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In 1952, Kac and Ward developed a combinatorial formulation for the two-dimensional Ising model which is
another method of obtaining Onsager’s famous formula for the free energy per site in the termodynamic limit
of the model. Feynman gave an important contribution to this formulation conjecturing a crucial mathematical
relation which completed Kac and Ward ideas. In this paper, the method of Kac, Ward and Feynman for the free
field Ising model in two dimensions is reviewed in a self-contained way and Onsager’s formula is computed.

Em 1952, Kac e Ward desenvolveram uma formatacombinatorial do modelo de Ising em duas dinoess™
que € um outro netodo para se obter a famogarfiula de Onsager para a energia livre pdiosio limite
termodirdmico do modelo. Feynman fez importante contrjboia esta formul@o conjecturando uma reke
matenatica crucial que completou asids de Kac e Ward. Neste trabalho, etodo de Kac, Ward e Feynman
para o modelo de Ising em duas dimeesSem campe revisada e aofmula de Onsager ¢alculada.

| Introduction on by another proof by Burgoyne [7]. A somewhat simi-

lar treatment to the combinatorial formulation of Kac, Ward
The aim of statistical physics is to understand the macro- and Feynman can be found in refs. [12-14]. An important
scopic behaviour of a system formed by a very large number variant of the combinatorial formulation using the so called

of particles from information about how they interact with  Pffafians was developed by Green and Hurst [10].
each other. One way in which one can gain insight into this

problem and thus about complex systems is by constructing
idealized models which hopefully will exhibit some of the
interesting features of real systems like phase transitions.
Perhaps the most studied of these idealized models is th
Ising model so called in honor to his first investigator, Ernst
Ising (1900-1998).

The model was originally proposed as a simple model o _ o
of ferromagnetism. In ref. [1] Ising investigated the model ~ TN€ objective of the present paper is to review in a self-
in one dimension and computed exactly its partition func- contained way the calculation of the Onsager's formula for
tion. In 1944, Onsager [2] considered the free field model e two dimensional free field Ising model in the combina-
in two dimensions and succeded to compute the partition torial formulation of Kac, Ward and Feynman. Our presen-
function exactly. His method became known as the alge- {@tion follows chapterV, section V.4, of Feynman's book [9]
braic formulation of the model. In 1952, Kac and Ward [3] 2nd the paper by Burgoyne [7] although we have tried to be
developed a quite different method of obtaining Onsager re- MOre careful with the mathematics involved than these ref-
sults known as the combinatorial formulation of the Ising E€r€nNces are.
model. Feynman developed the method farther and conjec-  The paper is organized as follows. In section I, the Ising
tured an identity relating functions defined on graphs and model is defined. In section Il and through its various sub-
functions defined on paths on a square lattice [4, 7]. This sections the combinatorial formulation of Kac, Ward and
identity is a crucial element in the combinatorial formulation Feynman of the partition function is given. In section 1V,
of Kac, Ward and Feynman of the Ising model. The identity Onsager’s formula for the free energy per site in the thermo-
was later formally proved by Sherman [4-6], followed later dynamic limit is computed.

The bibliography on the Ising model is vast and to give
a full list of references is virtually impossible. A nice intro-
duction to the model though is the paper by B. Cipra given in
ref. [17]. Old surveys but still useful on the distinct formu-
Sations of the Ising model in two dimensions and its history
can be found in refs. [10-11, 15-16] together with full lists
of original references.

*e-mail: gatcosta@mtm.ufsc.br
fSuported by a PIBIC/CNPQ - BIP/UFSC fellowship
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Il  Definition of the model [l  Thecombinatorial formulation

The model is defined on a finite planar square lattice  Inthe combinatorial formulation the partition function is ex-
which mimic a regular arranjement of atoms in two dimen- pressed as a sum over special subsets of the lattizadled
sions. Suppose the lattice is embedded in the plane withadmissible graphs. Next, using a relation first conjectured

sites having coordinates i x Z. To each site of A it is by R. Feynman the resulting expression is converted into a
assigned two possible states also called “spins” and denotegroduct over paths. The final step towards the Onsager’s for-
by o;, whereo; = +1 oro; = —1. The interaction energy  mula to be accomplished in section IV consists in deriving

between two particles located at the¢h andj-th sites and  an integral representation for this product.
in the states; ando;, respectively, is postulated to be

