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Sliding Block on a Semicircular Track with Friction
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This work presents the dynamics of a block as it slides down a semicircular track with both
Coulomb's and viscous frictions. Analytical solutions and graphic forms of the equations for the
velocity, acceleration and energy as functions of angular position are displayed and discussed for
several friction coeÆcients. Following these solutions the plots as function of time for these damped
motions are also presented.

�E apresentado neste trabalho a dinâmica de um bloco quando este desliza sobre um trajeto semi-
circular na presen�ca de ambos os atritos, entre superf��cies e viscoso. Solu�c~oes anal��ticas e formas
gr�a�cas das equa�c~oes para a velocidade, acelera�c~ao e energia como fun�c~oes da posi�c~ao angular s~ao
exibidas e discutidas para diversos coe�cientes de atrito. Seguindo estes solu�c~oes, os gr�a�cos em
fun�c~ao do tempo para estes movimentos amortecidos s~ao tamb�em apresentados.

I Introduction

In courses of intermediary mechanics it is helpful to in-
troduce oscillatory motions where no approximations
are made. The purpose is to familiarize the stu-
dents with an ellaborated mathematical apparatus that
describes these experimentally observed motions, al-
though little theoretical discussions is found, mainly
when friction forces are involved. In fact, these forces
are known to act opposing the motion (direction con-
trary to that of velocity), changing in direction for each
half cycle executed. Franklin and Kimmel[1], made
a study where a block starts its motion from the top
of a semicircular track in the presence of a Coulomb's
frictional force. The parameters velocity, acceleration
and work performed by the frictional force in the �rst
quadrant were found relative to a horizontal line pass-
ing through the center of the circunference constituing
the track, varying thus its position from 0 until +�=2.
Lapidus[2], extended the former work, considering now
motion in the second quadrant and where the block
started from any initial position relative to a vertical
line varying from ��=2 until +�=2[2].

We propose here to study this kind of frictional mo-
tion including now a viscous force generally considered
as resulting from the atmosphere. We assume that a
block of mass m starts its downward sliding motion at
rest on a semicircular track of radius R from a point in
some initial angular position �0 relative to a horizontal
line passing through the center of the circunference. We
also assume that the forces of resistance to the motion

are the Coulomb's frictional force Fd, proportional to
the surface reaction and a viscous force with magnitude
proportional to v2, where v is the tangential velocity of
the block relative to the surface, Fig. 1. The force of
reaction N due to the contact with the surface is given
by N = mgsen�+ Fc, where Fc is the centripetal force
given by mv2=K and K is the radius of the trajectory
described by the center of mass of the block. Initially
and in each return point it is necessary for the motion
to continue that the tangential component of the grav-
itational force relative to the surface be greater than
the frictional force. This condition is given by � > �c,
where �c = tan�1 �s being �s the static friction co-
eÆcient. In fact, it is still possible to �nd analytical
solutions for the dynamic parameters if this quadratic
approximation in the velocity is considered. Applying
Newton's second law of motion for the block that slides
down yields the following equation for the tangential
acceleration:

at = gcos� � �(gsin� +
v2

K
)�

�

m
v2 (1)

In each return point there is a change in the direction
of motion. In this way, if more than the �rst half cy-
cle is to be found, substitution in the initial angular
position is required and the negative signal is to be ap-
plied when � is increasing, while the positive signal is
to be employed when � is decreasing. As before, it is
assumed that the viscous force Fv is proportional to
v2 and directed contrary to the velocity of the block,
Fv = ��v2. It is thus possible to extend the results ob-
tained by Franklin and Kimmel[1]. The proportionality
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constant � with dimension [mass/length] is an intrin-
sic parameter that depends on the area of contact A of
the block with the frictional medium, as well as on the
viscosity coeÆcient � where the block is immersed. It
can then be written as � = �A.

Figure 1. Block sliding down from the top of a vertical semi-
circular track of radius R. The center of mass executes a
motion following the radius K, where K = R � h and h is
the half-height of the block. For simpli�cations in the cal-

culations were considered R = 1:1m and h = 0:1m resulting
in a trajectory of radius K = 1:0m.

II Results

For the �rst half cycle writing Eq. (1) as a function of
the angular position � and rearranging terms yields:

dv2

d�
+ �v2 = 2gK(cos � � � sin �) (2)

For simpli�cation we use the following de�nition:

� = 2(�+
�K

m
) (3)

Eq. (2) is a standard di�erential equation which can
also be analitically solved by multiplying both sides by
the integrating factor exp(��), as indicated by Franklin
and Kimmel[1]

c

e��(
dv2

d�
+ �v2) =

d

d�
(v2e��) = 2gK(cos � � � sin �)e�� (4)

Integrating from an initial angular position �0 to a �nal position � results in the following expression for the
quadractic velocity:

v2 =
2gK

1 + �2
f(�+ �) cos � + (1� ��) sin � � [(�+ �) cos �0 + (1� ��) sin �0]e

��(���0)g (5)

d

In Table I are shown the special values of the dynamic
parameters as numerically obtained. In the limiting
case of no viscous force (� = 0) and with the special
initial conditions �0 = 0 we get:

v2 =
2gK

1 + 4�2
(3� cos � + (1� 2�2) sin � � 3�e�2��) (6)

