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In 1952, Kac and Ward developed a combinatorial formulation for the two-dimensional Ising model which is
another method of obtaining Onsager’s famous formula for the free energy per site in the termodynamic limit
of the model. Feynman gave an important contribution to this formulation conjecturing a crucial mathematical
relation which completed Kac and Ward ideas. In this paper, the method of Kac, Ward and Feynman for the free
field Ising model in two dimensions is reviewed in a self-contained way and Onsager’s formula is computed.

Em 1952, Kac e Ward desenvolveram uma formulac¸ão combinatorial do modelo de Ising em duas dimens˜oes
que é um outro m´etodo para se obter a famosa f´ormula de Onsager para a energia livre por s´ıtio no limite
termodinâmico do modelo. Feynman fez importante contribuic¸ão a esta formulac¸ão conjecturando uma relac¸ão
matemática crucial que completou as id´eias de Kac e Ward. Neste trabalho, o m´etodo de Kac, Ward e Feynman
para o modelo de Ising em duas dimens˜oes sem campo ´e revisada e a f´ormula de Onsager ´e calculada.

I Introduction

The aim of statistical physics is to understand the macro-
scopic behaviour of a system formed by a very large number
of particles from information about how they interact with
each other. One way in which one can gain insight into this
problem and thus about complex systems is by constructing
idealized models which hopefully will exhibit some of the
interesting features of real systems like phase transitions.
Perhaps the most studied of these idealized models is the
Ising model so called in honor to his first investigator, Ernst
Ising (1900-1998).

The model was originally proposed as a simple model
of ferromagnetism. In ref. [1] Ising investigated the model
in one dimension and computed exactly its partition func-
tion. In 1944, Onsager [2] considered the free field model
in two dimensions and succeded to compute the partition
function exactly. His method became known as the alge-
braic formulation of the model. In 1952, Kac and Ward [3]
developed a quite different method of obtaining Onsager re-
sults known as the combinatorial formulation of the Ising
model. Feynman developed the method farther and conjec-
tured an identity relating functions defined on graphs and
functions defined on paths on a square lattice [4, 7]. This
identity is a crucial element in the combinatorial formulation
of Kac, Ward and Feynman of the Ising model. The identity
was later formally proved by Sherman [4-6], followed later

on by another proof by Burgoyne [7]. A somewhat simi-
lar treatment to the combinatorial formulation of Kac, Ward
and Feynman can be found in refs. [12-14]. An important
variant of the combinatorial formulation using the so called
Pffafians was developed by Green and Hurst [10].

The bibliography on the Ising model is vast and to give
a full list of references is virtually impossible. A nice intro-
duction to the model though is the paper by B. Cipra given in
ref. [17]. Old surveys but still useful on the distinct formu-
lations of the Ising model in two dimensions and its history
can be found in refs. [10-11, 15-16] together with full lists
of original references.

The objective of the present paper is to review in a self-
contained way the calculation of the Onsager’s formula for
the two dimensional free field Ising model in the combina-
torial formulation of Kac, Ward and Feynman. Our presen-
tation follows chapter V, section V.4, of Feynman’s book [9]
and the paper by Burgoyne [7] although we have tried to be
more careful with the mathematics involved than these ref-
erences are.

The paper is organized as follows. In section II, the Ising
model is defined. In section III and through its various sub-
sections the combinatorial formulation of Kac, Ward and
Feynman of the partition function is given. In section IV,
Onsager’s formula for the free energy per site in the thermo-
dynamic limit is computed.
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II Definition of the model

The model is defined on a finite planar square latticeΛ
which mimic a regular arranjement of atoms in two dimen-
sions. Suppose the lattice is embedded in the plane with
sites having coordinates inZ × Z. To each sitei of Λ it is
assigned two possible states also called “spins” and denoted
by σi, whereσi = +1 or σi = −1. The interaction energy
between two particles located at thei-th andj-th sites and
in the statesσi andσj , respectively, is postulated to be

Eij =
{ −Jσiσj if i, j are n.n.

0 otherwise

(2.1)

where “n.n” stands for nearest neighbors, hence, in the Ising
model it is assumed that the energy depends only on short
range interactions. The energy is−J if the nearest neigh-
bors are in the same state and+J if the states are distinct.
The constantJ which can be positive or negative is a param-
eter for the model.
SupposeΛ hasN 2 sites. Then, there are2N

2
distinct con-

figurations of the spins and, therefore,2N
2

configurations
σ = (σ1, ..., σN2) of the system. CallS = {σ} the set of
possible configurations of the system. The energy of each
configurationσ ∈ S is given by

Eσ = −J
∑

n.n.∈σ
σiσj (2.2)

Suppose as well the system is at equilibrium temperature
given byT . According to statistical mechanics, the proba-
bility pσ to find the system in the configurationσ is

pσ =
1

Z(β)
e−βEσ (2.3)

whereβ = 1
kBT

, kB is Boltzmann constant, and

Z(β) =
∑
σ

e−βEσ . (2.4)

is the so called partition function of the model. This simple
looking function is simple to compute exactly only in one
dimension, difficult but possible to compute exactly in di-
mension two. In three dimensions nobody knows how to do
it.

The exact knowledge ofZ(β) allows one to obtain infor-
mation about the global behaviour of the system. Important
quantities that are relevant to understand the physics of the
system are all defined in terms oflnZ or its derivatives. For
instance, the free energy per lattice sitef in the thermody-
namic limit is defined as

f = −kBT lim
N→∞

logZ
N2

. (2.5)

A basic problem is to find a closed form, analytic expression
for f . Phase transitions will appear as singularities inf or
in one of its derivatives.

III The combinatorial formulation

In the combinatorial formulation the partition function is ex-
pressed as a sum over special subsets of the latticeΛ called
admissible graphs. Next, using a relation first conjectured
by R. Feynman the resulting expression is converted into a
product over paths. The final step towards the Onsager’s for-
mula to be accomplished in section IV consists in deriving
an integral representation for this product.

III.1 The partition function as a sum over
graphs

Let’s rewrite the partition function (2.4) as

ZN(K) =
∑

σ1=±1

· · ·
∑

σN =±1

∏
n.n.

eKσiσj (3.1)

with K = + J
kBT

. Noting thatσiσj = ±1, it follows that

eKσiσj = e±K = coshK ± sinhK (3.2)

and ∏
n.n.

eKσiσj = (1 − u2)−
x
2

∏
n.n.