[11.1 The partition function as a sum over

—Joo; ifi,jaren.n.
Eij = { 7igg graphs

0 otherwise
Let's rewrite the partition function (2.4) as

(2.1)
where “n.n" stands for nearest neighbors, hence, in the Ising Zn(K) = Z . Z H eKaio (3.1)
model it is assumed that the energy depends only on short o1=+1 on—"+ln.n.

range interactions. The energy-is/ if the nearest neigh-

bors are in the same state and if the states are distinct.  with K = +,€BLT. Noting thato;0; = %1, it follows that
The constanf’ which can be positive or negative is a param-

eter for the model. , Kooy — otK _ (0h K 4+ sinh K (3.2)
Suppose\ hasN? sites. Then, there a2V distinct con-

figurations of the spins and, therefoes?” configurations  and

o = (o1,...,0n2) Of the system. Calb = {0} the set of

possible configurations of the system. The energy of each H efoivi = (1 —u?) 2 H(l + oi0ju). (3.3)
configurations € S is given by n.n. n.n.

B, =—J Z 0i0; (2.2) whereu = tanh K andz = 2N (N — 1) is the number of
bonds inA. Notice that « |< 1, forany K.

) o Definition 3.1. An admissible graph is a connected or dis-

Suppose as well the system is at equilibrium temperature gnnected subset of whose sites have even valence.

given byT'. According to statistical mechanics, the proba- pfinition 3.2. Given an admissible graph, define
bility p, to find the system in the configuratieris ’

n.n.€o

= u = UL .
o= L BE (2.3) falw) = 161 (34

Z(B3)

L_ I is Boltzmann constant, and

L where the product is over the bondsf G.
BT’

Theorem 3.1. Call A the set of all admissible graplds of
Z(B) _ ZefﬁEc,. (24) A. Then,

wheregs =

is the so called partition function of the model. This simple  Z(u) = 2V (1 —u?)~N®=1 <1 + IG(“)) (3.5)
looking function is simple to compute exactly only in one GeA

dimension, difficult but possible to compute exactly in di-
mension two. In three dimensions nobody knows how to do
it.

Proof: To each pait, j of nearest neighbors df there cor-
respond atermo;o; and a bond. Since the number of pairs
i,7 of n.n. coincide with the number = 2N (N — 1) of

The exact knowledge df (3) allows one to obtain infor- : : :
mation about the global behaviour of the system. Important bonds ofA the p_roduct on the RHS of (3.3) is a polinomial
of degreer, that is,

guantities that are relevant to understand the physics of the
system are all defined in termsfZ or its derivatives. For =
msta_nc_e, _th_e frec_e energy per lattice sften the thermody- H(1 +uoio;) =1+ Z“p Z(%%)  (Oigy 1 Tiny)
namic limit is defined as . =1  nn
log Z L . (3.6)

N (2.5) The second summation is over all possible productg of
pairs(o;0;) of n.n. of A where a pair is not to occur twice in
A basic problemis to find a closed form, analytic expression the same product. To each péir;o;) there is associated a
for f. Phase transitions will appear as singularitieg iar bond connecting the neighbarand; so to each product of

in one of its derivatives. p pairs correspond a graph (connected or disconnected). So,

= kol Jim,
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the second summation is over all graphs witbonds. The once a total angle given by 7 = 2 after its return ta: so
graphs may have sites with valence, 3 or4. The summa-  in this caset = 1 ands(p) = +1. For the path in Figure
tions over the sping;’s eliminate graphs having sites with  1b), the total angle turned i35 — 35 = 0 sot = 0 and
odd valence becausg o; = 0 and)_ o3 = 0. The graphs  s(p) = —1.

left are those whose sites have valence 2 or 4, thus admis-
sible. If Vi is the number of sites in a admissible graph
G then there is a facta2V< associated to it because each
site of G contributes a facta2 coming from_ o = 2 and

> 0;1 = 2. The sum over includes all thes; and not only
those with siteg in G. The summation over the sites not in

G will give a factor2V —Ve wherel” = N2 is the number of
sites in the lattice, hence, in the end one gets the factor

