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Abstract 
In this paper, a new 12-node triangular element is developed for 
the analysis of composite plates. Moreover, the stress-strain rela-
tions of laminated bending plates, along with the characteristics of 
composite and piezoelectric materials have also been investigated. 
Following this, a finite element formulation for smart composite 
bending plates is proposed. The capability of the suggested element 
in analyzing both composite plates and smart ones is studied via 
numerical examples. These analyses demonstrate that the proposed 
element is capable of yielding accurate results for the given pro-
blems. In addition, it is also concluded that in comparison to the 
elements developed by other researchers, this new formulation 
leads to more precise outcomes. 
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1 INTRODUCTION 

Due to the prominent role of plates in civil, aerospace and mechanical structures, extensive research 
has been conducted on their behavior and their analytical formulation during the last decades. With 
the advancement of technology, new kinds of material have been introduced into construction. For 
example, composite materials are now used in the production of multi-layered bending plates. 

The discovery of the piezoelectric effect goes back to the beginning of the nineteenth century. 
However, piezoelectric materials were not practically used until the First World War. Piezoelectric 
material comprises one of the main categories of smart materials which are implemented in the con-
struction of smart structures. Smart structures have the capability to sense changes and adapt to 
them [1]. Piezoelectricity is an electro-mechanical phenomenon which is exhibited in materials with 
certain chemical structures. These materials contain particles that can acquire electric charges and 
have the characteristics of electrical polarization. Two forms of piezoelectric behavior are defined for 
these materials; direct and converse. Direct piezoelectricity is when mechanical straining of a mate-
rial causes the formation of electric poles in that material. While in 
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converse piezoelectricity, the material will experience mechanical strains when subjected to an elec-
tric field. 

Structural members such as beams, plates, shells and laminated elements, which constitute the ac-
tive material, create a class of structures known as smart structures. Various definitions of this kind 
of structures exist. By Newnham’s description, smart structures are ones that actuators and sensors, 
with the ability of sensing and taking corrective action, have been implemented inside or on the sur-
face of the structure [2]. The process of designing a piezoelectric laminated plate, with a number of 
sensors and actuators distributed on its surface, is developed by Lee [3]. Lee also obtained the inter-
active relations between a laminated plate and the smart material. Experimental research has been 
carried out by Lazarus on smart structures with plate elements subjected to strain excitations [4]. In 
1991, a piezoelectric brick element with three degrees of freedom was proposed by Tzou et al [5]. Ha 
et al. proposed an 8-node hybrid brick element [6]. They investigated the response of laminated 
composite structures composed of piezoelectric ceramics under mechanical and electrical loading. In 
1993, a 4-node flexural plate element with twelve electrical degrees of freedom was developed by 
Park et al [7]. Detwiler used the finite element method to analyze laminated composite structures 
with sensors and actuators distributed on their surface [8]. Wang et al. developed the governing 
equilibrium equations of smart structures comprised of piezoelectric sensors and actuators [9]. 
Based on classic analytical methods, they formulated a 4-node bending plate element with a single 
electrical degree of freedom on each node. 

The plate bending modeling by Reissner-Mindlin theory is today the dominating tool used in finite 
element computations. In fact, the related elements have to be designed very carefully in order to 
avoid, or relax, the locking phenomena. According to the numerical findings, the locking is mostly 
seen in some low-order elements for which the finite element method will not lead to the proper 
response, when the plate is thin. It should be added that similar phenomena may arise for many 
higher-order elements as well. For these, the full locking may not occur, but the accuracy will not be 
as good as it would be expected from the used basis functions. 

Mathematically, the locking is the result of lacking stability of the formulation. Another effect due 
to the scheme non-stability is that the calculated shear force can be oscillating and leading to inaccu-
rate answer [46, 47].  During the last few years, significant progress has been made on the mathemat-
ical stability and error analysis of the Reissner-Mindlin plate techniques. As a result, several new 
procedures have emerged [48, 49-52, 46, 53, 54]. For instance, the error analysis [50, 52] performed 
for these elements showed that they are optimally convergent for all elements which are of at least 
quadratic (triangles) or bi-quadratic (quadrilaterals) degree [57]. 