(1 + σiσju). (3.3)

whereu = tanhK andx = 2N(N − 1) is the number of
bonds inΛ. Notice that| u |< 1, for anyK.
Definition 3.1. An admissible graph is a connected or dis-
connected subset ofΛ whose sites have even valence.
Definition 3.2. Given an admissible graphG, define

IG(u) =
∏
i∈G

u = uL (3.4)

where the product is over the bondsi of G.
Theorem 3.1. Call A the set of all admissible graphsG of
Λ. Then,

ZN(u) = 2N
2
(1− u2)−N(N−1)

(
1 +

∑
G∈A

IG(u)

)
(3.5)

Proof: To each pairi, j of nearest neighbors ofΛ there cor-
respond a termuσiσj and a bond. Since the number of pairs
i, j of n.n. coincide with the numberx = 2N(N − 1) of
bonds ofΛ the product on the RHS of (3.3) is a polinomial
of degreex, that is,

∏
n.n.

(1 + uσiσj) = 1 +
x∑
p=1

up
∑
n.n.

(σi1σi2 ) · · · (σi2p−1σi2p )

(3.6)
The second summation is over all possible products ofp
pairs(σiσj) of n.n. ofΛ where a pair is not to occur twice in
the same product. To each pair(σiσj) there is associated a
bond connecting the neighborsi andj so to each product of
p pairs correspond a graph (connected or disconnected). So,
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the second summation is over all graphs withp bonds. The
graphs may have sites with valence1, 2, 3 or 4. The summa-
tions over the spinsσi’s eliminate graphs having sites with
odd valence because

∑
σi = 0 and

∑
σ3
i = 0. The graphs

left are those whose sites have valence 2 or 4, thus admis-
sible. If VG is the number of sites in a admissible graph
G then there is a factor2VG associated to it because each
site ofG contributes a factor2 coming from

∑
σ2
i = 2 and∑

σ4
i = 2. The sum overσ includes all theσi and not only

those with sitesi in G. The summation over the sites not in
G will give a factor2V−VG whereV = N 2 is the number of
sites in the lattice, hence, in the end one gets the factor2V .

III.2 The partition function as a product over
paths

Let’s orient and number the bonds ofΛwith distinct pos-
itive integersi and callΛ with this indexation a colored lat-
tice.
Definition 3.3. A pathp overΛ is an ordered sequence of
bonds each starting at the site where the previous one ended.
The last bond ending at the site from which the first one
started. Thus,p is closed. The path is subjected to the con-
straint that it never goes backwards over the previous bond.
A pathp is given by a word, that is, an ordered sequence of
symbolsDi wherei distiguishes the bonds ofΛ. A pathp is
then of the form

p = De1
j1
De2
j2
...Del

jl
(3.7)

for somel and whereei = +1(−1) if the path traverses
bondji following the direction (opposite direction) assigned
to it. Because a path is closed it is defined to within its cir-
cular order so that

De1
j1
De2
j2
...Del

jl
≡ De2

j2
...Del

jl
De1
j1

≡ ... ≡ Del

jl
De1
j1
...D

el−1
jl−1

(3.8)
The inversionp−1 of p is given by

D−el
jl

D
−el−1
jl−1

...D−e1
j1

(3.9)

We takep andp−1 to be equivalent. Givenp, denote by[p]
the set of all paths equivalent top, that is, its circular permu-
tations and their inversions.
Definition 3.4. A periodic path is one which has the word
representation

(De1
j1
...Del

jl
)w (3.10)

for somel andw ≥ 2 and where the subword in between
brackets is nonperiodic.
Definition 3.5. A pathp has assigned to it a sign given by

s(p) = (−1)1+t (3.11)

wheret is the number of2π-angles turned by a tangent vec-
tor while traversingp. A positive (negative) angle is as-
signed to a counterclockwise (clockwise) rotation.
Example 1. See Figure 1a). A tangent vector starting at
point e and traversing the path shown in Figure 1a) turns

once a total angle given by4. π2 = 2π after its return toe so
in this caset = 1 ands(p) = +1. For the path in Figure
1b), the total angle turned is3 π2 − 3π2 = 0 so t = 0 and
s(p) = −1.

�

e
✲

❄
✻

✛

(a)

�

e
✲

❄
✻

✛

✲

✛

❄

(b)

Figure 1: Examples of paths with (a)s(p) = +1
and (b)s(p) = −1.

Remark. In section IV, instead of assigning an angle±π/2
to a turn we will count the contribution to the sign by assign-
ingα = eiπ/4 andᾱ = e−iπ/4 to each counterclockwise and
clockwise turn, respectively, and then in the end multiplying
the result by−1. In the example above, one gets in this
manner(eiπ/4)4 = −1 and(eiπ/4)3.(e−iπ/4)3 = +1. Mul-
tiplying both results by−1, one recovers the correct sign for
each path.
The sign of periodic paths. Suppose the sign of the nonpe-
riodic path in between brackets in (3.10) is(−1)1+ts . Then,
the sign of the periodic path with periodw is (−1)1+wts .
Hence, the sign of a periodic path is−1 if its period is an
even number and the sign equals the sign of the nonperiodic
subpath if the periodw is an odd number.
Definition 3.6. To each pathp it is assigned the function
Ip(u) given by

Ip(u) = ul (3.12)

wherel = m1 + ...+mk, for somek, is the length ofp,mi

being the number of times bondi is covered byp, and the
functionWp(u), “the amplitude ofp”, defined as follows:

Wp(u) = s(p)Ip(u) (3.13)

Theorem 3.2. The functionsIG(u) andWp(u), |u| < 1,
defined above satisfy the following relation:

1 +
∑
G∈A

IG(u) =
∏
[p]

[1 +Wp(u)] (3.14)

The product is over all inequivalent classes[p] of closed non-
periodic paths. The summation is over all admissible graphs
of the finiteN ×N planar square latticeΛ.

Relation (3.14) is a simpler version suitable for the Ising
model of a more general relation investigated by Sherman
and Burgoyne in refs. [4-7]. The difference is that they
assign to the bondsi of the lattice distinct parametersdi,
hence, in this case the functionsIG andW are given in terms
of these parameters. In the Ising model context under con-
sideration these are all equal tou and|u| < 1.
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According to references [4,7,10,11], relation (3.14) first
appeared as a conjecture in lecture notes by Feynman ( ref.
[9], published only in 1972 and already mentioning ref. [4]).
The first proof of it was achieved by Sherman in refs. [4,6]
followed by another one later on by Burgoyne in ref. [7].
The simplest nontrivial case of the general relation is inves-
tigated in ref. [8].

