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Abstract 
The analytical solutions for the natural frequencies and mode 
shapes of the  rectangular plate on foundation with four edges free 
is presented by using the finite cosine integral transform method. 
In the analysis procedure, the classical Kirchhoff  rectangular plate 
is considered and the foundation is modelled as the Winkler elastic 
foundation. Because only are the basic dynamic elasticity equa-
tions of the thin plate on elastic foundation adopted, it is not need 
prior to select the deformation function arbitrarily. Therefore, the 
solution developed by present paper is reasonable and theoretical. 
In order to illuminate the correction of formulations, the numeri-
cal results are also presented to comparing with that of the other 
references. 
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1 INTRODUCTION 

The vibrations of rectangular thin plates with various boundary conditions are of much im-
portance in all the fields of civil, mechanical, and aerospace engineering. To conduct an accurate 
free vibration analysis of rectangular plates is necessary for controlling the resonance thus ensur-
ing the safety of plates. Actually, the vibrations of rectangular thin plates have been extensively 
investigated for many years. The related publications can be counted in thousands, like in Leissa 
(1993). A literature survey reveals that most previous investigations have dealt with a scheme or 
technique that is only suitable for a particular type of boundary condition. Due to the mathemat-
ical complexity of the situation, it is well known that the analytical solutions are generally avail-
able only for plates that are simply supported along at least one pair of opposite edges. Leissa 
gave a survey of research on rectangular plate problems up to 1970, like in Warburton (1954) and 
Leissa (1973). The further overview up to the beginning of this century is presented in Warburton 
(1979) and Warburton & Edney (1984). One of the most commonly used methods in free vibra-
tion analysis of plates is the Rayleigh–Ritz energy technique, where appropriate functions associ-
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ated with various boundary conditions are chosen to describe the lateral deflection of the de-
formed plates. The chosen functions normally do not satisfy both the governing differential equa-
tions and boundary conditions. Gorman used the superposition technique to solve approximately 
free vibration problems of plates for various geometries and boundary conditions, like in Gorman 
(1980) and Gorman (1982). A set of static beam functions was used to determine the natural 
frequencies of elastically restrained plates, like in Bapat et al (1988) and Zhou (1996). Hurlebaus 
et al. (2001) have extended the Fourier series solution to the problems with more complicated 
boundary conditions than the simply supported one. The other numerical approaches such as the 
finite element method as in Yang (1972) and boundary element method as in Zafrang (1995) were 
usually adopted by many researchers to analyze the plate on elastic foundation. 

  Integral transform is one of the effective approaches to obtain the analytical solutions of 
some partial differential equations used in elasticity, like in Sneddon (1972). This method has 
often been utilized to analyze some structural engineering problems, like in Sneddon (1981). How-
ever, based on the author’s knowledge, there are no reports on using the finite integral transform 
to analyze the rectangular plate on elastic foundation, like in Zhong et al (2009), Li et al (2009), 
Li et al (2011) and Li et al (2013). 

  In this paper, the double finite cosine integral transform method is adopted to acquire the 
theoretical solutions of eigenfrequncies and vibration modes for the rectangular thin plate on 
foundation with four edges free. In the analysis the elastic foundation was modeled by the Win-
kler elastic foundation. Because it only uses the basic dynamic elasticity equations of the thin 
plate on elastic foundation and there is no need to select the deformation function arbitrarily, the 
developed solution is reasonable. In order to proof the correction of formulations, the numerical 
results are presented to compare with those from other references. 

 
2 VIBRATION OF PLATE ON FOUNDATION AND INTEGRAL TRANSFORM 

According to the theory the classical Kirchhoff plate, the governing equation of motion for an 
unloaded plate on the foundation is 
 

  

∂4 w
∂x4 + 2 ∂4 w

∂x2 ∂y2 +
∂4 w
∂y4 + k

D
w(x, y,t)+ ρh

D
∂2 w
∂t2 = 0  (1) 

 
where   D = Eh3 / 12(1− v2 )  is the flexural rigidity of plate. In which  E  is Young’s moduli. Also 
is Poisson’s ratios. h  and ρ  are the thickness and the density of plate. w(x, y,t)  is the out-of-
plane displacement and k is the reaction coefficient of foundation. Assuming a harmonic vibration, 
one way write  
 

w(x, y,t) =W (x, y)Sinωt  (2) 
  
where W (x, y)  is the shape function describing the modes of the vibration and ω  is the natural 
circular frequency of the plate. Substitution of Eg.(2) into Eg.(1) gives  
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∂4W
∂x4 + 2 ∂4W

∂x2 ∂y2 +
∂4W
∂y4 + λW = 0  (3) 

 

where 
  
λ = k − ρhω 2

D
 

In order to solve the partial differential equation (3), the double finite cosine integral trans-
form approach[11] is exploited.  