Circular and rectangular shaped plates are commonly used in civil, mechanical and aerospace en-
gineering. Hence, these structural elements have been extensively studied during the last decades 
[10-12]. Many articles have been presented on the elastic and elasto-plastic response of these struc-
tures [13-15].   On the other hand, researchers have widely investigated the behavior of composite 
structures [16-18]. An instance of these studies is the deformational analysis of plates with rein-
forcement fibers [19-21]. Salehi and Sobhani presented a comprehensive range of analytical results 
on small and large deformations of fiber-reinforced plates [22]. Moreover, a vast amount of research 
has also been carried out on the analysis of banding plate using the finite element method [23-25]. 

The construction of smart composite structures is expanding due to the articles published to this 
day. Therefore, researchers are in need of new elements for their analyses. In this paper, a 12-node 
triangular element is developed for the analysis of composite plates. The authors state the assump-
tions and explain the formulation in detail during the process and also elaborate on the stress-strain 
relation of multi-layered structures. The characteristics of composite and piezoelectric materials are 
given afterwards. Concluding this, the suggested finite element formulation is presented for smart 
composite plate structures. In this process, Mindlin’s first-order shear deformation theory is utilized. 
The proposed formulation is capable of analyzing both thin and thick plates. Finally, the competence 
of this new element is examined via numerical analyses. 
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2 PIEZOELECTRIC MATERIAL EQUATIONS 

A laminated composite plate with integrated sensors and actuators is shown in Fig 1. 
 

 
Figure 1   A laminated composite plate with integrated sensors and actuators 

 
It will be assumed that each layer of the plate a plane of elastic, symmetry parallel to the   

plane. For the  layer’s, the direct and converse piezoelectric equations can be expressed by the 
next formulas [26]: 
 
 

 (1) 

 

 (2) 

 
In the former equations, ,  and are, respectively, the elements of the plane-stress reduced 

stiffness matrix, the piezoelectric constants and the permittivity coefficients of the  lamina in 
its material coordinate system. Whereby, , ,  and  respectively correspond to the stress, 
strain, electric field and electric displacements of the element in the material coordinate system. The 
plane stress elastic constants, , are as follows: 
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 (3) 

 
Certain components of the stresses, strains and electric displacements in the plate coordinates 

can be used to write the layered piezoelectric equations as below: 
 

 (4) 

 

 (5) 

 
These equations can also be rewritten in the following form: 

 
 (6) 

 

 (7) 

 
3 FINITE ELEMENT FORMULATION 

The triangular element of Fig. 2 will be used in the proceeding formulation. This element lies in the 
 plane with the z axis in the direction of its thickness. Using the Mindlin's formulation, the dis-

placements , , and w at a point  from the median surface can be written as a function of 

mid plane displacements 0u , 0v  and w and the independent rotations  and  in the  and 
 planes, respectively. 

 

 (8) 
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Figure 2   12-node triangular element and multi-layered plate 

 
 

With the assumption of small deformations and the introduction of shear deformations, the strain 
vector can be written the following form: 
 

 (9) 
 

In this equation, em is the membrane strain, and eb  is bending strain, which can be obtained by 
the following relations: 
 

 (10) 

 
 (11) 

 

 (12) 

 

 (13) 

 
It should be noted that for linear analysis, . In addition, the transverse shear strain vector 

has the next form: 
 

 (14) 
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In general, the electric field,{ }E , can be assumed in the below shape: 
 

 (15) 

 
The present triangular element has 12-node with 15 degrees of freedom and one electrical degree 

of freedom per piezoelectric. It can be assumed that in an element, the electric potential is constant 
over an element piezoelectric layer and has a linear variation in the direction of the piezoelectric 
layer’s thickness. Therefore, the electric field of the piezoelectric sensor and actuator layers is ob-
tained as: 
 

