation (20) is a set of coupled ordinary differential equations.

Considering the property of the Dirac-Delta function and expressing it in the Fourier cosine

series as

δ(x − cit) =
1

LX

⎡⎢⎢⎢⎣
1 + 2

∞
∑
j=1

cos
jπcit

LX
cos

jπx

LX

⎤⎥⎥⎥⎦
(21)

and

δ(y − s) = 1

LY
[1 + 2

∞
∑
k=1

cos
kπs

LY
cos

kπy

LY
] (22)

equation (20) becomes
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d2Tn(t)
dt2

+ α2
nTn(t) −

1

P ∗

∞
∑
q=1
{R0P

∗
1

d2Tq(t)
dt2

− F0

µ
P ∗2 Tq(t)

−
N

∑
i=1

Mi

LXLY µ
[2(P

∗
3

2
+
∞
∑
k=1

cos
kπs

LY
P ∗∗3 (k) +

∞
∑
j=1

cos
jπcit

LX
P ∗∗∗3 (j)

+2
∞
∑
j=1

∞
∑
k=1

cos
jπcit

LX
cos

kπs

LY
P ∗∗∗∗3 (j, k)

⎞
⎠
d2Tq(t)
dt2

+ 4ci (
P ∗4
2
+
∞
∑
k=1

cos
kπs

LY
P ∗∗4 (k)

+
∞
∑
j=1

cos
jπcit

LX
P ∗∗∗4 (j) + 2

∞
∑
j=1

∞
∑
k=1

cos
jπcit

LX
cos

kπs

LY
P ∗∗∗∗4 (j, k)

⎞
⎠
dTq(t)
dt

+2c2i (
P ∗5
2
+
∞
∑
k=1

cos
kπs

LY
P ∗∗5 (k) +

∞
∑
j=1

cos
jπcit

LX
P ∗∗∗5 (j)

+ 2
∞
∑
j=1

∞
∑
k=1

cos
jπcit

LX
cos

kπs

LY
P ∗∗∗∗5 (j, k)

⎞
⎠
Tq(t)

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
=

N

∑
i=1

Mig

P ∗µ
ϕp(cit, s) (23)

where

α2
n =

Dω4
n

µ
,

P ∗1 = ∫
LX

0
∫

LY

0
[ϕn,xx(x, y) + ϕn,yy(x, y)]ϕp(x, y)dy dx,

P ∗2 = ∫
LX

0
∫

LY

0
[4x − 3x2 + x3]ϕn(x, y)ϕp(x, y)dy dx,

P ∗3 = ∫
LX

0
∫

LY

0
ϕn(x, y)ϕp(x, y)dy dx,

P ∗∗3 (k) = ∫
LX

0
∫

LY

0
cos

kπy

LY
ϕn(x, y)ϕp(x, y)dy dx,

P ∗∗∗3 (j) = ∫
LX

0
∫

LY

0
cos

jπx

LX
ϕn(x, y)ϕp(x, y)dy dx,

P ∗∗∗∗3 (j, k) = ∫
LX

0
∫

LY

0
cos

jπx

LX
cos

kπy

LY
ϕn(x, y)ϕp(x, y)dy dx,

P ∗4 = ∫
LX

0
∫

LY

0
ϕn,x(x, y)ϕp(x, y)dy dx,

P ∗∗4 (k) = ∫
LX

0
∫

LY

0
cos

kπy

LY
ϕn,x(x, y)ϕp(x, y)dy dx,

P ∗∗∗4 (j) = ∫
LX

0
∫

LY

0
cos

jπx

LX
ϕn,x(x, y)ϕp(x, y)dy dx,
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P ∗∗∗∗4 (j, k) = ∫
LX

0
∫

LY

0
cos

jπx

LX
cos

kπy

LY
ϕn,x(x, y)ϕp(x, y)dy dx,

P ∗5 = ∫
LX

0
∫

LY

0
ϕn,xx(x, y)ϕp(x, y)dy dx,

P ∗∗5 (k) = ∫
LX

0
∫

LY

0
cos

kπy

LY
ϕn,xx(x, y)ϕp(x, y)dy dx,

P ∗∗∗5 (j) = ∫
LX

0
∫

LY

0
cos

jπx

LX
ϕn,xx(x, y)ϕp(x, y)dy dx and

P ∗∗∗∗5 (j, k) = ∫
LX

0
∫

LY

0
cos

jπx

LX
cos

kπy

LY
ϕn,xx(x, y)ϕp(x, y)dy dx,

The second order coupled differential equation (23) is the transformed equation governing

the problem of a rectangular plate on a variable Winkler elastic foundation. This differential

equation holds for all variants of the classical boundary conditions.

