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Abstract 

Numerical form-finding is an effective method for determining the equilibrium configurations of tensegrity 
structures. However, the connectivity matrix is required to be input as initial data in most form-finding 
methods, and it is time-consuming and inconvenient for the designer in processing a complex structure with 
a large number of components. To address this issue, a novel automatic method of generating a connectivity 
matrix is proposed for three dimensional N-4 type tensegrity structures in this paper. The novelty of our 
algorithm is that the number of nodes is the only required parameter for the proposed method. Numerical 
examples are employed to validate our method. The results show that the proposed method is competent 
inform-finding for three-dimensional N-4 type tensegrity structures in terms of accuracy, efficiency and 
convergence. 
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1 INTRODUCTION 

Tensegrity structure, first proposed by Fuller (1962), is a spatially stable structure consisting of discontinuous 
compression struts inside a set of continuous tension cables. Due to the advantages of innovative forms, light-weight 
and deployability, tensegrity structures have been widely investigated and used in architecture and civil engineering 
(Gilewskiet al., 2015, Jáuregui, 2020), aerospace (Tibert and Pellegrino, 2002, Krishnan, S., and Li, B., 2018, Chen, M., 
Goyal, R., Majji, M., and Skelton, R. E., 2020), robotics (Liu, Y. and Bi, Q., et al., 2022, Shah, D. S. and Booth, J. W., et al., 
2021), biology (Lu, B. and Vecchioni, S., et al., 2021, Bansod, Y. D. and Matsumoto, T., et al., 2018) over the past few 
decades. Form-finding, namely the determination of their geometrical configurations at the equilibrium state, is a key 
step in the design of tensegrity structures. Recently, different analytical and numerical methods have been proposed for 
the form-finding of tensegrity structures (Masic et al.,2005, Koohestani, 2012, Ali et al., 2011, Cai and Feng, 2015), Tibert 
and Pellegrino classified these methods into two categories: kinematical and statical methods, and discussed their 
advantages and limitations (Tibert and Pellegrino, 2003). The force density method (FDM) was first proposed for cable 
nets by Linkwitz and Schek (Linkwitz, 1999, Schek,1974) and first applied to tensegrity structures by Vassart and Motro 
(Vassart and Motro, 1999). FDM can be used to transform nonlinear nodal equilibrium equations into linear equations, 
and it has been widely adopted in the field of numerical form-finding. Based on force density formulation, new numerical 
methods were developed by employing iterative eigenvalue and singular value decompositions of the force density and 
equilibrium matrices (Tran and Lee, 2010, Koohestani and Guest, 2013, Zhang et al.,2006). However, the nodal 
connectivity, the initial force densities and the types of members (i.e., either strut or cable) are required to be input as 
initial data in most form-finding methods. Estrada et al., Hoang Chi Tran, Jaehong Lee proposed numerical form-finding 
procedures, in which the initial force density was assigned automatically (Estrada et al., 2006, Tran and Lee, 2010), 
Seunghye Lee and Jaehong Lee used thediscontinuity condition of struts to determine the types of members according 
to Pugh’s definition (Seunghye and Jaehong, 2014). The nodal connectivity is the last information required in the 
procedure of automatic form-finding of tensegrity structures. 

A connectivity matrix can be used to describe the nodal connectivity. However, the input of a connectivity matrix is 
time-consuming and trouble-some for the designer, especially the processing the structures with a large number of 
components. To our knowledge, this problem has been rarely studied. If automatic input of a connectivity matrix can be 
realized, it brings great convenience to the designer and has a great significance for the design of the tensegrity structure. 
To this end, an automatic input method of connectivity matrix is proposed in this paper. Firstly, a typical class of spatial 
structures is selected, and then a novel method is put forward to automatically generate all the connectivity matrices 
with n vertices of these structures. Secondly, isomorphic matrices are deleted to reduce computation. Thirdly, these 
connectivity matrices are input into our form-finding procedure to determine whether these connectivity matrices can 
be used for tensegrity structures, and then the form-finding results of feasible connectivity matrices are output 
synchronously. 

This paper is organized as follows. Force density formulation and requirement on rank deficiency conditions of force 
density and equilibrium matrices are reviewed in Sections 2 and 3. The whole form-finding procedures, including the 
generation methods of connectivity matrices, the determination of members and inputting initial force densities, are 
introduced in Sections 4. Numerical examples of the three-dimensional (3D) structures are presented in Sections 5. 
Finally, conclusions are summarized in Section 6. 