 (16) 

 
 
 In this equation, st  and at are the thicknesses of the piezoelectric sensor and actuator layers, re-
spectively. Using standard discretization techniques in an element, the following relationships can be 
obtained: 
 

 (17) 
  

 (18) 

 

 (19) 

 
Where { }de

j
 corresponding to the -j th  node and N are the shape functions [27, 28]. The 

membrane strains { }em , bending strain { }eb  and shear strain{ }es  take the following form: 
 

 (20) 
 

The relations between the nodal deformations and the membrane bending and shear stresses are 
established by the strain matrices , and , respectively. 
 
4 POTENTIAL ENERGY EQUATION 
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Based on material properties, the stress-strain relation for piezoelectric composite plates can be 
written as: 
 

 (21) 

 

 
(22) 

 

 (23) 

 

 (24) 

 
Here the piezoelectric sensor and actuator layers are considered as an additional layer of a com-

posite laminate. The second term of Eq. (2) corresponds to these piezoelectric layers. In this equa-
tion, F is the membrane force vector in the mid-plane, M  is the bending moment vector and S  is 
the transverse shear force vector. 
 

 (25) 

 
The unknowns of the problem are deflection, , and the next rotation vector:  

. 
By solving the bending plate, from the solution b( , )w , the following bending moment M  and the 

shear force Q  are obtained: 
 

 

 
 

Here, E  and u denote the modulus of elasticity and Poisson's ratio, respectively. e(0) is the linear 
strain operator and ‘div’ stands for the divergence. The subsequent relationships are held: 
 

, 

 

 
The possible ‘locking’ of a finite element model will appear for a ‘thin’ plate and in order to make a 

rigorous analysis of this, it is customary [46, 55] to consider the sequence of problems where the 
coming loading is applied: 
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In this equality, f is fixed and independent of the thickness t . Based on this, it is ensured that the 

problem has a finite non-vanishing solution in the limit ® 0t . In this limit, the Kirchhoff condition 
leads to the coming equation: 
 

 
 

Accordingly, the locking is due to a too strong enforcement of it in the finite element model. It is 
also appropriate to consider the scaled shear force -= 3q t Q , in the below form: 
 

 
 

The solution to the Reissner-Mindlin equations exhibits a boundary layer (cf. [56] for a survey) 
and hence the solution will usually not be very smooth even if the loading, and the boundaries are 
smooth [57].  

The relation between the forces and the membrane strains, , and the bending strains, , 
are given as follows: 
 

 (26) 

  

 (27) 

 
In this equation, t p  is the thickness of the piezoelectric layer. The matrices ,  and  

 are extensional, bending extensional and bending stiffness coefficients for the combi-
nation of layers, respectively. These matrices are defined next [29]: 
 

 (28) 

 
The transverse shear stress of the  lamina can be written as follows: 

 

 (29) 

 
Thus, the shear force vector S, which appears in all the shear-strain related equations, takes the 

following form: 
 

 (30) 

 

 
Latin American Journal of Solids and Structures 10(2013) 323 – 348 



Y. Sadeghi et al / A bending element for isotropic, multilayered and piezoelectric plates     331 

 

 ( )=, 4, 5i j  are transverse shear stiffness coefficient, can be obtained by using the following 
equation. 
 

 (31) 

 
In this equation,  and  are the shear correction factors. Based on the Reissner’s variation 

method, one can asume  [30]. According to the variation principles, the strain ener-
gy equation will take the following form: 
 
 
 

 

 (32) 

 
where A  is the area of the element, and  denotes the volume of the piezoelectric layer in an ele-
ment. Substituting ,  and  leads to the next relation: 
 

 

 (33) 

 
It should be noted that  represents the element stiffness matrix and  is the element 

elastic-electric stiffness matrix. 
 