I11.2 The partition function as a product over @) (b)
paths

Let's orient and number the bondsivith distinct pos- Figure 1: Examples of paths with (ap) = +1
itive integers and callA with this indexation a colored lat-
tice. and (b)s(p) = —1.
Definition 3.3. A pathp over A is an ordered sequence of Remark. In section 1V, instead of assigning an angle /2
bonds each starting at the site where the previous one endedo a turn we will count the contribution to the sign by assign-
The last bond ending at the site from which the first one inga = ¢'™/* anda = e~/ to each counterclockwise and
started. Thusp is closed. The path is subjected to the con- clockwise turn, respectively, and then in the end multiplying
straint that it never goes backwards over the previous bond.the result by—1. In the example above, one gets in this
A pathp is given by a word, that is, an ordered sequence of manner(e’™/4)* = —1 and(e’™/*)3.(e~"*/*)* = +1. Mul-

symbolsD; wherei distiguishes the bonds of. A pathp is tiplying both results by-1, one recovers the correct sign for
then of the form each path.
The sign of periodic paths. Suppose the sign of the nonpe-
p= D5 D32..Dj (3.7) riodic path in between brackets in (3.10)is1) !*t. Then,

_ the sign of the periodic path with periad is (—1)! T,
for somel and wheree; = +1(—1) if the path traverses  Hence, the sign of a periodic path-isl if its period is an

bondj; following the direction (opposite direction) assigned even number and the sign equals the sign of the nonperiodic
to it. Because a path is closed it is defined to within its cir- subpath if the period] is an odd number.

cular order so that Definition 3.6. To each patty it is assigned the function
Del D62 Del — D62 DeLDel — — D61D61 Del—l IP(U) glven by
0 g = P Vi = e = Y5 Py j(H) I(u) = ! (3.12)
3.8
The inversionp—! of p is given by wherel = m, + ... +my, for somek, is the length op, m;
being the number of times borids covered byp, and the
Dj—lelpj*:llfl ..D7e (3.9) functionW, (u), “the amplitude ofy”, defined as follows:
We takep andp~! to be equivalent. Givep, denote by[p] Wy (u) = 5(p)Ip(u) (3.13)

the set of all paths equivalentpothat is, its circular permu-
tations and their inversions.
Definition 3.4. A periodic path is one which has the word

representation B
T B LTS | G
7]

Theorem 3.2. The functionsig(u) and W, (u), |u| < 1,
defined above satisfy the following relation:

for somel andw > 2 and where the subword in between _ ) _
brackets is nonperiodic. The product s over all inequivalent clas$gisof closed non-

Definition 3.5. A pathp has assigned to it a sign given by periodi_c paths. The summation is over all admissible graphs

of the finite N x N planar square lattica.
s(p) = (—1)'* (3.11) Relation (3.14) is a simpler version suitable for the Ising

model of a more general relation investigated by Sherman

wheret is the number ofr-angles turned by a tangent vec- and Burgoyne in refs. [4-7]. The difference is that they

tor while traversingp. A positive (negative) angle is as- assign to the bondsof the lattice distinct parametets,

signed to a counterclockwise (clockwise) rotation. hence, in this case the functiofs andV are given in terms

Example 1. See Figure 1a). A tangent vector starting at of these parameters. In the Ising model context under con-

point e and traversing the path shown in Figure 1a) turns sideration these are all equali@nd|u| < 1.
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According to references [4,7,10,11], relation (3.14) first ciate to the crossings of tyge= 2, 3 the sign(+1)*2(+1)
appeared as a conjecture in lecture notes by Feynman ( refso that a term with; crossings of typg = 1,2, 3 has a sign
[9], published only in 1972 and already mentioning ref. [4]). given by(—1)% (+1)%(+1)ts.

The first proof of it was achieved by Sherman in refs. [4,6]
followed by another one later on by Burgoyne in ref. [7].

The simplest nontrivial case of the general relation is inves-

tigated in ref. [8].
Below Burgoyne’s proof is essencially reproduced for
the caseu| < 1.

Proof: Expand the product over the distinct classes of non-

periodic pathgp] as1 (one) plus an infinite sum of terms of
the form

W, (W)W, (w).. W, (u) = sHu” (3.15)

for somek whereps, ..., pr is a set of nonperiodic paths
overA. The product on the r.h.s of (3.15) is over the bonds
1 traversed byp1, po, ...px, andr; says how many times.
If p1,p2,...pk traverse bond, say,m(i), ..., my (i) times,
m; > 0, respectively, them; = 2% m;(i). The signs is
the product of the signs of;, po, ..., k.