2 EQUILIBRIUM EQUATIONS 

For a typical node 𝑖𝑖 in a 3D tensegrity structure, the equilibrium equationis given by 

⎩
⎪
⎨

⎪
⎧∑

𝑡𝑡𝑖𝑖𝑖𝑖
𝑙𝑙𝑖𝑖𝑖𝑖
�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑡𝑡𝑖𝑖𝑖𝑖
𝑙𝑙𝑖𝑖𝑖𝑖
�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗� = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑡𝑡𝑖𝑖𝑖𝑖
𝑙𝑙𝑖𝑖𝑖𝑖
�𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗� = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

 (1) 

where 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 , 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 , 𝑧𝑧𝑗𝑗 are the nodal coordinates of node 𝑖𝑖 and node 𝑗𝑗 in 𝑥𝑥,𝑦𝑦, 𝑧𝑧 direction in the Cartesian coordinate 
system (the whole analysis in this paper is performed in the Cartesian coordinate system); 𝑡𝑡𝑖𝑖𝑗𝑗 is the axial force, 𝑙𝑙𝑖𝑖𝑗𝑗 is the 
length of the member 𝑖𝑖𝑗𝑗 that connects nodes 𝑖𝑖 and 𝑗𝑗; 𝑃𝑃ix,𝑃𝑃iy, 𝑃𝑃izare the external loads applied at the node 𝑖𝑖 in each 
direction. By introducing force the density 𝑞𝑞𝑘𝑘 and 𝑞𝑞𝑘𝑘 = 𝑡𝑡𝑖𝑖𝑗𝑗 𝑙𝑙𝑖𝑖𝑗𝑗⁄ , Eq.(1) can be linearized as: 



Automatic Form-finding of N-4 Type Tensegrity Structures Xiaoming Yu et al. 

Latin American Journal of Solids and Structures, 2022, 19(1), e419 3/12 

�
∑ 𝑞𝑞𝑘𝑘�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑞𝑞𝑘𝑘�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗� = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑞𝑞𝑘𝑘�𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗� = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

 (2) 

For a 3D tensegrity structure with 𝑏𝑏 members, n  free nodes and fn  fixed nodes, the equilibrium equations in each 

direction can be written as: 

�
𝐶𝐶sT𝑄𝑄𝐶𝐶𝑠𝑠𝑥𝑥 = 𝑝𝑝𝑖𝑖
𝐶𝐶sT𝑄𝑄𝐶𝐶𝑠𝑠𝑦𝑦 = 𝑝𝑝𝑖𝑖
𝐶𝐶sT𝑄𝑄𝐶𝐶𝑠𝑠𝑧𝑧 = 𝑝𝑝𝑖𝑖

 (3) 

Q is the diagonal version of the force density vector 𝑞𝑞 = (𝑞𝑞1, 𝑞𝑞1,⋯ , 𝑞𝑞𝑚𝑚) given as: 

𝑄𝑄 = diag(𝑞𝑞) (4) 

The connectivity matrix 𝐶𝐶s describes the connectivity of the structure, if member 𝑘𝑘 connects node 𝑖𝑖 and 𝑗𝑗 (𝑖𝑖 < 𝑗𝑗), then 
the 𝑖𝑖th and 𝑗𝑗th component of 𝑘𝑘th row in 𝐶𝐶s is 1 and −1 respectively, the connectivity matrix 𝐶𝐶s is a 𝑏𝑏 × (𝑛𝑛 + 𝑛𝑛𝑓𝑓) matrix 
defined as 

𝐶𝐶s(𝑘𝑘,𝑝𝑝) �
 1 for 𝑝𝑝 = 𝑖𝑖
−1 for 𝑝𝑝 = 𝑗𝑗
 0 otherwise

 (5) 

where 𝐶𝐶s can be divided into two parts 

𝐶𝐶s = [𝐶𝐶𝐶𝐶f] 

𝐶𝐶 and 𝐶𝐶f describe the connectivity of members to free and fixed nodes respectively. Hence, Eq.(3) is rewritten as 

�
 𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶𝑥𝑥 + 𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶f𝑥𝑥f = 𝑝𝑝𝑖𝑖
 𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶𝑦𝑦 + 𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶f𝑦𝑦f = 𝑝𝑝𝑖𝑖
 𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶𝑧𝑧 + 𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶f𝑧𝑧f = 𝑝𝑝𝑖𝑖

  (6) 