Below Burgoyne’s proof is essencially reproduced for
the case|u| < 1.
Proof: Expand the product over the distinct classes of non-
periodic paths[p] as1 (one) plus an infinite sum of terms of
the form

Wp1 (u)Wp2(u)...Wpk
(u) = s

∏
i

uri (3.15)

for somek wherep1, ..., pk is a set of nonperiodic paths
overΛ. The product on the r.h.s of (3.15) is over the bonds
i traversed byp1, p2, ...pk, and ri says how many times.
If p1, p2, ...pk traverse bondi, say,m1(i), ...,mk(i) times,
mj ≥ 0, respectively, thenri =

∑k
i=1 mj(i). The signs is

the product of the signs ofp1, p2, ..., pk.
Let’s prove, first, that those terms havingri = 1, ∀i,

add up to
∑
IG(u). Consider one of these terms with as-

sociated pathsp1, p2, ..., pk. Each bond in the set of bonds
traversed byp1, p2, ..., pk is traversed only once by one of
these paths. Thus, the only possible intersection if any be-
tween any two of these paths in this case can occur only at a
site of valence 4 and they cross each other like in Fig. (2.a)
. Otherwise, they are disjoint. Thus, the set of bonds tra-
versed by pathsp1, ..., pk constitute a graph whose vertices
have valence2 or 4. This is an admissible graph. There-
fore, to each term of the form of (3.15) withr i = 1, ∀i,
one can associate an admissible graph. This graph can be
disconnected. This happen if the set of paths can be split
into subsets completely disjoint which generate admissible
graphs without any bonds and vertices in common.

Now, given an admissible graphG one can in general
associate more than one term of the form of(3.15) with
ri = 1, each associated with a distinct set of paths. Let’s
see how this follows. The sites of an admissible graph have
valence2 or 4. When a path strikes a site of valence4 it
has only3 possible directions to follow. See Figures 2a, 2b,
2c. (The case in Fig. 2d is forbidden.) Then, any two terms
associated to a given admissible graphG will differ only in
the types of crossings at the sites ofG. Since there are3
types of crossing per valence 4 site, the number of possible
terms associated toG is 3V whereV is the number of sites
of G with valence4.

A term has a sign which comes out from the contribu-
tion of the signs of the paths associated to that term. Let’s
see how the sign of a term comes out. A term witht1 cross-
ings of type1 (Fig. 2a.) has a sign which can be expressed
as (−1)t1 wheret1 includes selfcrossings of single paths
plus crossings between different paths. Indeed, since dis-
tinct closed paths always intersect in a even number of cross-
ings then(−1)t1 will give the correct sign of the term which
is the product of the signs of the individual paths. Let’s asso-

ciate to the crossings of typej = 2, 3 the sign(+1)t2(+1)t3
so that a term withtj crossings of typej = 1, 2, 3 has a sign
given by(−1)t1(+1)t2(+1)t3 .

There areV !ways of distributingV = t1+t2+t3 cross-
ings among the sites ofG but since there aretj crossings of
the typej, j = 1, 2, 3, one has to divideV ! by t1!t2!t3! so
that the number of distinct terms withtj crossings of typej
is

V !
t1!t2!t3!

(3.16)

These terms have the same factorI(G) = uL whereL is
the number of bonds ofG. Summing all these terms arising
from a givenG and summing over all admissible graphsG
of Λ the result is
∑

G

∑
{t}

V !
t1!t2!t3!

(−1)t1(+1)t2(+1)t3

 I(G) (3.17)

where
∑

t means summation over allt1, t2, t3 such that
t1 + t2 + t3 = V . Using the multinomial theorem the sum-
mation over{t} gives(−1+1+1)V and one gets the result∑

G I(G).
If G is disconnected withl componentsGi, i =

1, 2, ..., l, each of them withtj , j = 1, 2, ..., l, sites of va-
lence4 and

∑
tj = V , then applying the previous argument

to each component will giveI(G1)I(G2)...I(Gl) = I(G).
In view of the above result, the theorem could be equiv-

alently stated by saying that the sum of terms withri > 1
for at least one of thei converges to zero. Let’s prove this.

LetG be the set of all colored connected or disconnected
subgraphsg of the colored lattice without valence 1 sites
and such that ifg is connected theng is not a poligon, that
is, a graph having valence 2 sites only. A disconnected
graph is allowed to have some but not all of the components
as poligons. The reason for excluding graphs which are
poligons or having all components which are is that closed
paths with repeated bonds over them are necessarily periodic
and these are forbidden. The coloring ofg is that inherited
from the colored lattice.

Giveng ∈ G, call i1, ..., il(g) the bonds ofg. A termwg
associated tog is of the form

wg =Wp1Wp2 ...Wpk
= (sign wg)|wg| (3.18)

for somek and set of pathsp1, ..., pk, which traverse the
bonds ofg only, where

|wg| =
l(g)∏
j=1

urij (3.19)

and rij is the number of times bondij is traversed
by p1, ..., pk, that is, If p1, ..., pk traverse thei-th bond
m1(i), ...,mk(i) times,m ≥ 0, respectively, then

rij =
k∑
a=1

ma(ij) (3.20)



Revista Brasileira de Ensino de F´ısica, vol. 25, no. 1, marc¸o, 2003 53

Some but not all of them’s can be zero so thatrij ≥ 1 with
at least onerij > 1.

Let’s consider the set of all terms with the same effec-
tive set of bonds{i} traversed, hence, the terms associated
to a giveng. Within this set it’s possible in general to find
terms with the same powers{r} and the same|wg| although
having distinct associated paths and possibly with different
effective sign.

Let’s group together those terms which cover the same
bonds ofg the same number of times. Denote byWg,N (r)
the set of termswg with the same powers{rij} and such that∑l(g)

j=1 rij = N , for fixedN . The summation over all terms
with repeated lines can now be expressed as

∑
g∈G

∑
{N}g

∑
r(N)

∑
wg∈Wg,N (r)

wg (3.21)

where
∑

g∈G means summation over all elements inG;∑
{N}g

means summation over all positive integersN com-
patible to the given graphg and such thatN ≥ l(g) + 1;∑

r(N) means summation over a set of positive integers
r1, ..., rl such thatr1 + ... + rl = N and which are also
compatible tog; and, finally,

∑
wg

means summation over
all termswg ∈ Wg,N (r).

Now the following remarks come to order. In the sec-
ond summation, the caseN = l is excluded for it implies
thatri = 1 and in this case there can be no repeated bonds.
The caseN < l corresponds to another elementg ′ ∈ G. The
equality depends on the graphg. For instance, take the graph
shown in Fig. 1b wherel + 1 = 9. No nonperiodic closed
path with repeated bonds can have lengthN = 9 because
l(g) = 8. The lengthN can only be even and its minimum
is N = 12. Hence, for this particular graphg the summa-
tion is over all even numbers greater or equal to 12. In any
case, the set{N}g has always infinite elements. Giveng and
N ∈ {N}g, not all partitions ofN are allowed in the third
sum. For instance, given the graph in Fig. 1b andN = 12,
the partition withrik = 1, ∀k �= 1, andri = 5 can not be
associated to any allowed path. So, the set of integers{N}
and partitions ofN must be suitable to eachg.