In what follows, ϕn(x,y) are assumed to be the products of the functions ψni(x) and ψnj(y)

which are the beam functions in the directions of x and y axes respectively [9]. That is

ϕn(x, y) = ψni(x)ψnj(y) (24)

Since each of these beam functions satisfies all the boundary conditions in its direction,

the kernel (the product of these beam functions) in the above integrals satisfies all boundary

conditions for any plate problem of practical interest. In particular, these beam functions can

be defined respectively, as

ψni(x) = sin
Ωnix

LX
+Ani cos

Ωnix

LX
+Bni sinh

Ωnix

LX
+Cni cosh

Ωnix

LX
(25)

and

ψnj(x) = sin
Ωnjy

LY
+Anj cos

Ωnjy

LY
+Bnj sinh

Ωnjy

LY
+Cnj cosh

Ωnjy

LY
(26)

where Ani, Anj , Bni, Bnj , Cni and Cnj are constants determined by the boundary conditions.

Ωni and Ωnj are called the mode frequencies.

In order to solve equation (23) we shall consider a mass M traveling with uniform velocity c

along the line y = s. The solution for any arbitrary number of moving masses can be obtained

by superposition of the individual solution since the governing differential equation is linear.

Thus for the single mass M1 equation (23) reduces to
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d2Tn(t)
dt2

+ α2
nTn(t) −

1

P ∗

∞
∑
q=1
{R0P

∗
1

d2Tq(t)
dt2

− F0

µ
P ∗2 Tq(t)

−Γ [2(P
∗
3

2
+
∞
∑
k=1

cos
kπs

LY
P ∗∗3 (k) +

∞
∑
j=1

cos
jπct

LX
P ∗∗∗3 (j)

+2
∞
∑
j=1

∞
∑
k=1

cos
jπct

LX
cos

kπs

LY
P ∗∗∗∗3 (j, k)

⎞
⎠
d2Tq(t)
dt2

+ 4c(P
∗
4

2
+
∞
∑
k=1

cos
kπs

LY
P ∗∗4 (k)

+
∞
∑
j=1

cos
jπct

LX
P ∗∗∗4 (j) + 2

∞
∑
j=1

∞
∑
k=1

cos
jπct

LX
cos

kπs

LY
P ∗∗∗∗4 (j, k)

⎞
⎠
dTq(t)
dt

+2c2 (P
∗
5

2
+
∞
∑
k=1

cos
kπs

LY
P ∗∗5 (k) +

∞
∑
j=1

cos
jπct

LX
P ∗∗∗5 (j)

+ 2
∞
∑
j=1

∞
∑
k=1

cos
jπct

LX
cos

kπs

LY
P ∗∗∗∗5 (j, k)

⎞
⎠
Tq(t)

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
= Mg

P ∗µ
Ψpi(ct)Ψpj(s) (27)

where

Γ = M

LXLY µ
(28)

Equation (27) is now the fundamental equation of our problem when the rectangular plate

has arbitrary end support conditions.

In what follows, we shall solve the equation (27) when the plate has simple supports at all

its edges.

An elastic rectangular plate resting on a variable Winkler elastic foundation and having

simple supports at all its edges has the boundary conditions given by

W (0, y, t) = 0, W (LX , y, t) = 0 (29a)

W (x,0, t) = 0, W (x,LY , t) = 0 (29b)

∂2W (0, y, t)
∂x2

= 0, ∂2W (LX , y, t)
∂x2

= 0 (30a)

∂2W (x,0, t)
∂y2

= 0, ∂2W (x,LY , t)
∂y2

= 0 (30b)

Hence for the normal modes

Ψni(0) = 0, Ψni(LX) = 0 (31a)

Ψnj(0) = 0, Ψnj(LY ) = 0 (31b)