This is in agreement with the previous work[1]. The
process can be continued by reaching the next return
point, changing now the initial angular position and

the signal for the frictional forces in the Eq. (1). In
Fig. 2 are shown curves of v as a function of � after
several cycles of oscillation. It must be noted that the
maximum value reached by the velocity is not situated
at �=2, except when there is no friction (� = � = 0).
Mathematically this can also be shown by �nding the
maximal velocity as a function of �. Using the same
relations given by Eqs. (1-3) for the �rst half cycle and
substituing the expression for v2, Eq. (5), into Eq. (2),
di�erentiating and rearranging the terms yields:

c

at =
g

1 + �2
f(1� ��) cos � � (�+ �) sin � + �[(1� ��) sin �0 + (�+ �) cos �0]e

��(���0)g (7)

In Fig. 3 are displayed the curves for the tangential and centripetal acceleration (v2/K) as functions of � in several
cases. The energy spent by the friction when the block travels a length Kd� is given by

dWf = �(Fd + Fv)Kd� = �(�N + �v2)Kd� (8)
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The total energy Wf spent in the �rst half cycle can be found integrating the former expression or taking the
negative of the diference between potential and kinetic energies. This results in

Wf = mgK sin �0 �mgK
�+ �

1 + �2
[(� sin � � cos �)� (

1� �

�+ �
sin �0 + cos �0)e

��(���0)] (9)

The curves are also displayed in Fig. 3. Eq. (7) can be used for obtaining the angular velocity _�(�) in the �rst half
cycle. Using the fact that initially _�0 = 0 (this also happens in each return point), yields:

d�

dt
=

s
2g

K(1 + �2)
f(1� ��) sin � + (�+ �) cos � � [(1� ��) sin �0 + (�+ �) cos �0]e��(���0)g (10)

In Fig. 4 are shown curves of oscillation for several friction coeÆcients according to these solutions.

�=0.10 �=0.20 �=0.50 �=0.0 �=0.0 �=0.0 �=0.10 �=0.20 �=0.50
�=0.0 �=0.0 �=0.0 �=0.05 �=0.10 �=0.15 �=0.05 �=0.10 �=0.15

vmax 3.8688 3.4562 2.6768 3.7535 3.3217 3.0126 3.3836 2.8226 2.2076
� 1.3190 1.1324 0.7745 1.2797 1.1044 0.9825 1.1155 0.8755 0.5966
v(�=�/2) 3.7888* 3.1856* 1.3595* 3.6476 3.0399 2.5646 3.1028 2.0985 stop

2.7803 1.4909 2.7641 1.9916 1.5426 1.7650
1.9511 2.2306 1.4845 1.1052 0.8991
1.2232 1.8717 1.1839 0.8617
0.5219 1.6129 0.9851 0.7063

1.4175 0.8437 0.5984
1.2644 0.7381 0.5190
1.1412 0.6561 0.4583
0.9555 0.5903
0.8839 0.5365
0.8224

R. Points 2.6722 2.3486 1.7220 2.6307 2.3731 2.2114 2.3557 1.9871 1.4966
0.7937 1.2673 0.7569 1.0162 1.1523 1.1362 1.5819
2.0910 2.2347 1.9965 1.8830 1.7662
1.2727 1.0090 1.2246 1.3213 1.5781
1.6644 2.0581 1.8627 1.7785

1.1401 1.3182 1.3927
1.9565 1.7934 1.7266
1.2212 1.3718 1.4321
1.8903 1.7507
1.2763 1.4066
1.8439
1.3163

Table I - It is shown here the maximal velocities (in [m/s]) reached by the block and its corresponding angular
positions (in radians), values for the velocities when it crosses the lowest point and at the return points (where
v = 0) for each half cycle of oscillation. For these values initially we use �0 = 0. For � = 0:50, � = 0:15, the block
stops before reaching the lowest position. (�) values marked in agreement with Ref. [1].
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Figure 2. Comparative curves for the velocity as a function of �. For � = 0:0 the curves were truncated before reaching the
rest point.

Figure 3. Curves for the tangential and centripetal accelerations, as well as for the energy spent by the frictional forces.
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Figure 4. Damped motion as a function of time for several Coulomb's and viscous friction coeÆcients.

d

III Discussion

As seen in the acceleration curves with friction, the
maximum velocity occurs before �=2 (making Eq. (2)
equal to zero). The reason is that the block is under the
action of a direction dependent resistive force while it
executes its semicircular motion. The values given by
Franklin and Kimmel[1], (3:7881, 3:1849, 1:3585) for
the velocities in �=2 when � = 0 (for � = 0:1, 0:2 and
0:5 respectively) are also numerically con�rmed. The
return points can be checked by making use of Lapidus's
method[2], for the same conditions as given above. In
the absence of both frictional forces we return to the
ideal case of an oscillating pendulum without approxi-
mation for small angles. In this case the period can also
be analitically found by means of elliptic functions[3],
which results in a value of 2.367 seconds for a length
equal to 1 m. We present here a suggestion for deter-
mining the amplitude and period of motion: to mark
the oscillatory trajectory covering the track with paper
and �xing a pen to the block, although it can be diÆ-
cult to determine the friction coeÆcient between these

surfaces.
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