Giveng, let’s consider now the partial sums

sn =
∑

{N |N≤n}g

∑
r(N)

∑
wg∈Wg,N (r)

wg (3.22)

The goal is to show that in the limitn → ∞, sn goes to
zero. In ref. [7] its proved thatsn = 0. The argument of the
proof goes as follows.

Since the bonds ofg are covered the same number of
times by all elements in the group, choose a bond ofg, say
b, which is traversedr > 1 times by all elements in the
groupWg,N . This choice has to be done for each partition
r(N). Denote byP the set of paths associated towg. Then,
P = P ′⋃P ′′ whereP ′ is the set of those paths which tra-
verse bondb whereasP ′′ is the set of those paths which do
not traverseb.

Given a pathp ∈ P ′, letpc be the path segment obtained
from p upon removal ofb. GivenP ′ = {p, p′...} define

P ′
c = {pc, p′c, ...} (3.23)

This set has exactlyr path segments. Collect under a same
subgroupS the elementswg ∈ Wg,N having the property
that lineb is covered exactlyr times by all elements inS
and they all have the same subsetP ′

c with r path segments
and the same subsetP ′′. The setWg,N is the union of such
subsets, that is,∑

wg∈Wg,N (r)

wg =
∑

S⊂Wg,N (r)

∑
wg∈S

s(w)|wg | (3.24)

wheres(w) is the sign ofwg and |wg| = uN . Recall that
|u| < 1 so that|wg| < 1.

The elements inside any givenS cancel each other. De-
note byq ande the elements ofS that are inP ′ andP ′′,
respectively. Suppose that the segmentsq1, ..., qr are all dis-
tinct. (For the case with repeated segments, see [7]). The
terms inS are precisely those which can be obtained by
joining the ends of the segments and this can be done in
exactlyr! ways. This gives the possible termswg in the sub-
group. From the properties of the permutation group half of
N ! permutations are odd and half are even and so the signs
of half of the terms are positive and half are negative, hence,
a cancellation takes place.

Using (3.14), the partition function of the two dimen-
sional Ising model can now be expressed as a product over
paths as follows:

ZN (u) = 2N
2
(1− u2)−N(N−1)

∏
[p]

[1 +Wp(u)] (3.25)

The next step consists in expressing the product over[p] as
an integral. This will be achieved in the next section.

IV Paths amplitudes and Onsager’s
formula

Consider all paths that start at a fixed siteP1 which we take
as the origin with coordinates(0, 0) and end at the sitePn+1

with coordinates(x, y) in n steps. Starting at(0, 0) and
whenever a site is reached there are four possible directions
which a path can take (see Figure 2 and the Remark below).
The patha) continues forward in the same direction of the
previous step;b) it turns left 900 relative to the previous
step;c) it turns right900 relative to the previous step;d) it
turns1800. To each one of this possibilities it is assigned
an “amplitude” which is given by:A) u for the casea); B)
uα for the caseb); C) uᾱ for the casec) andD) 0 (zero)
for the cased), whereu = tghK andα = eiπ/4 is the
contribution to the sign ofp each time it turns left (coun-
terclockwisely) relative to the previous step andᾱ, when it
turns right (clockwisely). See the Remark after Example 1,
sec. 3.2.
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(a)

✲✲

(b)

✲ ✻

✲

❄

(c)

✲✛

(d)

Figure 2: Directions which a path can take

at a valence 4 site.

Remark. The lattice being finite it has a border so that when
a path strikes a site on the border it may have there only two
or three possible directions to follow. In the spirit of refs.
[7,9] we shall neglect the border and derive the relevant for-
mulas as if there was no border at all with the justification
that in the limitN → ∞ which we shall take in the end
of the calculation border effects dissapear. Of course, an-
other approach would be to do everything on a toroidal lat-
tice. In this case, however, relation (3.14) must be replaced
by another more involved identity apropriate for the toroidal
lattice ( given in refs. [4, 10] ). We shall restrict the presen-
tation to the planar case only.

Call Un(x, y) the amplitude of arrival at(x, y) moving
upward in then-th step,Dn(x, y) the amplitude of arrival at
(x, y) moving downwards in then-th step,Ln(x, y) the am-
plitude of arrival at(x, y) moving from the left in then-th
step, andRn(x, y) the amplitude of arrival at(x, y) moving
from right in then-th step.
If the path arrives at(x, y) moving upward in the n-th step
then

Un(x, y) = uUn−1(x, y − 1) + 0Dn−1(x, y − 1)

+uαLn−1(x, y − 1) + uᾱRn−1(x, y − 1) (4.1)

whereUn−1,Dn−1, Ln−1 andRn−1 are the amplitudes as-
sociated to the four possibilities to reach site(x, y− 1). Re-
lation (4.1) can be understood as follows. If(x, y − 1) is
reached going up a bond in the(n − 1)-th step, there the
amplitude isUn−1(x, y − 1) so in then-th step as the path
follows the same direction of the previous step, by the rules
a) andA) above, a factoru is multiplied to the amplitude
Un−1(x, y − 1). See Figure 3.

✻

(x,y)�

�

✻

(x,y-1)

Figure 3:p goes up to(x, y − 1) and(x, y)
in the(n− 1)-th andn-th steps.

If the site(x, y − 1) is reached from the left in the(n− 1)-
th step (Figure 4), the path has to make a counterclockwise
rotation to go to(x, y) in then-th step. By the rulesb) and
B) a factoruα should then be multiplied to the amplitude
Ln−1(x, y − 1).

✻

✲

(x,y)�

� (x,y-1)

Figure 4.p turns counterclockwise at(x, y − 1)
to go to(x, y) in the n-th step.

The case that the path goes down to(x, y−1) in the(n−1)-
th step and goes up to(x, y) in then-th step corresponds to
a 1800 rotation. By rulesd) andD) the amplitude should
be0.Dn−1(x, y − 1). If the site(x, y − 1) is reached from
the right the path has to make a clockwise rotation to go to
(x, y) (Figure 5). By the rulesc) andC) a factoruᾱ should
then be multiplied to the amplitudeRn−1(x, y − 1).

✻

✛

(x,y)�

�

(x,y-1)

Figure 5.p turns clockwise at(x, y − 1) to

go to(x, y) in the n-th step.