∂2Ψni(0)
∂x2

= 0, ∂2Ψni(LX)
∂x2

= 0 (32a)
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∂2Ψnj(0)
∂y2

= 0,
∂2Ψnj(LY )

∂y2
= 0 (32b)

When use is made of equations (31a), (31b), (32a), (32b) and the initial conditions given by

equation (9), it can be shown that

Ani = 0,Bni = 0,Cni = 0, and Ωni = niπ (33)

Anj = 0,Bnj = 0,Cnj = 0 and Ωnj = njπ (34)

Similarly,

Api = 0,Bpi = 0,Cpi = 0, apd Ωpi = piπ (35)

Apj = 0,Bpj = 0,Cpj = 0 apd Ωpj = pjπ (36)

Thus, we substitute equations (33), (34), (35) and (36) into the transformed equation (27)

to obtain the transformed equation for a rectangular plate, resting on a variable Winkler elastic

foundation and having simple supports at all its edges. That is

d2Tn(t)
dt2

+ α2
nTn(t) −

1

P ∗

∞
∑
q=1
{−R0 [(

qπ

LX
)
2

+ ( qπ
LY
)
2

] I1a(x)I1a(y)
d2Tq(t)
dt2

−F0F
∗

µ
I1a(y)Tq(t) −

M

LXLY µ
[(I1a(x)I1a(y) + 2

∞
∑
k=1

cos
kπs

LY
I1a(x)Ik1a(y)

+2
∞
∑
j=1

cos
jπct

LX
Ij1a(x)I1a(y) + 4

∞
∑
j=1

∞
∑
k=1

cos
jπct

LX
cos

kπs

LY
Ij1a(x)I

k
1a(y))

d2Tq(t)
dt2

2c( qπ
LX

I2b(x)I1a(y)+ 2
∞
∑
k=1

qπ

LX
cos

kπs

LY
I2b(x)Ik1a(y) + 2

∞
∑
j=1

qπ

LX
cos

jπct

LX
Ij2b(x)I1a(y)

+4
∞
∑
j=1

∞
∑
k=1

qπ

LX
cos

jπct

LX
cos

kπs

LY
Ij2b(x)I

k
1a(y))

dTq(t)
dt

− c2 (( qπ
LX
)
2

I1a(x)I1a(y)

+2
∞
∑
k=1
( qπ
LX
)
2

cos
kπs

LY
I1a(x)Ik1a(y) + 2

∞
∑
j=1
( qπ
LX
)
2

cos
jπct

LX
Ij1a(x)I1a(y)

+4
∞
∑
j=1

∞
∑
k=1
( qπ
LX
)
2

cos
jπct

LX
cos

kπs

LY
Ij1a(x)I

k
1a(y))Tq(t)

⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
= Mg

µP ∗
sin

pjπs

LY
sin

piπct

LX
(37)
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where

F ∗ = 4I∗1a(x) − 3I∗∗1a (x) + I∗∗∗1a (x),

I∗1a(x) = ∫
LX

0
x sin θnix sin θpixdx,

I∗∗1a (x) = ∫
LX

0
x2 sin θnix sin θpixdx,

I∗∗∗1a (x) = ∫
LX

0
x3 sin θnix sin θpixdx,

I1a(x) = ∫
LX

0
sin θnix sin θpixdx,

I1a(y) = ∫
LY

0
sin θnjy sin θpjy dy,

Ij1a(x) = ∫
LX

0
cos

jπx

LX
sin θnix sin θpixdx,

Ik1a(y) = ∫
LY

0
cos

kπy

LY
sin θnjy sin θpjy dy,

I2b(x) = ∫
LX

0
cos θnix sin θpixdx,

Ij2b(x) = ∫
LX

0
cos

jπx

LX
cos θnix sin θpixdx,

θni =
Ωni

LX
, θnj =

Ωnj

LY
, θpi =

Ωpi

LX
and θpj =

Ωpj

LY
(38)

Further simplification and rearrangement of (37), taking into account (33), (34), (35) and