Tensegrity structures are in self-equilibrium. Therefore, external loads, fixing nodes and selfweight are not necessary to 
be considered in form-finding, hence, Eq.(6) is expressed as: 

𝐷𝐷[𝑥𝑥𝑦𝑦𝑧𝑧] = [0 0 0]  (7) 

𝐷𝐷 is the force density matrix and defined by 

𝐷𝐷 = 𝐶𝐶𝑇𝑇𝑄𝑄𝐶𝐶 = 𝐶𝐶𝑇𝑇diag(𝑞𝑞)𝐶𝐶  (8) 

If Eq.(7) is reorganized, a new expression is obtained as 

𝐴𝐴𝑞𝑞 = 0  (9) 

where 𝐴𝐴 is known as equilibrium matrix, and defined by 

𝐴𝐴 = �
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝐶𝐶𝑦𝑦)
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝐶𝐶𝑦𝑦)
𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝐶𝐶𝑧𝑧)

� 
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Eq.(9) is also a liner homogeneous equation. Since the variables are different in form, Eq.(9) and Eq.(7) are different. 

3 REQUIREMENT ON RANK DEFICIENCY CONDITIONS OF FORCE DENSITY AND EQUILIBRIUM MATRICES 

To obtain a set of nodal coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and force density vector 𝑞𝑞, two necessary but not sufficient rank 
deficiency conditions have to be satisfied in a d-dimensional structure (Motro, 2003). The first one is related to Eq.(7) 
known as the non-degeneracy condition: for a d-dimensional tensegrity structure, the rank deficiency of 𝐷𝐷 should be 
equal to or larger than 𝑑𝑑 + 1. In other words,the rank of 𝐷𝐷 should be defined as: 

rank(𝐷𝐷) < 𝑛𝑛 − 𝑑𝑑  (11) 

In this condition, at least 𝑑𝑑 useful particular solutions are guaranteed fornodal coordinates. 
The second one is related to Eq.(9). The rank deficiency of 𝐴𝐴 should be equal to or larger than 1, namely, the rank 

of 𝐴𝐴 should be defined as: 

r𝐴𝐴 = rank(𝐴𝐴) < 𝑏𝑏  (12) 

In this condition, at least a non-trivial solution is guaranteed for force density vector 𝑞𝑞 or one state of self-stress. 

4 FORM-FINDING PROCEDURE 

In this section, a form-finding procedure is presented. There is no assumption required in this procedure, not even 
about the assumption on topology and type of each member. Instead, only the number of nodes of a 3D N-4structure is 
needed in our procedure, then solutions can be automatically searched. The form-finding procedure is processed in four 
stages as follows: 

※Stage 1: Recursively generate incidence matrices and delete isomorphic matrices, as described in Section 4.1. 
※Stage 2: Assign initial force density coefficients by searching for strut candidates and specify member types, as 

discussed in Section4.2. 
※Stage 3: Find out feasible sets of nodal coordinates and force density coefficients by performing eigenvalue 

decomposition of force density matrix and singular value decomposition of the equilibrium matrix, as discussed in Sec-tion 4.3. 
※stage 4: List all configurations of form-finding for selecting to designers. 

4.1 Generating N-4 tensegrity structures 

Why are N-4 tensegrity structures chosen in this paper? A tensegrity structure is a kind of truss structure, whose 
members only bear axial force (compression or traction). Each node needs to be connected with at least four truss 
members to ensure its balance in 3D tensegrity structures. N-4 graph (n-order 4-regular) is a regular graph in which there 
are n vertices and every vertex has four lines (4 degree). Therefore, the N-4 tensegrity structure has the least number of 
members in the structures containing n nodes. 

How can N-4 graph be generated? Suppose graph 𝐺𝐺 is a 4-regular graph with 𝑛𝑛 vertices, then 4-regular graph with 
𝑛𝑛 + 1 vertices can be generated by the following steps, and a simple example is shown in Fig.1 : 

(1) Select two edges (𝑣𝑣1, 𝑣𝑣2), (𝑣𝑣3, 𝑣𝑣5), with different vertices randomly in graph 𝐺𝐺 as shown in Fig.1(a). 
(2) Delete these two edges(𝑣𝑣1, 𝑣𝑣2), (𝑣𝑣3, 𝑣𝑣5), as shown in Fig.1(b). 
(3) Add a new vertex v  and create four new edges (𝑣𝑣, 𝑣𝑣1), (𝑣𝑣, 𝑣𝑣2), (𝑣𝑣, 𝑣𝑣3)  and (𝑣𝑣, 𝑣𝑣5)  by connecting the 

corresponding vertices, as shown in Fig.1(c). 
The new 4-regular graph is generated since the added edges in graph 𝐺𝐺 ensures that the degree of 𝑣𝑣 is 4. When 𝑣𝑣is 

connected with 𝑣𝑣1,𝑣𝑣2,𝑣𝑣3 and 𝑣𝑣5 the degree of other vertices is unchanged at the same time. 