Analogously, if a path arrives at(x, y) in then-th step going
down the amplitude is given by the relation

Dn(x, y) = 0Un−1(x, y + 1) + uDn−1(x, y + 1)

+uᾱLn−1(x, y + 1) + uαRn−1(x, y + 1) (4.2)
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If it arrives at(x, y) coming from the left then the amplitude
is given by

Ln(x, y) = uᾱUn−1(x− 1, y) + uαDn−1(x− 1, y)

+uLn−1(x− 1, y) + 0Rn−1(x− 1, y) (4.3)

At last, if it arrives at(x, y) coming from the right the am-
plitude is

Rn(x, y) = uαUn−1(x+ 1, y) + uᾱDn−1(x + 1, y)

+0Ln−1(x + 1, y) + uRn−1(x+ 1, y) (4.4)

Of course to compute an amplitude using the above recur-
sion relations it is needed the amplitude in the zero-th step.
We shall follow the convention of reference [10], namely,
that in the zero-th step a path arrives at the origin moving up-
ward so thatU0(x, y) = δx,0δy,0 andD0 = R0 = L0 = 0.
The amplitude to arrive in zero steps is one if the path ar-
rives going upward at the origin and zero for any other point
or any other direction of arrival.
Example 2. See Figure 6. Let’s compute the amplitude of
arrival at site (2,1) in 3 steps moving upward in the third
step. Only one path is possible in this case. Using the recur-
sion (4.1),

U3(2, 1) = uU2(2, 0) + 0D2(2, 0)

+uαL2(2, 0) + uᾱR2(2, 0) (4.5)

�

(2,1)
�

��

(0,0) (1,0) (2,0)

Figure 6: The path in Ex. 2.

In the second step, the path moves to site (2,0) coming from
the left soU2 = D2 = R2 = 0 andU3(2, 1) = uαL2(2, 0).
From (4.3),

L2(2, 0) = uᾱU1(1, 0)

+uαD1(1, 0) + uL1(1, 0) + 0R1(1, 0) (4.6)

with U1 = D1 = R1 = 0 so thatU3(2, 1) = u2αL1(1, 0)
where

L1(1, 0) = uᾱU0(0, 0) + uαD0(0, 0)

+uL0(0, 0) + 0R0(0, 0) = uᾱ (4.7)

implying thatU3(2, 1) = u3.
Example 3. Let’s now compute the amplitude of arrival at
(2,1) in 3 steps moving from the left in the third step. In this
case, the possible paths are shown in Figure 7a) and 7b).

� �

� �

✻

✲

✲

(0,0) (1,0)

(1,1) (2,1)

(a)

�

✻

(0,0)

(0,1)
� � �

(1,1) (2,1)

(b)

Figure 7: The paths in Ex. 3.

Using relation (4.3), the amplitude is

L3(2, 1) = uᾱU2(1, 1)

+uαD2(1, 1) + uL2(1, 1) + 0R2(1, 1) (4.8)

Using (4.1),

U2(1, 1) = uU1(1, 0) + 0D1(1, 0)

+uαL1(1, 0) + uᾱR1(1, 0) (4.9)

SinceU1 = D1 = R1 = 0, one finds thatU2(1, 1) =
uαL1(1, 0) = uαuᾱ = u2. Using (4.3), withD1 = L1 =
R1 = 0,

L2(1, 1) = uᾱU1(0, 1) + uαD1(0, 1)

+uL1(0, 1) + 0R1(0, 1) = uᾱu (4.10)

Therefore,L3(2, 1) = 2u3ᾱ.
Definition 4.1. The partial amplitude of a pathp of length
n is given by

W p(u) =
∏

α
∏

ᾱ un (4.11)

Definition 4.2 . The amplitude
∑

pW p(n,P1)(u) of arrival
atPn+1(x, y) from any direction inn steps is given by

Un(x, y) +Dn(x, y) + Ln(x, y) +Rn(x, y) (4.12)

Example 4. The partial amplitudes for the paths in Figure 6,
7a) and 7b) areu3, ᾱu3 andᾱu3, respectively. The ampli-
tude of arrival at (2,1) from any direction in 3 steps is, then,
u3 + 2ᾱu3.
Definition 4.3. Fix n and callCn(x, y) the set of all paths
of lengthn starting at(0, 0) and arriving at(x, y). Given
p ∈ Cn andFn ∈ B(x, y) where

B(x, y) = {Un(x, y), Dn(x, y), Ln(x, y), Rn(x, y)}
(4.13)

Define the extension ofFn(x, y), denoted by the same sym-
bol, so as to include sites(x, y) which can be reached
only by a numberm > n of steps but in this case set
Fn(x, y) = 0.
Lemma. The transform ofFn, the functionF n(ε, η), 0 ≤
ε ≤ 2π and0 ≤ η ≤ 2π, given by

Fn(ε, η) =
∞∑

x=−∞

∞∑
y=−∞

Fn(x, y)e−iεxe−iηy (4.14)
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is well defined and

Fn(x, y) =
∫ 2π

0

∫ 2π

0

eiεxeiηyFn(ε, η)
dεdη

(2π)2
(4.15)

Proof: Fn(x, y) = 0 for | x |> n or/and| y |> n. Then,
for fixedn the sums in (4.14) have only a finite number of
terms.

Using (4.14), the transform ofUn(x, y) is:

Un(ε, η) =
∞∑

x=−∞

∞∑
y=−∞

Un(x, y)e−iεxe−iηy (4.16)

Upon substitution of (4.1), and making the changeȳ = y−1
it follows that

Un(ε, η) = ue−iηUn−1(ε, η)

+0D̄n−1(ε, η) + uαe−iηLn−1(ε, η) + uᾱe−iηRn−1(ε, η)

(4.17)

Similarly, we obtainDn(ε, η), Ln(ε, η) andRn(ε, η):

Dn(ε, η) = 0Un−1(ε, η) + ueiηDn−1(ε, η)

+uᾱeiηLn−1(ε, η) + uαeiηRn−1(ε, η) (4.18)

Ln(ε, η) = uᾱe−iεUn−1(ε, η) + uαe−iεDn−1(ε, η)

+ue−iεLn−1(ε, η) + 0Rn−1(ε, η) (4.19)

Rn(ε, η) = uαeiεUn−1(ε, η) + uᾱeiεDn−1(ε, η)

+0Ln−1(ε, η) + ueiεRn−1(ε, η) (4.20)

Call ψn(ε, η) the matrix

ψn =
(
Un Dn Ln Rn

)
(4.21)

Then, from (4.17-20) we obtain that

ψn(ε, η) = ψn−1(ε, η)uM, (4.22)

where

M =




v 0 αh αh
0 v̄ αh̄ ᾱh
αv αv h̄ 0
ᾱv αv̄ 0 h


 (4.23)

with v = e−iη, h = e−iε, h = eiε, v = eiη andα = ei
π
4 .