(36), yields

d2Tn(t)
dt2

+ α2
nTn(t) −

1

P ∗

∞
∑
q=1
{−R0LXLY π

2

4
( q

2

L2
X

+ q2

L2
Y

)
d2Tq(t)
dt2

−F0F
∗LY

2µ
Tq(t) − Γ

⎡⎢⎢⎢⎢⎣

LXLY

4

d2Tq(t)
dt2

+ 2cLY

⎛
⎝

qpi
p2i − q2

+
∞
∑
j=1

qπ

LX
τ(j) cos jπct

LX

⎞
⎠
dTq(t)
dt

−(cqπ)
2
LY

4LX
Tq(t)]} =

Mg

P ∗µ
sin

pjπs

LY
sin

piπct

LX
(39)

where

Γ = M

LXLY µ
(40)

and

τ(j) = 8pi[p2i − j2 − q2]
j4 + q4 + p4i − 2[j2p2i + j2q2 + p2i q2]

(41)
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Equation (39) is now the fundamental equation of our problem when the rectangular plate

resting on variable Winkler foundation has simple support at all its edges. In what follows, we

shall discuss two cases of the equation.

Case I: Simply supported plate traversed by moving force

An approximate model of the system, when the inertia effect of the moving mass M is neglected,

that is, when Γ = 0 in equation (39), is the moving force problem associated with the system.

Thus the differential equation is given by

d2Tn(t)
dt2

+ α2
nTn(t) −

1

P ∗

∞
∑
q=1
{−R0LXLY π

2

4
( q

2

L2
X

+ q2

L2
Y

)
d2Tq(t)
dt2

−F0F
∗LY

2µ
Tq(t)} =

Mg

P ∗µ
sin

pjπs

LY
sin

piπct

LX
(42)

To solve equation (42) using the Struble’s asymptotic technique [16], first, we neglect the

rotatory inertial term and rearrange the equation to take the form

d2Tn(t)
dt2

+ [α2
n + Γ∗

F ∗LY

2
]Tn(t) + Γ∗

F ∗LY

2

∞
∑
q = 1
q ≠ n

Tq(t) =K0 sin
pjπs

LY
sin

piπct

LX
(43)

where

Γ∗ = F0

P ∗µ
textand K0 =

Mg

P ∗µ
(44)

Consider a parameter λ < 1 for any arbitrary mass ratio Γ∗, defined as

λ = Γ∗

1 + Γ∗
(45)

It can be shown that

Γ∗ = λ + o(λ2) (46)

Thus, the homogeneous part of equation (43) can be replaced with

d2Tn(t)
dt2

+ γ2mTn(t) = 0 (47)

where

γm = αn +
λF ∗LY

4αn
(48)

represents the modified frequency due to the effect of foundation.
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Thus using (47), equation (42) can be written as

d2Tn(t)
dt2

+ γ2mTn(t) +
λ0LXLY π

2

4

∞
∑
q=1
( q

2

L2
X

+ q2

L2
Y

)
d2Tq(t)
dt2

=K0 sin
pjπs

LY
sin

piπct

LX
(49)

where

λ0 =
R0

P ∗
(50)

The homogeneous part of equation (49) can be written as

d2Tn(t)
dt2

+ γ2m

1 + λ0LXLY π2

4
( n2

i

L2
X

+ n2
j

L2
Y

)
Tn(t)

+
λ0LXLY π2

4

1 + λ0LXLY π2

4
( n2

i

L2
X

+ n2
j

L2
Y

)

∞
∑
q = 1
q ≠ n

( q
2

L2
X

+ q2

L2
Y

)
d2Tq(t)
dt2

= 0 (51)

Consider the parameter ϵ0 < 1 for any arbitrary mass ratio λ0 defined as

ε0 =
λ0

1 + λ0
(52)

which implies

λ0 = ε0 + o(ε20) (53)

Following the same argument, (51) can be replaced with

d2Tn(t)
dt2

+ γ2mfTn(t) = 0 (54)

where

γmf = γm [1 −
ε0LXLY π

2

8
( n

2
i

L2
X

+
n2j

L2
Y

)] (55)

Therefore, the moving force problem (42) for the simply supported rectangular plate is

reduced to the non-homogeneous ordinary differential equation given as

d2Tn(t)
dt2

+ γ2mfTn(t) =K0 sin
pjπs

LY
sin

piπct

LX
(56)