 
Figure 1 5-4regular graph and the new generated 6-4regular graph. 
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According to the above method, a 6-order 4-regular graph is obtained from a 5-order 4-regular graph, as shown in 
Fig.1. However, there are many ways to select two edges with different vertices in a 5-order 4-regular graph. 

For example, we can also select (𝑣𝑣1, 𝑣𝑣2), (𝑣𝑣3, 𝑣𝑣4) or (𝑣𝑣1, 𝑣𝑣2),(𝑣𝑣4, 𝑣𝑣5) or (𝑣𝑣2, 𝑣𝑣4), (𝑣𝑣3, 𝑣𝑣5), etc..Therefore, many 6-order 
4-regular graphs can be generated from a 5-order 4-regular graph (Fig.2), some of which are isomorphic and the others 
are not. After comparison, isomorphic graphs will be deleted in our algorithm because of their identical form. In this case, 
only one 6-order 4-regular graph is left. 

 
Figure 2 Isomorphic 6-4 regular graph 

How is connectivity matrix generated? Through the above method, any 𝑛𝑛 order 4-regular graph can be generated. 
In the following case, the generation method of the corresponding connectivity matrix of 6-order 4-regular graphs from 
the known connectivity matrix of 5-order 4-regular graphs is illustrated. 

Table 1 shows the incidence matrix (which will be transformed into a connectivity matrix later) of the 5-order 4-regular graph 
in Fig.1(a). The generation steps of the incidence matrix of 6-order 4-regular graph in Fig.1(c) are as follows: 

(1)Replace the value 1 corresponding to ),( 21 vv , ),( 53 vv  in the matrix with the value 0, namely, remove two edges 
connecting two different vertices. 

(2)Add the sixth row and the sixth column vector in the matrix, whose value is set to 0, namely, add a new vertice
v to the graph. 

(3)Change the value 0 of nodes 1v , 2v , 3v , 5v  with v  to 1 in the matrix respectively, namely, connect 1v , 2v , 3v , 

5v  and v  separately (as shown in Table 2). 

Table 1 The incidence matrix of 5-4 

node 1 2 3 4 5 

1 0 1 1 1 1 
2 1 0 1 1 1 
3 1 1 0 1 1 
4 1 1 1 0 1 
5 1 1 1 1 0 

Table 2 The incidence matrix of 6-4 

node 1 2 3 4 5 6 

1 0 0 1 1 1 1 
2 0 0 1 1 1 1 
3 1 1 0 0 1 1 
4 1 1 0 0 1 1 
5 1 1 1 1 0 0 
6 1 1 1 1 0 0 
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In this way, the incidence matrix of the 6-order 4-regular graph can be generated from that of the 5-order 4-regular 
graph, as shown in Table 2. The incidence matrix will be transformed into a connectivity matrix that is more appropriate 
for our procedure. There are many ways to accomplish transformation. In our program, a zero connectivity matrix 𝐶𝐶 with 
𝑏𝑏 rows and 𝑛𝑛 columns is first generated. Then nonzero values will be searched by row in the upper triangular matrix (or 
lower triangular matrix) of incidence matrix 𝑀𝑀. If 𝑀𝑀(𝑖𝑖,𝑗𝑗) is the 𝑘𝑘th nonzero value in matrix 𝑀𝑀, 𝐶𝐶(𝑘𝑘,𝑖𝑖) will be assigned 1 
and𝐶𝐶(𝑘𝑘,𝑗𝑗)  will be assigned -1 in the zero connectivity matrix 𝐶𝐶 . When the search and assignment are completed, a 
incidence matrix will be transformed into a connectivity matrix. As mentioned earlier, multiple 6-order 4-regular graphs 
can be generated corresponding to multiple connectivity matrices, and isomorphic graphs are removed through the 
comparison of connectivity matrices. 

Through the above process, inputting the connectivity matrix automatically is realized in our algorithm. Whether 
these automatically generated connectivity matrices can be used for tensegrity structures mainly depends on the 
equilibrium and stability conditions. 