Let's prove, first, that those terms having = 1, Vi,
add up tod_ Iz (u). Consider one of these terms with as-
sociated pathg:, ps, ..., px. Each bond in the set of bonds
traversed by, po, ..., pi IS traversed only once by one of
these paths. Thus, the only possible intersection if any be
tween any two of these paths in this case can occur only at

versed by pathg,, ..., pi constitute a graph whose vertices
have valence or 4. This is an admissible graph. There-
fore, to each term of the form of (3.15) with, = 1, Vi,

one can associate an admissible graph. This graph can b
disconnected. This happen if the set of paths can be split
into subsets completely disjoint which generate admissible

graphs without any bonds and vertices in common.
Now, given an admissible graph one can in general
associate more than one term of the form(8fL5) with

r; = 1, each associated with a distinct set of paths. Let’s
see how this follows. The sites of an admissible graph have

valence2 or 4. When a path strikes a site of valenteét
has only3 possible directions to follow. See Figures 2a, 2b,

2c. (The case in Fig. 2d is forbidden.) Then, any two terms

associated to a given admissible graphwill differ only in
the types of crossings at the sites@f Since there arg

a
site of valence 4 and they cross each other like in Fig. (2.a)
. Otherwise, they are disjoint. Thus, the set of bonds tra-

There ard’! ways of distributing” = ¢ +t2 +t3 Cross-
ings among the sites @F but since there arg; crossings of
the typej, j = 1,2,3, one has to dividé’! by ¢1!¢5!t3! so
that the number of distinct terms with crossings of typg
s V!

t1!tolts!

These terms have the same faci¢6:) = u* whereL is
the number of bonds @. Summing all these terms arising
from a givenG and summing over all admissible grapfs
of A the result is

(3.16)

ZZ%LS!(*D“(H)“(H)“ I(G) (3.17)

G {t}

where ), means summation over afh,t;,t3 such that
t1 + to + t3 = V. Using the multinomial theorem the sum-
mation over{t} gives(—1+ 1+ 1)" and one gets the result
S 1(G).

If G is disconnected with componentsG;, i
1,2,...,1, each of them witht;, j = 1,2,..., 1, sites of va-
lence4 and}_ ¢; = V, then applying the previous argument
to each component will givé(G1)I(Gs)...I(G;) = I(G).

In view of the above result, the theorem could be equiv-
alently stated by saying that the sum of terms with> 1
for at least one of théconverges to zero. Let’s prove this.

Let G be the set of all colored connected or disconnected
subgraphg; of the colored lattice without valence 1 sites
and such that iy is connected then is not a poligon, that

?s, a graph having valence 2 sites only. A disconnected

graph is allowed to have some but not all of the components
as poligons. The reason for excluding graphs which are
poligons or having all components which are is that closed
paths with repeated bonds over them are necessarily periodic
and these are forbidden. The coloringgois that inherited
from the colored lattice.

Giveng € G, calliy, ..., i;4) the bonds of;. Atermw,
associated tg is of the form

wg = Wy, Wp, .. Wy, = (sign wy)|w,| (3.18)

for somek and set of pathg,, ..., px, Which traverse the

types of crossing per valence 4 site, the number of possiblehonds ofg only, where

terms associated 16 is 3V whereV is the number of sites
of G with valences.
A term has a sign which comes out from the contribu-

tion of the signs of the paths associated to that term. Let's

see how the sign of a term comes out. A term witltross-

ings of typel (Fig. 2a.) has a sign which can be expressed and r;,

as (—1)* wheret; includes selfcrossings of single paths

plus crossings between different paths. Indeed, since dis-
tinct closed paths always intersect in a even number of cross-

ings then(—1)* will give the correct sign of the term which

is the product of the signs of the individual paths. Let’s asso-

Ug)
lwg| = H u' (3.19)
j=1

is the number of times bond; is traversed
by p1,...,pk, that is, If pq,...,px traverse thei-th bond
m1(i), ..., mi (i) times,m > 0, respectively, then

k
ri, =Y malij) (3.20)
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Some but not all of then's can be zero so that; > 1 with Given a pathp € P’, letp, be the path segment obtained
at least one;; > 1. from p upon removal ob. GivenP’ = {p,p’...} define

Let’s consider the set of all terms with the same effec- , ,
tive set of bondgi} traversed, hence, the terms associated P =A{pe, pe, -} (3.23)

to a giveng. Within this set it's possible in general to find
terms with the same powefs} and the samew | although
having distinct associated paths and possibly with different
effective sign.