5 ELECTRICAL POTENTIAL EQUATION 

Using constitutive relations, strain displacement and electric-field electric-potential relations, the 
element electrical energy can be written as follows: 
 

 

 (34) 

 
 

In this equation,  represents the elastic electric stiffness matrix and  is el-

ement electric stiffness matrix. 
 
 
6 WORK DONE BY THE EXTERNAL FORCES AND THE ELECTRICAL CHARGE 
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The virtual work has two components. One component is due to the surface loads and the other com-
ponent corresponds to the density of the electric charge. These components are calculated by the 
following equations: 
 

 (35) 

 
where { }f s  and { }q  are the surface force intensity and surface electric charge density, respectively. 
The areas where the surface loads and the electric charge are applied to are denoted by 1s  and 2s   
respectively. Eq. (35) can be rewritten in the following form: 
 

 (36) 

 
In this equation,  represents the mechanical surface load vector, while  denotes the 

electrical charge in an element. 
 
7 KINETIC ENERGY EQUATION 

The element kinetic energy is calculated using the following equation: 
 

 (37) 

 

where n  is the number of layers,  and . Eq. (37) can 

be rewritten in the following form: 
 

 

 (38) 

 
In this equation,  corresponds to the shape functions and  is the element mass matrix. 

 
8 EQUATIONS OF MOTION 

Using Hamilton’s principal, an element’s equation of motion can be written in the following form: 
 

 (39) 
 

 (40) 
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 In this equation,  represents the element mass matrix,  is the element stiffness ma-

trix,  is the element elastic electric stiffness matrix and  denotes the ele-

ment electric stiffness matrix [31]. The mechanical force vector and electric charge vector for an ele-
ment have been previously defined and are denoted by { }s e

F  and { }q e
F , respectively. Substituting 

Eq. (40) into (39) leads to: 
 

 (41) 

 
 Eq. (40) is utilized for the sensors when the external charge is equal to zero. Therefore, the input 
voltage will be equal to: 
 

 (42) 

 
 Subscript s, denotes the sensor layer. The global equations of motion can be obtained by assem-
bling the elemental equations and is given in the following form: 
 

 (43) 

 
 In the last equation,  is the actuator voltage vector, and  represents Rayleigh’s  damp-
ing [32]. 
 
9 NUMERICAL EXAMPLES 

The capabilities of the proposed element, as well as its accuracy in analyzing various single-layer 
bending plate is examined in this section. For this purpose, multiple problems with different geome-
tries, layers, boundary conditions and loads will be analyzed. The result of each problem will be com-
pared to the elastic solution as well as the results given in other researches. The response of single-
layer plates will be examined at first, followed by composite plates and then smart composite plates. 
In these examples, unless stated otherwise, it is assumed that all the layers of a composite plate have 
the same thickness. 
 
9.1 Square plate with fixed supports 

In the first benchmark problem, a square plate with fixed supports and linear behavior will be consi-
dered (Fig. 3). The plate will be under a uniform load of q . The length of each side of the plate is 
equal to L . 
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Figure 3   Square plate with fixed supports 

Fig. 4 Illustrates the different finite element meshes utilized in the analyses. 
 

 

 

Figure 4   Finite element meshes of the square bending plate 
 
 

Due to symmetry, only a quarter of this structure will be analyzed. Thus, the boundary conditions 
will take the following form: 
 
 

          , 

 
 
Using classic plate theory, the deflection of the plate’s center is calculated as [33]: 
 

128 elements 50 elements 32 elements 

2 elements 8 elements 18 elements 
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In the above equation, q  represents the intensity of the uniform load, L  is the length of the plate 

and D  is the flexural stiffness of the plate. The deflection ratio of the plate obtained by using the 
proposed element and elements developed by other researchers is given in Table 1. In addition, the 
error of the center deflection obtained by each of these elements is calculated and their convergence 
is shown in Fig. 5. In Fig. 5, the horizontal axis represents the number of elements, while the vertical 
axis represents the error. Utilizing the same elements presented in Table 1, the convergence of a sim-
ilar plate under a concentrated load is illustrated in Fig. 6. 
  