4.2. The types of members and the initial force densities 

After generating the connectivity matrices, the types of members and the initial force densities should be specified. 
In our proposed algorithm, 1 and −1 are assigned as the initial force densities of the cables and struts. 

The discontinuity condition of struts can help us specify the types of members automatically. Seunghye Lee and 
Jaehong Lee proposed a method (Seunghye and Jaehong 2014) to determine appropriate candidates for strut members 
by the discontinuity condition of struts according to Pugh’s definition. Pugh gave the definition as: “A tensegrity system 
is established when a set of discontinuous compression components interacts with a set of continuous tensile 
components to define a stable volume in space. (Pugh, 1976)” 

According to this definition, if two nodes in the structure are connected by one strut, then these two nodes will not 
be connected by any other strut. 

 
Figure 3 An initial nodal connectivity of two-dimensional two-strut tensegrity structure 

For example: in Fig.3, if two nodes (1 and 3) are connected by a strut (1), then the other struts cannot connect with 
1 or 3. In other words, (3) (5) and (2) (6) connecting with nodes 1 and 3 respectively should be cables. Therefore, 
member (4) should be the last strut. 

In the connectivity matrix of table3, if the member (1) is chosen as a strut, the other members corresponding to a 
nonzero value in the two columns of nodes 1 and 3 should be cables. In other words, members (3) (5) and members (2) 
(6) should be cables, the same conclusion that member (4) should be the last strut that can be obtained. 

Table 3 The connectivity matrix of the two-dimensional two-strut tensegrity structure 

Member/node 1 2 3 4 

(1) 1 0 -1 0 
(2) 0 1 -1 0 
(3) 1 0 0 -1 
(4) 0 1 0 -1 
(5) 1 -1 0 0 
(6) 0 0 1 -1 
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4.3. Form-finding 

In this context, the aim of form-finding is actually to find the solution of Eq.(7) and Eq.(9) satisfying the rank 
deficiency conditions. Eq.(7) and Eq.(9) are the same equation but in different forms. In other words, the equation to be 
solved is an equation with two sets of unknowns. The basic method is as follows: 

Firstly, initial force density vector 
0q  are given and substituted into the Eq.(7) to solve a set of variables x , , z . 

Secondly, if the solution of these variables x , y , z cannot meet rank deficiency conditions, the approximate 

solution will be chosen and substituted into the Eq.(9) to solve the new force density vector
1q . 

Thirdly, The new force density vector
1q  will be substituted into the Eq.(7) to solve new set of variables 1x , 1y , 1z , 

and they may still not meet the conditions. The above two steps will continue to iterate, a loop is formed. 
Finally, the results satisfying the rank deficiency conditions are obtained by iteration. In our algorithm, the program 

automatically assigns initial values to initial force density vector 
0q , in which the compression strut is specified as −1, 

the tension cable as 1. Then the initial values are substituted into Eq.(7), after the generation of connectivity matrix and 
identification of types of members. Generally speaking, rank deficiency conditions of Eq.(11) and Eq.(12) will not be 
satisfied, the following operations are conducive to implement the iteration. 

Eigenvalue decomposition of force density matrix 
The force density matrix 𝐷𝐷 is a symmetric square matrix. By applying eigenvalue decomposition, it can be written 

as follows: 

𝐷𝐷 = 𝛷𝛷𝛷𝛷𝛷𝛷T  (13) 

in this equation, 𝛷𝛷 (∈ R𝑛𝑛×𝑛𝑛 ) represents the diagonal matrix, in which diagonal elements are eigenvalues, i.e.𝛷𝛷𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖 . 𝛷𝛷 (∈
R𝑛𝑛×𝑛𝑛) denotes the orthogonal matrix (𝛷𝛷𝛷𝛷T = Ι𝑛𝑛 ,Ι𝑛𝑛 ∈ R𝑛𝑛×𝑛𝑛  is the unit matrix). The eigenvector 𝜙𝜙𝑖𝑖 (∈ R𝑛𝑛) which is the i th 
column of 𝛷𝛷 corresponds to eigenvalue of iλ  of 𝛷𝛷. 