When equation (56) is solved in conjunction with the initial conditions, one obtains ex-

pression for Tn(t). Thus in view of equation (10), one obtains

W (x, y, t) =
∞
∑
ni=1

∞
∑
nj=1

K0 sin
pjπs

LY

γmf [γ2mf − (piπc/LX)2]
[γmf sin

piπct

LX
− piπc
LX

sinγmf t] sin
niπx

LX
sin

njπy

LY

(57)

as the transverse-displacement response to a moving force of a simply supported rectangular

plate on a variable Winkler elastic foundation.
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Case II: Simply supported rectangular plate resting on variable foundation and traversed
by a moving mass

In this section we seek the solution to the entire equation (39) when no term of the equation is

neglected. To solve this problem, we use the modified asymptotic method of Struble already

alluded to [16]. To this end, we rearrange equation (39) to take the form

d2Tn(t)
dt2

−
2cLY η0 ( nipi

p2
i−n

2
i
+∑∞j=1 niπ

LX
τ(j) cos jπct

LX
)

1 − η0 (LXLY

4
)

dTn(t)
dt

+
G2

f +
η0(cniπ)2LY

4LX

1 − η0 (LXLY

4
)
Tn(t)

− η0

1 − η0 (LXLY

4
)

∞
∑
q = 1
q ≠ n

⎡⎢⎢⎢⎢⎣

LXLY

4

d2Tq(t)
dt2

+ 2cLY

⎛
⎝

qpi
p2i − q2

+
∞
∑
j=1

qπ

LX
τ(j) cos jπct

LX

⎞
⎠
dTq(t)
dt

−(cqπ)
2
LY

4LX
Tq(t)] =

η0gLXLY

P ∗ [1 − η0 (LXLY

4
)]

sin
pjπs

LY
sin

piπct

LX
(58)

where Γ has been written as a function of the mass ratio η0.

Thus, considering the homogeneous part of the equation (58) and going through the same

arguments and analysis as the previous case, the modified frequency corresponding to the

frequency of the free system due to the presence of the moving mass is

βf = γmf

⎡⎢⎢⎢⎢⎣
1 − η0

2

⎛
⎝
1 + (cniπ)

2

γ2mfL
2
X

⎞
⎠

⎤⎥⎥⎥⎥⎦
(59)

retaining terms to o(η0) only.

Therefore, to solve the non-homogeneous equation (58), the differential operator which acts

on Tn(t) and Tq(t) is replaced by the equivalent free system operator defined by the modified

frequency βf . That is

d2Tn(t)
dt2

+ β2
fTn(t) = G0 sin

njπs

LY
sin

niπct

LX
(60)

where

G0 =
η0gLXLY

P ∗
(61)

Clearly, equation (60) is directly analogous to equation (56). Hence when equation (60)

is solved in conjunction with the initial conditions, one obtains expression for Tn(t). Thus in

view of equation (10), we have

W (x, y, t) =
∞
∑
ni=1

∞
∑
nj=1

G0 sin
pjπs

LY

βf [β2
f − (piπc/LX)2]

[βf sin
piπct

LX
− piπc
LX

sinβf t] sin
niπx

LX
sin

njπy

LY
(62)

Equation (62) represents the transverse-displacement response to a moving mass of a simply

supported rectangular plate on a variable Winkler elastic foundation.
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4 DISCUSSION OF THE ANALYTICAL SOLUTIONS

In studying undamped system such as this, it is desirable to examine the phenomenon of

resonance. Equation (57) clearly shows that the simply supported rectangular plate on a

variable Winkler elastic foundation and traversed by a moving force reaches a state of resonance

whenever

γmf =
piπc

LX
(63)

while equation (62) shows that the same plate under the action of a moving mass experiences

resonance when

βf =
piπc

LX
(64)

where

βf = γmf

⎡⎢⎢⎢⎢⎣
1 − η0

2

⎛
⎝
1 + (cniπ)2

γ2mfL
2
X

⎞
⎠

⎤⎥⎥⎥⎥⎦
(65)

Equations (64) and (65) imply that

γmf

⎡⎢⎢⎢⎢⎣
1 − η0

2

⎛
⎝
1 + (cniπ)

2

G2
fL

2
X

⎞
⎠

⎤⎥⎥⎥⎥⎦
= piπc
LX

(66)

Since [1 − η0

2
(1 + (cniπ)2

G2
f
L2

X

)] < 1 for all ni, it can be deduced from equation (66) that, for

the same natural frequency, the critical speed (and the natural frequency) for the system of

a simply supported rectangular plate traversed by a moving mass is smaller than that of the

same system traversed by a moving force. Thus, for the same natural frequency of the plate,

resonance is reached earlier when we consider the moving mass system than when we consider

the moving force system.