If f (x, y)  is a function of the two independent variables x  and y , defined on the square 
0 < x < a , 0 < y < b , the definition of double finite cosine integral transform is presented by the 
equation 

 

  
f (m,n) = f (x, y)cos

0

b

∫
0

a

∫ αmxcosβn ydxdy  (4) 

 
The inversion formula can be derived as 
 

  
f (x, y) = 1

ab
f (0,0)+ 2

ab
f (m,0)cosαmx + 2

ab
f (0,n)cosβn y

n=1

∞

∑
m=1

∞

∑  

+
  

4
ab

f (m,n)cosαmxcosβn y
n=1

∞

∑
m=1

∞

∑  
(5) 

 
where αm = mπ / a  and βn = nπ /b . a  and b  are the length and the width of the plate respec-
tively.  

The double integral transform of the first partial derivative term appeared in Eg.(3) may read-
ily be written as 

 

  

∂4W
∂x4 cos

0

b

∫
0

a

∫ αmxcosβn ydxdy   =αm
4W (m,n)+  

  
(−1)m ∂3W

∂x3
x=a

− ∂3W
∂x3

x=0

−αm
2 (−1)m ∂W

∂x x=a

− ∂W
∂x x=0

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
cosβn y dy

0

b

∫  
(6) 

 
and the third term can be written as  
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∂4W
∂y4 cos

0

b

∫
0

a

∫ αmxcosβn ydxdy = βn
4W (m,n)+  

  
(−1)n ∂3W

∂y3
y=b

− ∂3W
∂y3

y=0

− βn
2 (−1)n ∂W

∂y y=b

− ∂W
∂y y=0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
cosαmx dx

0

a

∫  
(7) 

 
The second term is split into two parts. The first part considers the partial derivative with re-

spect to y first 
 

  

∂4W
∂x2 ∂y2 cos

0

b

∫
0

a

∫ αmxcosβn ydxdy = (−1)n ∂W
∂y y=b

− ∂W
∂y y=0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
cosαm

0

a

∫ xdx +  

  
(−1)m ∂3W

∂x∂y2
x=a

− ∂3W
∂x∂y2

x=0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
cosβn y dy +αm

2βn
2W (m,n)

0

b

∫  
(8) 

 
while the second part considers the partial derivative with respect to x first 
 

  

∂4W
∂x2 ∂y2 cos

0

b

∫
0

a

∫ αmxcosβn ydxdy = (−1)m ∂W
∂x x=a

− ∂W
∂y x=0

⎡

⎣
⎢

⎤

⎦
⎥cosβn

0

b

∫ ydy +  

  
(−1)n ∂3W

∂x2 ∂y
y=b

− ∂3W
∂x2 ∂y

y=0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
cosαmx dx

0

a

∫ +αm
2βn

2W (m,n)  
(9) 

 
Substitution of equations (6-9) into equation (3) leads to 
 

  [(αm
4 + 2αm

2βn
2 + βn

4 )+ λ]W (m,n) =  

  

−(αm
2 +νβn

2 ) (−1)n ∂
∂y

∂2W
∂x2 + ∂2W

∂y2

⎛
⎝⎜

⎞
⎠⎟

y=b

− ∂
∂y

∂2W
∂x2 + ∂2W

∂y2

⎛
⎝⎜

⎞
⎠⎟

y=0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
cosαmx dx

0

a

∫ \ 

  
+(αm

2 +νβn
2 ) (−1)n ∂W

∂y y=b

− ∂W
∂y y=0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
cosαm

0

a

∫ xdx  

  
−(βn

2 +ναm
2 ) (−1)m ∂

∂x
∂2W
∂x2 + ∂2W

∂y2

⎛
⎝⎜

⎞
⎠⎟

x=a

− ∂
∂x

∂2W
∂x2 + ∂2W

∂y2

⎛
⎝⎜

⎞
⎠⎟

x=0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
cosβn

0

b

∫ ydy  

  
+(βn

2 +ναm
2 ) (−1)m ∂W

∂x x=a

− ∂W
∂x x=0

⎡

⎣
⎢

⎤

⎦
⎥cosβn

0

b

∫ ydy  

(10) 
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The boundary conditions of a free plate are[15] 