Obviously, the dimension of the orthogonal matrix’s null space, which contains the basis of the solution of Eq.(7), is equal to 
the number of zero eigenvalues of 𝐷𝐷. Sometimes 𝐷𝐷 calculated from the initial value does not satisfy the rank deficiency condition 
of Eq.(11) and may not be positive semi-definite. Therefore, in our procedure, the best three of eigenvectors selected from the 
first four smallest eigenvalues are taken as approximate coordinates while avoiding the following Eq.(14) and Eq.(15). 

Eq.(14) shows that 𝜙𝜙𝑖𝑖 is linearly dependent with the vector 1I  

𝐶𝐶𝜙𝜙𝑖𝑖 = 0  (14) 

Eq.(15) shows that at least one member in a 3D structure has zero length. 

det|L𝑑𝑑(L𝑑𝑑)|T=0  (15) 

L𝑑𝑑 (∈ R𝑏𝑏) represents the vector of lengths obtained from the combination of any three eigenvectors among the first four 
minimum eigenvector bases in 3D space (assuming d=3), and it can be calculated by 

2 2 2L (C ) (C ) (C )d i j kφ φ φ= + +   (16) 

𝐷𝐷 may not be positive semi-definite during iteration. To ensure the stability of the structure, our procedure evaluates 
the tangent stiffness matrix of the tensegrity structures (Vassart and Motro, 1999). 

Singular value decomposition of the equilibrium matrix 
The equilibrium matrix 𝐴𝐴 may not satisfy the rank deficiency condition Eq.(12) by substituting the approximate 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧) into Eq.(7), It indicates that there is no non-zero solution of 𝑞𝑞, and the signs of non-zero solution of 𝑞𝑞and initial 
force density vector 𝑞𝑞0 may not match due to the member types. To obtain a new 𝑞𝑞, equilibrium matrix 𝐴𝐴 can be written 
by applying single value decomposition as follows: 

𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑊𝑊T  (17) 

y
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where  V (∈ R𝑑𝑑𝑛𝑛×𝑏𝑏 ) represents diagonal matrix, in which diagonal elements are non-negative single values. 
𝑈𝑈 (∈ R𝑑𝑑𝑛𝑛×𝑑𝑑𝑛𝑛) = [𝑢𝑢1𝑢𝑢2  ⋯  𝑢𝑢𝑑𝑑×𝑛𝑛] and W(∈ R𝑏𝑏×𝑏𝑏) = [𝑤𝑤1𝑤𝑤2  ⋯  𝑤𝑤𝑏𝑏] are the orthogonal matrices. 

A singular vector 𝑤𝑤𝑗𝑗 of 𝑊𝑊 is chosen as approximated vector 𝑞𝑞 that best matches 𝑞𝑞0, if the sign of all components of 
𝑤𝑤𝑗𝑗 is equal to that of 𝑞𝑞0, i.e. 𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛(𝑤𝑤𝑗𝑗)= 𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛(𝑞𝑞0). If the above 𝑤𝑤𝑗𝑗 can not be found, more than one columns of 𝑊𝑊 will be 
used to calculate a vector 𝑞𝑞. For example, Estrada and Bungartz et al (Estrada and Bungartz et al 2006) solved this 
problem using a least square fit. It can be used to calculate the vector of coefficients α that minimises the quantity. 

��𝑤𝑤𝑗𝑗  ⋯  𝑤𝑤𝑏𝑏�α−𝑞𝑞0‖2  (18) 

For a block of column vectors �𝑤𝑤𝑗𝑗  ⋯  𝑤𝑤𝑏𝑏�, such that 𝑞𝑞 = �𝑤𝑤𝑗𝑗  ⋯  𝑤𝑤𝑏𝑏�α. The procedure starts with 𝑗𝑗 = 𝑏𝑏 − 1, and verify 
wether the signs match, i.e. 𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛(𝑞𝑞)= 𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛(𝑞𝑞0). If they match, the procedure stops. Otherwise we will decrease j by one, 
and repeat it. This procedure imposes the existence of at least one state of self-stress that matches in signs with 𝑞𝑞0. At 
the end, the vector α is the unique least square solution for the system �𝑤𝑤𝑗𝑗  ⋯  𝑤𝑤𝑏𝑏�α = 𝑞𝑞0, such that the product of the 
equilibrium matrix and the vector of approximated tension coefficients 𝑞𝑞 = �𝑤𝑤𝑗𝑗  ⋯  𝑤𝑤𝑏𝑏�α gives 

𝐴𝐴𝑞𝑞 = �
𝐶𝐶𝑇𝑇diag(𝐶𝐶𝑥𝑥)
𝐶𝐶𝑇𝑇diag(𝐶𝐶𝑦𝑦)
𝐶𝐶𝑇𝑇diag(𝐶𝐶𝑧𝑧)

�𝑞𝑞 ≈ 0 

The procedure therefore defines the approximated vector 𝑞𝑞 and preserve 𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛(𝑞𝑞0). By applying the eigenvalue decomposition 
of the force density matrix and the singular value decomposition of the balance matrix operation, the loop is closed in our 
procedure. Finally, nodes coordinates(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and the force density vector 𝑞𝑞 satisfying the rank deficiency conditions of Eq.(11) 
and Eq.(12) can be obtained. 