Call 1, 2, 3 and4 the directions shown in the Figure 8
below:

✻

1

2

✲✛4

❄

3

Figura 8. Directions associated toMij .

Notice that the subindicesi, j ofMij are in one-to-one with
the directions. Indeed,uM1j corresponds to the amplitude
of arrival at(x, y) ( in (ε, η) space) coming up in the(n−1)-
th step,∀j, but going up ifj = 1, down if j = 2, coming
from the left if j = 3 and coming from the right ifj = 4
in then-th step. Therefore,uM1j is the amplitude of arrival
at (x, y) ( in (ε, η) space ) following directions1 andj in
the(n − 1)-th andn-th steps, respectively. More generally,
uMij is the amplitude of arrival at(x, y) following direc-
tionsi andj in the(n− 1)-th andn-th steps, respectively.
From now on only closed paths starting at (0,0) and arriving
at (0,0) inn steps will be considered. From (4.22) it follows
that

ψn(ε, η) = ψn−1(ε, η)(uM)

= ψn−2(ε, η)(uM)2 = · · · = ψ0(uM)n (4.24)

Denote byψ0,i, 1 ≤ i ≤ 4, the line matrix with the only
element distinct from zero and equal to1 in the i-th col-
umn. Letψ0 ≡ ψ0,i according to whether the path arrives
at the origin moving up (i = 1), down (i = 2), from the left
(i = 3) or from the right (i = 4), respectively. Then

Fn(ε, η) = ψ0,i(uM)nψT0,i (4.25)

wherei = 1, 2, 3, 4 if F = U,D,L,R, respectively, andΨT

is the transpose ofΨ and

∑
Fn∈Bn

Fn(ε, η) =
4∑

k=1

ψ0,k(ε, η)(uM)nψT0,k(ε, η) (4.26)

Given a4 × 4 matrixA, ψ0,iA is the line matrix formed by
the elements in thei-th line ofA, that is,

ψ0,iA =
(
Ai,1 Ai,2 Ai,3 Ai,4

)
(4.27)

soψ0,iAψ
T
0,i = Aii. Therefore, the sum overi equals the

trace ofA. Thus,

4∑
k=1

ψ0,k(uM)nψT0,k = Tr(uM)n (4.28)

The total partial amplitude of arrival at(0, 0) of closed paths
moving in any direction inn steps given by (4.12) can be ex-
pressed compactly as

∑
Fn∈Bn

Fn(0, 0) (4.29)

From (4.15), (4.26) and (4.28), it follows that

∑
Fn∈Bn

Fn(0, 0) =
∫ 2π

0

∫ 2π

0

Tr(uM)n
dεdη

(2π)2
(4.30)

To better understand relation (4.30), consider the matrix
unMn, for somen. An element(unMn)i1in+1 of this ma-
trix is given as
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�

(unMn)i1in+1 =
4∑

i2,...,in=1

uMi1i2uMi2i3 . . . uMin−1inuMinin+1 . (4.31)

�

Recall thatuMi,j is the partial amplitude of a path arriving
at a site coming from directioni and going to the next site in
one step following directionj. Thus, each term in the r.h.s.
of (4.31) is the amplitude of a path of lengthn starting atP 1

coming from directioni1, going toP2 following directioni2,
etc, and arriving at sitePn+1 following directionin+1 after
n steps. The element(unMn)i1in+1 gives the total partial
amplitude of arrival atPn+1 in n steps in(ε, η) space.

The terms in(unMn)i1in+1 describe open as well as
closed paths. Let’s see some examples.
Example 5. Take n = 5, i1 = 2 and i6 = 1. The
termM23M31M11M14M41 describes a path beginning at
P1 where it arrived coming from directioni1 = 2, going
to P2, P3, P4, P5 and toP6 following directionsi2 = 3,
i3 = 1, i4 = 1, i5 = 4 andi6 = 1, respectively. See Figure
9a).
Example 6. Take n = 6, i1 = i6 = 2 and the term
M23M31M11M14M42M22 of (M 6)22. This term describes
the closed path in Fig. 9b. The elements ofM n out-
side the diagonal have associated to them only open paths.
This is implied by the simple fact that these elements have
i1 �= in+1. Closed paths are to be found only in the diagonal
elements since therei1 = in+1. However, open paths can
also be associated to some terms in the diagonal elements.
Let’s see some examples.

�P1 ✲ � P2

✻

�

✻

� P4

P3

✛�P5

✻

�P6

(a)

�

� �

��

�P1

P6

P5

P2

P3

P4

✻❄

✲

❄
✻

✛

Figure 9: Paths in (a) Ex. 5 and in (b) Ex. 6.

(b)

Example 7. Taken = 2, i1 = i3 = 1 and the element
(M2)11 =M11M11+M12M21+M13M31+M14M41 with

u2(M2)11 = u2v2+0+u2(αh)(αv)+u2(αh)(αv) (4.32)

To each one of the terms of(M 2)11 correspond the paths

(a), (b), (c) and (d), respectively, shown in Figure 10.

�

P3
�

P2
�

P1

(a)

✻

✻

✻

�

P1

� P2

(b)

✻

❄

�

P3

P1P2

�

�✛
✻

✻

(c)

✲
✻

�

P1 P2

P3

�

�

✻

(d)

Figure 10: Paths in(M 2)11
.

Example 8. Taken = 4 and consider the following terms in
(M4)11:

a)The termu4M11M11M11M11 = u4v4 is the amplitude of
the open path shown in fig. 11 below.

�

�

�

�

�

✻

✻

✻

✻

Figure 11: Path(M11)4.

b) The termM11M11M13M31 = vv(αh)(αv) = v3h̄v
whose associated open path is shown in Figure 12.
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�

�

� �

�

✻

✻

✲
✻

P1

P2

P3 P4

P5

Figure 12: PathM11M11M13M31.

c) The termu4M13M32M24M41 = u4(αh)(αv)(αh)(αv) =
u4α4(hh)(vv) = u4α4 is the amplitude of the closed path
shown in Fig. 13:

�

�

P2

P1P4

P3
�

�✲

❄
✻

✛

Figure 13: PathM13M32M24M41.