 

Table 1   deflection ratio for the center of the square plate with fixed supports and uniform loading 
 

Reference Number of elements 
Element 128 50 32 18 8 2 

 0.12551 0.12542 0.12508 0.12266 0.11891 0.11307 Present study 

[34]  0.12684 0.12723 0.12834 0.12939 0.13175 0.1369 DST-BK  
[35]  0.12703 0.12755 0.12897 0.13186 0.1356 0.14271 RT9  
[36]  0.12629 0.12708 0.12764 0.12846 0.13274 0.14053 TUBA  
[37]  0.12479 0.12392 0.1234 0.12189 0.11724 0.11143 Zhong  
[38]  0.12532 0.12497 0.12445 0.12304 0.12025 0.11472 IR12  
[39]  0.126 Exact  

  
 
 

 
Figure 5   convergence of the square plate under a uniform load analyzed by different elements 
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Figure 6   convergence of the square plate under a concentrated loading analyzed by different elements 
 
  

It is evident from Table 1 and Figs. (5) and (6) that the proposed element is capable of resulting in 
fairly accurate results. However, in order to make a more comprehensive assessment of the capabili-
ties of the element, more complex problems should also be solved. 
 
9.2 Inclined plate with fixed edges 

A plate with a 30º  inclination will be considered in this section. As illustrated in Fig. 7, this structure 
is fixed along two sides the x  axis and parallel to the x  axis and is free along the other two sides. The 
concentrated load P  is applied at the center of the plate. Boundary conditions corresponding to the 
fixed edges are as follows: 
 
 

 

 
 
Fig. 8 illustrates the different finite element meshes used for linear analysis of the inclined plate. 

The deflection of the plate’s center point is calculated by the following equation: 
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Figure 7   inclined plate with fixed supports 

 
 

 

Figure 8   Finite element mesh for the inclined plate 
 
     Center point deflections are given in Table 2. The convergence of the deflection and the error are 
shown in Fig. 9. 
 

Table 2   deflection ratio for the center point of the inclined plate with fixed supports under concentrated loading 
 

Reference Number of elements Element 200 128 72 32 8 
  0.74746 0.73441 0.70602 0.69714 Present study 

[39]  0.8166 0.8168 0.8315   Sengupta  
[37]  0.76545 0.77494 0.79095 0.81054 0.83915 Zhong  
[39]  0.759 Exact  

 
 

8 elements 32 elements 

72 elements 128 elements 
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Figure 9   convergence of the center point deflection for the inclined plate with supports under concentrated loading 

 
 It should be mentioned that having an acute angle of 30º  makes this plate one of the most com-

plicated structures in bending plate analysis. Many elements which converge to satisfactory results in 
simple problems are incapable of providing reasonable results for the present problem. However, the 
data given in Table 2 and Fig. 9 indicate that the proposed element has effectively converged to the 
correct solution. This feature demonstrates the effectiveness of the proposed formulation. 
 
9.3 Circular bending plate 

Fig. 10 illustrates the finite element mesh used for the analysis of the fixed circular plate. This circu-
lar plate has a radius of a and is subjected to a uniform load . Due to symmetry, only a quarter of 
the circle will be considered in the analysis. A linear analysis will be carried out for this structure. 
The center point deflection of the structure is calculated by the following equation [33]: 
 

 

 
     Fig. 10 illustrates the finite element meshes used in the analysis of this structure. The obtained 
center point deflections are given in Table 3, while the convergence graphs of the deflection are 
shown in Fig. 11. 
 