 

Qx = −D ∂
∂x

∂2W
∂x2

+ ∂2W
∂y2

⎛
⎝⎜

⎞
⎠⎟
= 0    at x = 0  and x = a  (11) 

 

Mx = −D(∂
2W
∂x2

+ v ∂
2W
∂y2

) = 0     at x = 0  and x = a  (12) 

 

Mxy = −D(1− v) ∂
2W

∂x∂y
= 0        at x = 0  and x = a  (13) 

 

Qy = −D ∂
∂y

∂2W
∂x2

+ ∂2W
∂y2

⎛
⎝⎜

⎞
⎠⎟
= 0     at y = 0  and y = b  (14) 

 

My = −D(∂
2W
∂y2

+ v ∂
2W
∂x2

) = 0      at y = 0  and y = b  (15) 

 

Mxy = −D(1− v) ∂
2W

∂x∂y
= 0         at y = 0  and y = b  (16) 

 
Of cause, there is another simplified expression of the boundary conditions for a free plate. 

Substituting the boundary conditions that are described by equation (11) and equation(14) into 
equation(10), one can obtain  

 

  [(αm
4 + 2αm

2βn
2 + βn

4 )+ λ]W (m,n) =  

  
+(αm

2 +νβn
2 ) (−1)n ∂W

∂y y=b

− ∂W
∂y y=0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

a

∫ cosαmxdx  

  
+(βn

2 +ναm
2 ) (−1)m ∂W

∂x x=a

− ∂W
∂x x=0

⎡

⎣
⎢

⎤

⎦
⎥

0

b

∫ cosβn ydy  

(17) 

 
Because the right-hand side of the equation（17）is definite integral, it is the constant. Let  
 

  
Im = (−1)n ∂W

∂y y=b

− ∂W
∂y y=0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

a

∫ ⋅cosαmxdx ; 
  
Jn = (−1)m ∂W

∂x x=a

− ∂W
∂x x=0

⎡

⎣
⎢

⎤

⎦
⎥

0

b

∫ ⋅cosβn ydy   

 
Therefore, equation (17) can be written as 
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W (m,n) =

Im(αm
2 +νβn

2 )+ Jn(βn
2 +ναm

2 )
(αm

4 + 2αm
2βn

2 + βn
4 )+ λ

 (18) 

 
Substitution of equation (18) into equation (5) gives 
 

  
W (x, y) = (Cm0

m=1

∞

∑ Im + Dm0J0 )cosαmx + (C0n
n=1

∞

∑ I0 + D0nJn )cosβn y  

  
+2 CmnIm + DmnJn )

n=1

∞

∑
m=1

∞

∑ cosαmxcosβn y  
(19) 

 

where 
  
Cmn =

Im(αm
2 +νβn

2 )
(αm

4 + 2αm
2βn

2 + βn
4 )+ λ

；

  
Dmn =

Jn(βn
2 +ναm

2 )
(αm

4 + 2αm
2βn

2 + βn
4 )+ λ

 

It is clear that the equation（19）can meet the boundary conditions described by equations 
(11) ,(13) ,(14) and (16). From the remaining boundary conditions presented by equations (12) 
and (15), one can obtain 

 

  

αm
2 (Cm0Im + Dm0J0 )

m=1

∞

∑ + v (βn
2C0n I0 + DonJn )cosβn y

n=1

∞

∑

+2 (αm
2 + vβn

2 )(
n=1

∞

∑
m=1

∞

∑ CmnIm + DmnJn )cosβn y = 0
 (20) 

 

  

(−1)mαm
2 (Cm0Im + Dm0J0 )

m=1

∞

∑ + v βn
2(C0n I0 + D0nJn )cosβn y

n=1

∞

∑

+2 (−1)m(αm
2 + vβn

2 )(
n=1

∞

∑
m=1

∞

∑ CmnIm + DmnJn )cosβn y = 0
 (21) 

 

  

βn
2(C0n I0 + D0nJn )

n=1

∞

∑ + v αm
2 (Cm0Im + Dm0J0 )cosαmx

m=1

∞

∑

+2 (βn
2 + vαm

2 )(
n=1

∞

∑
m=1

∞

∑ CmnIm + DmnJn )cosαmx = 0
 (22) 

 

  