5 NUMERICAL CALCULATIONS AND DISCUSSION OF RESULTS

In order to carry out the calculations of practical interests in dynamics of structures and engi-

neering design for the simply supported plate resting on variable Winkler elastic foundation,

a rectangular plate of length LY = 0.914m and breadth LX = 0.457m is considered. It is

assumed that the mass travels at the constant velocity 0.8123m/s. Furthermore, values for E,

S and Γ are chosen to be 2.109×109kg/m2, 0.4m and 0.2 respectively. For various values of

the foundation modulus F0 and the rotatory inertia correction factor R0, the deflections of the

simply supported plate are calculated and plotted against time t.

Figures 1 and 2 display the effect of foundation modulus (F0) on the transverse deflection

of the simply supported rectangular plate in both cases of moving force and moving mass

respectively. The graphs show that the response amplitude decreases as the value of the

foundation modulus increases. Values of F0 between 0 N/m3 and 3000 N/m3 are used.
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Figure 1 Deflection of moving force for simply supported rectangular plate on variable foundation for various
values of foundation moduli F0.

Figure 2 Deflection profile of moving mass for simply supported rectangular plate on variable foundation for
various values of foundation moduli F0.

The effect of rotatory inertia correction factor (R0) on the transverse deflection in both

cases of moving force and moving mass displayed in figures 3 and 4 respectively show that

an increase in the value of the rotatory inertia correction factor decreases the deflection of

the simply supported rectangular plate resting on variable Winkler elastic foundation. Here,

values of R0 between 0m and 0.2m are used.

Figure 5 compares the displacement curves of the moving force and moving mass for a

simply supported rectangular plate with F0 = 1000 N/m3 and R0 = 1m. Clearly, the response

amplitude of a moving mass is greater than that of a moving force problem. However, this

result holds for other choices of the values of F0 and R0.
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Figure 3 Deflection profile of moving force for simply supported rectangular plate on variable foundation for
various values of rotatory inertia correction factor R0.

Figure 4 Deflection of moving mass for simply supported rectangular plate on variable foundation for various
values of rotatory inertia correction factor R0.

6 CONCLUSION

The problem of the dynamic behaviour under moving concentrated masses of rectangular

plates resting on variable elastic foundation is considered in this work. The governing fourth

order partial differential equation is a non-homogenous equation with variable and singular

coefficients. The objective of the work has been to study the problem of the dynamic response

to moving concentrated masses of rectangular plates on variable Winkler elastic foundations.

In particular, the closed form solutions of the fourth order partial differential equations with

variable and singular coefficients of the rectangular plate is obtained for both cases of moving

force and moving mass. The method is based on (i) Separation of variables (ii) The modified

Struble’s technique and (iii) The method of integral transformations.

These solutions are analyzed and resonance conditions are obtained for the problem. The

numerical analysis for both moving force and moving mass problems carried out show that
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Figure 5 Comparison of the deflections of moving force and moving mass cases for simply supported rectangular
plate on variable foundation with F0 = 1000 and R0 = 1.

the moving force solution is not an upper bound for the accurate solution of the moving mass

solution and that as the rotatory inertia correction factor increases, the response amplitudes of

the plates decrease for both cases of moving force and moving mass problem. When the rotatory

inertia correction factor is fixed, the displacements of the simply supported rectangular plates

resting on variable Winkler elastic foundations decrease as the foundation modulus increases.

Furthermore, for fixed values of rotatory inertia correction factor and foundation modulus,

the response amplitude for the moving mass problem is greater than that of the moving force

problem implying that resonance is reached earlier in moving mass problem than in moving

force problem of the simply supported rectangular plate resting on variable elastic foundation.

Hence, it is dangerous to rely on the moving force solutions.

Finally, for the simply supported rectangular plate resting on Winkler elastic foundation

with stiffness variation, for the same natural frequency, the critical speed for moving mass

problem is smaller than that of the moving force problem, and as rotatory inertia correction

factor and the foundation modulus increase, the critical speeds increase showing that risk is

reduced.
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