 
9 elements                     36 elements          64 elements 

  
Figure 10   Finite element meshes used for the analysis of the circular bending plate 
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Table 3   deflection ratio for the center point of the circular bending plate 

 

Reference Number of elements Element 64 36 12 9 3 
 0.99997 0.99095 0.97792 0.94234  Present study 

[40] 1.0091 .1.0111 1.0127 1.04418 1.07555 Roufaeil  
[37]   1.03846 1.0546 1.07765  Zhong  
[41]  1.01561 1.03566 1.0557 1.11985 1.18394 AFSIQ  
[42]  1.00228 Exact  

 
 

 
Figure 11   convergence of the center point deflection for circular bending plate 

 
     The results given in Table 3 and Fig. 11 demonstrate the ability of the proposed element in solving 
this complicated benchmark problem. Fig. 11 illustrates the convergence of the center point deflec-
tion. It should be added that in comparison to elements suggested by other researchers, the proposed 
element leads to the least error. To this point, it can be deduced that the proposed element is quite 
effective in analyzing single-layer bending plates. 
9.4 4-layer composite cross plate 

In the proceeding text, a number of composite plates will be analyzed. All of these composite plates 

will have the following properties: ,  and . Poisson’s ratio 

is taken as  and the elastic modulus is set to . An  
finite element mesh is used to analyze all plates. The deflection and the stresses are calculated using 
the following values. The intensity of the uniform load or the sinusoidal load is 0P  and the plate 
length dimension is set to a . 
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In a square plate, the location of the critical values displacement as well as the normal and shear 

stresses are as follows: 
 
1. Coordinates of the critical transverse displacement :  

2. Coordinates of the critical in-plane normal stress :  

3. Coordinates of the critical in-plane normal stress : ( , , top/bottom surface) 

4. Coordinates of the critical in-plane shear stress :  

5. Coordinates of the critical transverse shear stress :  

6. Coordinates of the critical transverse shear stress :  
    

The first numerical example constitutes a 4-layer laminated cross-ply composite plate with simple 
supported. The arrangement of the layers is  with all layers having a equally 

thickness of . In addition, a distributed sinusoidal load is applied normal to the 
surface of the plate. The plate will we analyzed for two cases where  and . 
The results of the analyses are given in Tables 4 and 5. The results depict that the central displace-
ment show rather quick convergence. In other words, finer meshes are needed for the convergence 
of stress values. 

 
Table 4   convergence of deflections and stresses in a simple supports 4-layer cross-ply  

          Mesh Source 
0.0982 0.1983 0.02672 0.3182 0.5736 0.7295   

Present study 
0.1029 0.2659 0.02755 0.3296 0.5698 0.7277  
0.1198 0.3005 0.02726 0.3271 0.5632 0.7265   
0.1247 0.3180 0.02693 0.3258 0.5593 0.7252  
0.1960 0.3010 0.02750 0.4010 0.5590 0.7370  3D elasticity [42] 

 
Table 5   convergence of deflections and stresses in a simple supports 4-layer cross-ply =( / 100)a t  

 
         Mesh Source 

0.0918 0.1868 0.02015 0.2429 0.5438 0.4379    
 

Present study 
 

0.1294 0.2031 0.02029 0.2472 0.5462 0.4364   
0.1362 0.2217 0.02018 0.2453 0.5426 0.4351   
0.1418 0.2294 0.02005 0.2435 0.5355 0.4346   
0.1390 0.3390 0.02140 0.2710 0.5390 0.4347  3D elasticity [42] 

 
The results of analyzing multi-layered composite plates with different length to height ratios, 

demonstrates that the proposed element effectively converges to the 3-dimentional elastic response 
of the structure [42]. 

 
 
9.5 Comparison between the proposed element and other elements 
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The effectiveness of the proposed formulation is investigated in this section. For this purpose, a 4-
layer composite plate with simple supports is considered. The layers of this plate have equal thick-
nesses ( )= =1 4 , 1,...,4t it i  and are arranged as . The plate is analyzed under 

the application of a distributed sinusoidal load and comparison will be made between the results 
obtained by the proposed formulation and other methods. In addition, the acquired data are also 
compared against the outcome of a 3-dimensional elastic analysis. Numerical results are presented in 
Table 6. 
 