In order to restrict to the elements ofM n having closed
paths we must take the trace ofM n. A closed path begins
at and return toP1 aftern steps. Since it is closed it has to
covern/2 horizontal bonds in one direction andn/2 hori-
zontal bonds following the opposite direction. The same is
true for the vertical bonds traversed byp. So, if the term
Mi1i2Mi2i3 . . .Min−1inMinin+1 , in+1 = in, describes a
closed path, then the number ofh’s (v’s) equals the number
of h̄’s (v̄’s) appearing in it. In this case, it’s possible to or-
ganize the term into a product of pairshh̄ = 1 andvv̄ = 1
and the double integral inε andη will give (2π)2 times a
product ofα’s andᾱ’s. More precisely, the double integral
over a closed path inTrM n equals

(2π)2
∏

α
∏

α (4.33)

where the first product is over all counterclockwise rotations
and the second is over all clockwise rotations, so∏

α
∏

α = (−1)t(p) (4.34)

wheret(p) is the number of complete2π revolutions per-
formed by a tangent vector traversing the closed pathp. Re-
mind that one has yet to multiply (4.34) by(−1) in order to
get the complete signs(p) of p.

If a path is open theh’s, h̄’s (v’s, v̄’s) don’t match up
into pairs. There will be left integrals of the form

∫ 2π

0

eikθdθ = 0, (4.35)

whereθ stands forη or ε andk ≥ 1, hence, the integrals inη
andε remove completely terms describing open paths. Let’s
see examples.
Example 9. Taken = 1. In this case there are only open
paths and

∫ 2π

0

∫ 2π

0

dηdεMij = 0, ∀i, j (4.36)

Example 10. Using (4.35), in ex. 7,

∫ 2π

0

∫ 2π

0

dηdε(M2)11 = 0 (4.37)

Example 11. It is clear that∫
dεdη(Mn)ij = 0 ∀i, j (4.38)

if n = 1, 2, 3, which is guaranteed by the fact that in a square
lattice closed paths are possible only ifn ≥ 4. In the case
n = 2 the path in Figure 10.b) is closed but it traverses the
same edge back and its amplitude is thus zero.
Example 12. Using (4.35) in ex.8, for the term
M11M11M11M11 = v4

∫ 2π

0

∫ 2π

0

v4dηdε = 2π
∫ 2π

0

e−4iηdη = 0. (4.39)

For the termM11M11M13M31 = v3h̄,

∫ 2π

0

dηdεv3h̄ = 0 (4.40)

For the termM13M32M24M41 = α4 which describes a
closed path the result

1
(2π)2

∫ 2π

0

dηdεα4 = α4. (4.41)

follows which has the form (4.33-34) with̄α4 ≡ 1.
Given a closed path in(M n)ii, the inverse path is

present in some(Mn)jj , j �= i. For instance, in(M 4)11
there are the closed paths shown in Fig. 14 given by the
termsM14M42M23M31 andM13M32M24M41.

�

P1

✲

❄
✻

✛

(a)

�

P1

✛
✻

❄

✲

(b)

Figure 14: Paths (a)M14M42M23M31

and (b)M13M32M24M41.
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In (M 4)22 there are the termsM24M41M13M32 and
M23M31M14M42 , with associated closed paths shown in
Fig. 15c and 15d, respectively:

�

P1
✛

✻
❄

✲

(c)

�

P1
✲

❄
✻

✛

(d)

Figura 15: Paths (c)M24M41M13M32

and (d)M23M31M14M42

In (M 4)33, there are the termsM32M24M41M13 and
M31M14M42M23 with associated closed paths shown in
Figure 16e) and 16f), respectively.

�P1

✛
✻

❄

✲

(e)

�

P1
✲

❄
✻

✛

(f)

Figura 16. Paths (e)M32M24M41M13

and (f)M31M14M42M23

In (M 4)44, there are the termsM42M23M31M14 and
M41M13M32M24 with the associated closed paths shown
in Figure 17g) and 17h), respectively.

�P1

✲

❄
✻

✛

(g)

�P1 ✛
✻

❄

✲

(h)

Figura 17. Paths (g)M42M23M31M14

and (h)M41M13M32M24

Note that (e) is the inversion of (a), (f) is the inversion of
(c), (g) of (b), and (h) of (d).

So restricting to the diagonal terms ofM n which
amounts to take the trace of this matrix and then performing
a double integration on the angles to eliminate open paths,
dividing the result by 2 to eliminate inversions, and multi-
plying the result by−un gives the total complete amplitude

( with the right signs ) to arrive back atP1 in n steps mov-
ing in any direction. We have thus achieved the following
relation:

∑
p(n,P1)

Wp(u) = −1
2

1
(2π)2

∫ 2π

0

∫ 2π

0

dεdηT r(uM)n

(4.42)
The above result is restricted to a fixed siteP1. For the fi-
niteN ×N lattice withN 2 sites and disregarding boundary
effects, the total (independent of site) amplitude of closed
paths of lengthn is:

N2
∑

p(n,P1)

Wp(u) ≡
∑
p(n)

Wp(u)

= −N
2

2
1

(2π)2

∫ 2π

0

∫ 2π

0

dεdηT r(uM)n (4.43)

Taking allN 2 sites into account imply that given a closed
pathp(n), the summation

∑
p(n)W (p) includes all circular

permutations ofp. To eliminate these the previous relation
has to be divided byn. Then, the amplitude is given by

1
n

∑
p(n)

Wp(u) = −N
2

2
1

(2π)2

∫ 2π

0

∫ 2π

0

dεdη
T r(uM)n

n

(4.44)
We notice that a nonperiodic path appearsn times in the
sum but a periodic path of lengthn and periodw hasn/w
distinct starting points only and for this reason it appears
n/w times in the sum over paths. For instance, the periodic
path(Dj1Dj2)(Dj1Dj2)(Dj1Dj2) of lengthn = 6 and pe-
riod w = 3 has only two distinct starting points. The other
equivalent periodic path isDj2(Dj1Dj2)(Dj1Dj2)Dj1 . Af-
ter division byn, periodic paths with periodw will show up
in the sum with a weight1/w. Thus, the above relation in-
cludes all closed paths of lengthn over theN × N lattice,
periodic and nonperiodic, and excludes inversions and cir-
cular permutations. The total amplitude of closed paths of
any length is then given by the series

∑
n

1
n

∑
p(n)

Wp(u) =

∞∑
n=1

−N
2

2
1

(2π)2

∫ 2π

0

∫ 2π

0

dεdη
T r(uM)n

n
(4.45)

whose convergence will be investigated below. We note that
since the lattice is square, closed paths with nonzero am-
plitude are possible only forn > 3 but in view of relation
(4.38) in Ex. 11 we can write the series in (4.45) starting
fromn = 1.