Let's group together those terms which cover the same
bonds ofg the same number of times. Denote Wy, ~(r)
the set of termsy, with the same powerg-;, } and such that

This set has exactly path segments. Collect under a same
subgroup$ the elementsv, € W, n having the property
that lined is covered exactly times by all elements ity
and they all have the same subg¥twith 7 path segments
and the same subsBt’. The sedV, y is the union of such
subsets, that is,

Zé(:g)l r;, = N, for fixed N. The summation over all terms Sowy= ) > s(w)lwg|  (3.24)
with repeated lines can now be expressed as Wy EWg. N () SCWyn(r) wgeS
Z Z Z Z w, (3.21) wheres(w) is the sign ofw, and|w,| = «~. Recall that
9€G  {N}, r(N) wgeWy n(r) |u] < 1so0 thatjwy| < 1.

The elements inside any givéhcancel each other. De-

g ' . :
patible to the given graph and such thatv > I(g) + 1; tinct. (For the case with repeated segments, see [7]). The

> means summation over a set of positive integers terms in S are precisely those which can be obtained by
- T(N)Tl such thatry ... + r — N and which are also _ joining the ends of the segments and this can be done in

compatible tog; and, finally, ", means summation over exactlyr! ways. This givgs the possible termng in the sub-

all termsw, € W, x (). 9 group. From_the properties of the permutation group half_ of
g 9> N! permutations are odd and half are even and so the signs

onst%v%ﬂZtrg:Ongc;eslgark? r:sog(eclho dg(rjdg; ilr:r:::)?iessec- of half of the terms are positive and half are negative, hence,

h ~ 1 andin thi h b 4 bond a cancellation takes place.
tTr?t” 7eNanl In this casgt ere ce;]n elno rt;peate_rh onas. Using (3.14), the partition function of the two dimen-

e casev < [ corresponds to another elemgnic g. The sional Ising model can now be expressed as a product over
equality depends on the graghFor instance, take the graph )

A L paths as follows:

shown in Fig. 1b wheré+ 1 = 9. No nonperiodic closed
path with repeated bonds can have lendth= 9 because A — 9N? (] _ ,2)-N(N-1) 1+ W, 3.95
I(g) = 8. The lengthN can only be even and its minimum N () (1= H[ p(w)] (3.25)
is N = 12. Hence, for this particular graphthe summa-

tion is over all even numbers greater or equal to 12. In any The next step consists in expressing the product plers

case, the setV'}, has always infinite elements. Givend ~ an integral. This will be achieved in the next section.
N € {N},, not all partitions ofN are allowed in the third

sum. For instance, given the graph in Fig. 1b ahd= 12, .
the partition withr;, = 1, vk # 1, andr; = 5cannotbe |1V~ Paths amplitudes and Onsager’s

[p]

associated to any allowed path. So, the set of intefghts formula
and partitions ofV must be suitable to eagh
Giveny, let's consider now the partial sums Consider all paths that start at a fixed sitewhich we take
as the origin with coordinatd$, 0) and end at the sit&,, 11
Sp = Z Z Z Wg (3.22) with coordinates(z,y) in n steps. Starting at0,0) and
{NIN<n}, r(N) wa€W, n(r) whenever a site is reached there are four possible directions

which a path can take (see Figure 2 and the Remark below).

The goal is to show that in the limit — oo, s,, goes to  The patha) continues forward in the same direction of the
zero. Inref. [7]its proved that,, = 0. The argumentofthe  previous stepp) it turns left 90° relative to the previous
proof goes as follows. step;c) it turns right90° relative to the previous step) it

Since the bonds of are covered the same number of turns180°. To each one of this possibilities it is assigned
times by all elements in the group, choose a bong, alay an “amplitude” which is given byA) u for the casen); B)
b, which is traversed > 1 times by all elements in the wu« for the caseb); C) ua for the casec) andD) 0 (zero)
groupW, ~. This choice has to be done for each partition for the cased), whereu = tghK anda = e'™/4 is the
r(N). Denote byP the set of paths associatediq. Then, contribution to the sign op each time it turns left (coun-
P = P'|J P” whereP’ is the set of those paths which tra- terclockwisely) relative to the previous step amdwhen it
verse bond whereasP” is the set of those paths which do turns right (clockwisely). See the Remark after Example 1,
not traverseé. sec. 3.2.
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. (X2y)

] (X,y-l)

(@) (b)
Figure 3:p goes up tz,y — 1) and(z, y)
in the (n — 1)-th andn-th steps.