(−1)nβn
2(C0n I0 + D0nJn )

n=1

∞

∑ + v αm
2 (Cm0Im + Dm0J0 )cosαmx

m=1

∞

∑

+2 (−1)n(βn
2 + vαm

2 )(
n=1

∞

∑
m=1

∞

∑ CmnIm + DmnJn )cosαmx = 0
 (23) 
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Equations（20）and equation（21）make  
 

  
αm

2 (Cm0Im + Dm0J0 )
m=1,3,5

∞

∑ + 2 (αm
2 + vβn

2 )(CmnIm + DmnJn )
m=1,3,5

∞

∑⎡
⎣
⎢

⎤

⎦
⎥

n=1

∞

∑ ⋅cosβn y = 0  (24) 

 
Similarly, equations (23) and (24) make 
 

  
βn

2(C0n I0 + D0nJn )
n=1,3,5

∞

∑ + 2 (βn
2 + vαm

2 )(CmnIm + DmnJn )
n=1,3,5

∞

∑⎡
⎣
⎢

⎤

⎦
⎥

m=1

∞

∑ ⋅cosαmx = 0  (25) 

 
Each coefficient of the  cosαmx  and  cosβn y  has to be vanish. What follows is a system of 

homogeneous algebraic equations 
 

  

αm
2 (Cm0Im + Dm0J0 )

m=1,3,5

∞

∑ = 0

(αm
2 + vβn

2 )(CmnIm + DmnJn )
m=1,3,5

∞

∑ = 0

βn
2(C0n I0 + D0nJn )

n=1,3,5

∞

∑ = 0

(βn
2 + vαm

2 )(CmnIm + DmnJn )
n=1,3,5

∞

∑ = 0

 (26) 

 
Eqs. (26) forms the system of four groups of an infinitely large number of linear equations in 

terms of the unknowns   Im , Jn , I0  and   J0 . Non-trivial solution of those equations requires the 
coefficient matrix to vanish to any desired degree of accuracy. Non-trivial solution of Eqs. (26) 
requires the coefficient matrix to vanish. From this determinant the eigenfrequencies of the plate 
are calculated. The associated vibration modes are given by equation（19）after inserting the 
eigenfrequencies. The infinite series that occur in the corresponding equations (see Eqs. (19) and 
(26)) have been evaluated without any truncation using MATLAB[15]; this has been done by spec-
ifying the upper limit of the summation index as infinity. The evaluation is exact since corre-
sponding closed-form equivalents are automatically substituted in MATLAB.  

 
3 NUMERICAL RESULTS 

The first page includes the title of the paper, the names of the authors and their institutions, and 
an abstract. The following vertical spacing must be used: The previously derived expressions are 
applied to a rectangular thin plate on the foundation with four edges free. The geometrical and 
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material properties are given as a = b = 4.0 m,  ν = 0.15 ,   E = 3.0×104 MPa, h = 0.2 m, 
k = 5.5 ×107N/m3  and ρ = 1750  kg/m3 

In order to make the comparison with other method, the eigenfrequencies and the vibration 
modes are computed by the superposition method[7] and by the present approach. The calculation 
results are shown in Table 1. It is obvious that the results by two different methods are in excel-
lent agreements. This also validates the present approach is correct.  Fig. 1 - 4 illuminates the 
corresponding vibration modes respectively. 

 
Table 1   the nature frequencies of a plate 

 

Frequencies (Hz} 1 2 3 4 5 
Superposition[7] 5.855 6.345 6.548 6.598 6.614 
Present paper 5.855 6.344 6.549 6.599 6.615 

 
 

Figure 1   the 11 order vibration mode 
 

 
 

Figure 2   the 12 order vibration mode 
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Figure 3   the 22 order vibration mode 
 

 
 

Figure 4   the 44 order vibration mode 
 

4 CONCLUSIONS 

The present paper shows that the eigenfrequencies and the vibration modes of a classical Kirch-
hoff  rectangular plate on foundation with four edges free can be calculated by the integral trans-
form method. The approach is based on the finite cosine integral transform for the classical thin 
plate equation. One of the advantages of the method is that the results converge quickly and can 
be calculated with desired accuracy. The other one is that after finishing the analytical derivation 
for the frequency determinant the calculation of eigenfrequencies and the vibration modes for 
given material data and geometry becomes straightforward. The present method is convenient for 
sensitivity studies. As the analytical solutions for the computation of eigenfrequencies and the 
vibration modes of a thin plate on the foundation with four edges free are of paramount im-
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portance for many applications such as in the design of building foundations and the rigid pave-
ments of highway and airport, the present approach of analysis provides an efficient procedure for 
accurate results which should be of academic and practical importance.  
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