5 Numerical examples 

In this section, three numerical examples are carried out to demonstrate the efficiency and accuracy of the proposed 
procedure. The numerical examples indicate that the proposed form-finding procedure is strongly capable of searching for new 
tensegrity structures. 

5.1. 6-4 tensegrity structures 

In this example, the process of form-finding of 6-4 tensegrity structures consisting of 6 nodes and 12 members 
is described. As a triplex structure, the typical 3D 6-4 tensegrity is widely used as a numerical example in form-
finding (Tibert and Pellegrino, 2003). 

Tensegrity structures with 3 struts and nine cables will be automatically generated in our algorithm after inputting the 
number of nodes: 6. Besides, initial coordinates, connectivity matrices, type of each member, force density vector and other initial 
information are unknown in advance. 

In this process, 15 kinds of isomorphic 6-4 connectivity matrices are generated in Fig.2. Therefore, only one connectivity 
matrix is left in the first stage. According to the discontinuity condition of struts, 6 kinds of strut candidates and corresponding 
initial force densities can be obtained in the second stage. As shown in Fig.4(a), the above results are used in the following 
calculation, and one tensegrity structure is found finally. In this figure, thick lines represent struts, while thin lines represent cables. 
The force density value obtained in our method is compared with that of the previous study in Table4. It is found that our form-
finding results are in good agreement with the analytical solution (Estrada et al., 2006). 

Table 4: The force density coefficient of well known tensegrity structure 

Example Methods horizontal cables Lateral cables Strut 

Triplex Analytical solution 1 √3 −√3 
Our algorithm 1 1.732 -1.732 

Quadruplex Analytical solution 1 √2 −√2 
Our algorithm 1 1.414 -1. 414 

Pentaplex Analytical solution 1 2 sin 36° −2 sin 36° 
Our algorithm 1 1.176 -1.176 



Automatic Form-finding of N-4 Type Tensegrity Structures Xiaoming Yu et al. 

Latin American Journal of Solids and Structures, 2022, 19(1), e419 9/12 

5.2. 8-4 tensegrity structures 

The typical 3D 8-4 tensegrity structure consisting of 8 nodes and 16 members is quadruplex and widely used in form-
finding (Seunghye and Jaehong, 2014, Motro, 2003). Without knowing other initial information in advance, tensegrity 
structures with 4 struts and 12 cables will be automatically generated in our algorithm after inputting the number of 
nodes: 8. 

8-4 tensegrity structures are generated from 6-4 tensegrity structures by the following steps: (1) select four edges 
with different nodes randomly, (2) delete these four edges, (3) add two new nodes, (4) create four new edges. According 
to the discontinuity condition of struts, the number of nodes should be even and twice the number of struts. Two nodes 
are added at the same time for higher efficiency. In this process, 49 kinds of 8-4 connectivity matrices are generated. 
After comparison, 5 nonisomorphic connectivity matrices are left in the first stage. According to the discontinuity 
condition of struts, 27 kinds of strut candidates and corresponding initial force densities can be obtained in the second 
stage. The above results are used in the following calculation; finally 10 tensegrity structures are found as shown in Fig.4. 
The name 8T1-1 represents the first form-finding result of the first topology with 8 nodes, 8T1-2 represents the second 
form-finding result of the first topology, and other structures are named in the same way. 

In these structures, the famous quadruplex prisms (Fig.4(b) and Fig.4(l)) and their similar structures (Fig.4(i) and 
Fig.4(k)) can be easily found. In addition, all the structures with four struts are generated with the method. As shown in 
Fig.4 (Fig.4(e), Fig.4(j) and Fig.4(l)) the results were consistent with that concluded by Y. Li et al. (Li et al.,2010). However, 
the form-finding result of an eight-nodes irregular tensegrity structure reported by B.S.Gan et al. (Ganet al., 2015) 
(Fig.4(d)) was not found in our first search. By comparison, it is found that Fig.4(d) and Fig.4(b) are isomorphic graphs. 
However, in the first stage of the program (the comparison of isomorphic graphs), only one isomorphic graph is left 
behind and the rest is deleted. In other words, Fig.4(b) is left behind and Fig.4(d) is deleted. Comparing the force density 
value of Fig.4(b) (quadruplex) with the analytical solution in Table 4, we can see that our form-finding results are in good 
agreement with analytical solution. 