With the above remarks,

∞∑
n=1

1
n

∑
p(n)

Wp(u) ≡
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∑
[p]

[Wp(u)− 1
2
(Wp(u))2 +

1
3
(Wp(u))3 − ...] (4.46)

In
∑

[p] the first term is the sum ofWp(u) over all nonpe-
riodic paths. The other terms give the sum over all periodic
paths since any periodic path is the repetition of some non-
periodic pathp with period given byw = 2, 3, .... In section
3.2 the sign of a periodic path was proved to be−1 if w is
even and equal to the sign of its nonperiodic subpath ifw is
odd. This explains the signs in the r.h.s of (4.46).

Since |u| < 1 then |W | < 1 and the series between
brackets converges toln(1 + W ), and the r.h.s. of (4.46)
equals to∑

p

ln(1 +Wp(u)) = ln
∏
p

(1 +Wp(u)). (4.47)

a result to be used below.
Theorem 4.1. Take|u| ≤ r < 1

4 . Then, the series

∞∑
n=1

un(Mn)ij
n

(4.48)

converges uniformily.
Proof: We have that|Mij | ≤ 1, ∀i, j = 1, 2, 3, 4, so from
(4.31) we get

| (Mn)ij |≤ 4n−1 (4.49)

and ∣∣∣∣un(Mn)ij
n

∣∣∣∣ ≤ 4n−1 | u |n
n

(4.50)

The series ∞∑
n=1

(4 | u |)n
n

(4.51)

converges for|u| ≤ r < 1
4 , hence, by WeierstrassM -test

the series (4.48) converges uniformly for|u| ≤ r < 1/4.
We may conclude that the series

∑∞
n=1

−(uM)n

n con-
verges uniformly to the matrixln(1− uM) in the same in-
terval.

We may now integrate the series term by term to get
the series (4.45) which likewise converges uniformly in the
same interval. Interchanging integration and summation in
(4.45) yields

N2

2
1

(2π)2

∫ 2π

0

∫ 2π

0

dεdηT r

∞∑
n=1

− (uM)n

n

=
N2

2
1

(2π)2

∫ 2π

0

∫ 2π

0

dεdηT rln(I − uM) (4.52)

From the previous analysis,|u| ≤ r < 1/4. However, the
r.h.s. of (4.52) is well defined in a bigger domain. Using the
relation

Trln(I − uM) = lndet(I − uM) (4.53)

which is valid fordet(1− uM) �= 0 [18], we get

N2

2
1

(2π)2

∫ 2π

0

∫ 2π

0

dεdηlndet(I − uM) (4.54)

The determinant can be easily computed and one finds that

det(1− uM) = (u2 + 1)2 − 2u(1− u2)(cos ε+ cos η)
(4.55)

Taking the logarithm on both sides of relation (3.24) gives

lnZ(u)
N2

= ln2+2(1− 1
N
)ln(coshK)+ ln

∏
p

[1+Wp(u)]

(4.56)
or, using (4.45-47), (4.52,4.54),

lnZ(u)
N2

= ln2 + 2(1− 1
N
)ln(coshK)

+
1
8π2

∫ 2π

0

∫ 2π

0

dεdηlndet(1− uM) (4.57)

Using (4.55) withu = tanhK and the relations

u =
1
2
sinh(2K)(1− u2) (4.58)

(1 + u2)2 = cosh2(2K)(1− u2)2 (4.59)

(1− u2) =
1

cosh22K
(4.60)

gives

det(1− uM) = cosh−42K
[
(cosh2K)2

−(sinh2K)(cosη + cosε)] (4.61)

Onsager’s formula follows from (4.57) after taking the
limit N → ∞:

− f

kBT
= ln2 +

1
2π2

∫ π

0

∫ π

0

dεdηln
[
(cosh2K)2

−sinh2K(cosη + cosε)] (4.62)

wheref is the free energy per site in the thermodynamical
limit ( see (2.5)).

The integral in (4.62) can not be evaluated in terms of
simple functions. The derivatives of the integral however
can be expressed in terms of elliptic functions [2,15,19].

Set2k = tanh2K/cosh2K. Then,

− f

kBT
= ln2 + ln(cosh2K)

+
1
2π2

∫ π

0

∫ π

0

dεdηln [1− 2k(cosη + cosε)] (4.63)

Expanding the logarithm in powers ofk it follows that

− f

kBT
= ln2+ln(cosh2K)−

∞∑
n=1

(
(2n)!
(n!)2

)2

k2n (4.64)

The series converges for|2k(cos ε+cos η)| ≤ 4|k| < 1. For
k > 0 (J > 0) and atk = 1/4, that is, at the critical value
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K = Kc ( or temperatureTc = 2Jk−1
B ln−1(

√
2+1) ) given

by
2senh2Kc = cosh22Kc (4.65)

it diverges. ( Similarly, forJ < 0 which impliesk < 0 and
divergence atTc = 2Jk−1

B ln−1(
√
2− 1) ).

The internal energyU is given by

U = −kT 2 ∂

∂T

f

kT
(4.66)

From (4.63),

U = −Jcoth(2K)
[
1 + (sinh22K − 1)I(2K)

]
(4.67)

where

I(2K) =
1
π2

∫ π

0

dεdη

cosh2(2K)− sinh(2K)(cosε+ cosη)
(4.68)

By performing one of the integrals its found that

U = −Jcoth(2K)
[
1 + (2tanh22K − 1)

2
π
F (k1)

]
(4.69)

wherek1 = 4k andF (k1) is the complete elliptic integral
of the first kind defined by

F (k1) =
∫ π/2

0

(1 − k2
1sen

2θ)−
1
2 dθ (4.70)

The elliptic functionF ( see Ref. [19] ) has the property that

F → ln[4(1− k2
1)]

−1/2 (4.71)

ask1 → 1−. So it diverges logarithmically atk1 = 1, or at
the valueKc given by (4.65).

In relation (4.69) forU the functionF is multiplied by
(2tanh22K − 1) which is zero at the critical pointKc.
Indeed, from the identitycosh2x = 1 + sinh2x relation
(4.65) implies thatsinh(2Kc) = 1. Using this and (4.65),
tanh22Kc = 1/2 follows. So the functionU is continuous
atKc.

The specific heat can be computed from the definition

C =
∂U

∂T
(4.72)

It is given by

C =
2k1

π
(Kcoth2K)2{2F (k1)− 2E(k1)

+2(tanh22K − 1)G(k1)} (4.73)

where

G(k1) =
π

2
+ (2tanh22K − 1)F (k1) (4.74)

andE(k1) is the complete elliptic integral of the second
kind, defined by

E(k1) =
∫ π/2

0

(1− k2
1sen

2θ)
1
2 dθ (4.75)

which is well defined atk1 = 1. From the exact result (4.73)
it follows that the specific heat is logarithmically divergent
at the critical point.
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