 

Table 6   Deflection and stresses attained of a simply supported 4-layer cross-ply 
 

      /a t Source 

0.1960 0.3010 0.02750 0.4010 0.559
0 0.7370 

10 

3D elasticity [42] 

0.1418 0.3180 0.02693 0.3258 0.559
3 0.7252 Present study 

0.1531 0.3040 0.02723 0.3888 0.559
1 0.7263 Higher-order theory [43] 

0.1292 0.1667 0.02410 0.3615 0.498
9 0.6628 First-order theory [43] 

0.1390 0.3390 0.02140 0.2710 0.539
0 0.4347 

100 

3D elasticity [42] 

0.1418 0.2294 0.02005 0.2435 0.535
5 0.4346 Present study 

0.1317 0.2897 0.02130 0.2708 0.538
7 0.4347 Higher-order theory [43] 

0.1009 0.1780 0.02130 0.2705 0.538
2 0.4337 First-order theory [43] 

0.2920 0.2190 0.04670 0.6630 0.720
0 1.9368 

4 

3D elasticity [42] 

0.2152 0.1926 0.0423 0.6005 0.628
6 1.8729 Present study 

0.2389 0.2064 0.0440 0.6322 0.665
1 1.8937 Higher-order theory [43] 

0.1963 0.1398 0.03080 0.5765 0.405
9 1.7100 First-order theory [43] 

 
It is evident from the data given in Table 6 that for thin plates , the proposed method 

yields results closer to the 3-dimensional elastic solution. Nevertheless, the values obtained for thick 
plates  are also considerably accurate. 
 
9.6 8-layer square plate 

A simple supported 8-layer unidirectional square laminate with length  and 
thickness  subjected a uniformly load is analyze. Structural properties are: 

, ,  and . The struc-
ture is analyzed using the proposed element, the CPT element [44] which is suitable for thin plates 
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and the 3-node multi-layer triangular element by Argyris [45]. Fig. 12 shows the variation of center 
point deflection against load intensity for all of the analyses as well as experimental results [44]. 
 

 
Figure 12   Center point deflection of the simply supported 8-layer unidirectional square laminate 

 
It is observed from Fig. 12 that the proposed element effectively traces the experimental curve. 

This response indicates that the suggested formulation is quite capable of analyzing multi-layer 
plates. 
 
9.7 Smart composite cantilever plate 

The 4-layer cantilevered laminated composite plate in Fig. 13 is analyzed in this section. The layers of 
this  plate are made of  graphite epoxy and each has a thickness of 

. The arrangement of these layers is as . The top and bottom of this struc-
ture are each covered with a  thick piezoelectric layer . The effect of the cohe-
sive layers will be neglected in the analysis. 
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Figure 13   4-layer composite cantilever plate with PZT sensors and actuators 

 
The structure is analyzed by using different elements and meshes and the displacement of the free 

edge is evaluated. The error of the displacements obtained in these analyses is presented in Fig 14. 
 

 
Figure 14   Displacement error (percent) in the free edge of the 4-layer smart cantilever plate 

 
 The effectiveness of the purposed element in analyzing the 4-layer smart plate is evident from Fig. 
14. This figure also indicates the advantage of the proposed element over the , , 

 and  elements. 
 
10. CONCLUSION 
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A 12-node triangular element was formulated for the analysis of multi-layered bending plates. The 
formulation was based on the Mindlin’s first-order shear deformation theory, and an elastic piezoe-
lectric behavior is considered for the material. The developed relations are capable of effectively 
analyzing both thin and thick plates. Several benchmark problems were analyzed using the proposed 
element. It was demonstrated via numerical analysis that this new element can be utilized for the 
analysis of single- and multi-layered plates with and without a piezoelectric layer. Moreover, the 
numerical results indicate that the suggested element is capable of converging to the exact solution. 
In comparison to the results given by other researchers, it was deduced that the authors' formulation 
leads to faster convergence. 
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