Some unusual stable structures have also been found at the same time. Because of the small number of nodes, 
these structures are simple in construction, but all show different geometric properties. Fig.4(c) is a double-layer 
structure with a regular shape and symmetrical upper and lower surfaces. Fig.4(e) and Fig.4(j) provide the same triangle 
at two sides of the structure, while the other side provides two quadrilaterals, which can be used for the connection 
between structures. The application of these structures is up to the designer and will not be discussed here. All of these 
results indirectly prove the effectiveness and correctness of our algorithm. 

 

Figure 4 Three dimensional 6-4 and 8-4 tensegrity structures 
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5.3. 10-4 tensegrity structures 

The typical 3D 10-4 tensegrity structure consisting of 10 nodes and 20 members is a pentaplex structure. Tensegrity 
structures with 5 struts and 15 cables will be automatically generated in our algorithm, after inputting the number of 
nodes: 10. 

In this process, 82 kinds of 10-4 connectivity matrices are generated. After comparison, 12 nonisomorphic 
connectivity matrices are left in the first stage. According to the discontinuity condition of struts, 66 kinds of strut 
candidates and corresponding initial force density can be obtained in the second stage. The above results are used in the 
following calculation, and 46 tensegrity structures are found finally. For simplicity, only parts of these results are given 
in Fig 5. 

In these structures, the famous pentaplex or 5-plex prisms can be easily found by the given structures, as shown in 
Fig 5 (Fig 5(a) and Fig 5(b)). It should be noted that the star-like cylinders which are the equal structure of pentaplex 
prisms are not contained in these results, due to the same topology and the same arrangement of members. Comparing 
the force density value of Fig 5.(a) with the analytical solution in Table 4, we can see that our form-finding results are in 
good agreement with the analytical solution. 

As the number of nodes increases, the number of output results increases. This is because some optimization or 
selection conditions are not added. The other algorithms can be applied to reduce the number of output according to 

the preferences of designers, or tensegrity structures can be directly selected from output results. For example, 
among the generated incidence matrices in every step, several incidence matrices with the largest number of sub 
matrices specified by the designer can be selected. Based on this condition, structures with a large number of nodes can 
be generated in a shorter time. In this paper, two structures with 30 nodes and two structures with 60 nodes were 
selected as examples as shown in Fig.6. 

 
Figure 5 Partly three dimensional 10-4 tensegrity structures 
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Figure 6 Examples of three dimensional 30-4 and 60-4tensegrity structures 

6. Conclusions 

In this paper, an automatic form-finding procedure of 3D N-4 tensegrity structure is proposed. Compared with the 
most form-finding methods, no initial information is required except for the number of nodes or the number of struts. 
The procedure of form-finding is divided into four stages. Firstly, some connectivity matrices are generated based on our 
algorithm, one of every kind of isomorphic connectivity matrices will be left and the others will be deleted to reduce the 
total number of connectivity matrices. Secondly, the type of members and the initial force density vectors are determined 
according to characteristics of the discontinuity condition of the tensegrity structure in which struts are not connected 
at the same node. Thirdly, the coordinates and force density vectors satisfying rank conditions are obtained with initial 
values generated in the two stages above. Finally, all configurations of form-finding are output. 

In numerical examples, three classes of tensegrity structures including triplex, quadruplex and pentaplex are used 
to prove the effectiveness of our algorithm. The force density values of these tensegrity structures are in good agreement 
with that in the previous study, indicating the accuracy of our algorithm. The results of our search for tensegrity 
structures (some of which have been found in previous researches and some of which have not been found before) 
indicate that our algorithm has a strong search capability for tensegrity structures. The numerical examples indicate the 
proposed form-finding procedure has a very good convergence for 3D N-4 tensegrity structures. 

This study partially solves the problem of manual inputting of the connectivity matrix and discovers different new 
tensegrity structures with the same number of nodes. From this point of view, the form-finding procedure provides a 
way to search for new structures indeed. 
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