If the site(x,y — 1) is reached from the left in thex — 1)-

th step (Figure 4), the path has to make a counterclockwise

rotation to go ta(z, y) in then-th step. By the rules) and

q B) a factorua should then be multiplied to the amplitude

(©) (d) Ln_1(z,y —1).

Figure 2: Directions which a path can take
at a valence 4 site.

(x.y)
Remark. The lattice being finite it has a border so that when
a path strikes a site on the border it may have there only two
or three possible directions to follow. In the spirit of refs.
[7,9] we shall neglect the border and derive the relevant for- (x,y-1)
mulas as if there was no border at all with the justification
that in the limit N — oo which we shall take in the end
of the calculation border effects dissapear. Of course, an-
other approach would be to do everything on a toroidal lat-
tice. In this case, however, relation (3.14) must be replaced to go to(z, y) in the n-th step.
by another more involved identity apropriate for the toroidal The case that the path goes dowrtitoy — 1) in the (n — 1)-
lattice (given in refs. [4, 10]). We shall restrict the presen- th step and goes up ta, y) in then-th step corresponds to
tation to the planar case only. a 180° rotation. By rulesd) and D) the amplitude should

Call U, (z,y) the amplitude of arrival atr, y) moving be0.D,,_1(z,y — 1). If the site(z,y — 1) is reached from

upward in then-th step,D,,(z, y) the amplitude of arrival at  the right the path has to make a clockwise rotation to go to
(x,y) moving downwards in the-th step,L ., (x, y) the am- (z,y) (Figure 5). By the ruleg) and(C') a factorua should
plitude of arrival at(x, y) moving from the left in then-th then be multiplied to the amplitud@,, _;(z,y — 1).
step, andR?,, (x, y) the amplitude of arrival afz, y) moving
from right in then-th step.
If the path arrives afx, y) moving upward in the n-th step
then (x,y)

Figure 4.p turns counterclockwise &t:, y — 1)

Un(z,y) = uUp_1(x,y — 1) + 0Dy 1 (z,y — 1)

+uaLy—1(z,y — 1) + uaR,_1(z,y — 1) (4.1) (x.y-1)
whereU,,_1, Dy,_1, L,,_1 andR,,_ are the amplitudes as- Figure 5.p turns clockwise atz,y — 1) to
sociated to the four possibilities to reach sitey — 1). Re- go to(z,y) in the n-th step.

lation (4.1) can be understood as follows. (#,y — 1) is
reached going up a bond in tife — 1)-th step, there the
amplitude isU,,_1(z,y — 1) so in then-th step as the path
follows the same direction of the previous step, by the rules Do(z,y) = 0Up_1(z,y + 1) + uDp_1(2z,y + 1)

a) and A) above, a factor is multiplied to the amplitude

Un—1(z,y — 1). See Figure 3. +udLp_1(z,y+ 1) +uaRy_1(z,y + 1) (4.2)

Analogously, if a path arrives &k, y) in then-th step going
down the amplitude is given by the relation
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If it arrives at(x, y) coming from the left then the amplitude

is given by
11 (@1 (01 (11) (21
Ly(x,y) =uaU,—1(x — 1,y) + uaDp_1(z — 1,y) — !
+uL,-1(z—1,y) +0R,—1(z — 1,y) (4.3) |
At last, if it arrives at(z,y) coming from the right the am- (0,00 (1,0 (0,0)
plitude is
(a) (b)

Rn(x7y> = UaUn,1(1' + 17y> + U&anl(x + ]-a y)

0Ly (2 + 1,y) + uRp_r(z +1,y) (4.4) Figure 7: The paths in Ex. 3.
Of course to compute an amplitude using the above recur-
sion relations it is needed the amplitude in the zero-th step.
We shall follow the convention of reference [10], namely, L3(2,1) = uals(1,1)

that in the zero-th step a path arrives at the origin moving up-

ward so thal/y(z,y) = d,.00,.0 andDy = Ry = Lo = 0. HuaDy(1,1) +uLa(1,1) + 0Ra(1,1) (4.8)
The amplitude to arrive in zero steps is one if the path ar- Using (4.1),
rives going upward at the origin and zero for any other point

or any other direction of arrival.

Example 2. See Figure 6. Let's compute the amplitude of +uali(1,0) + uaR:(1,0) (4.9)
arrival at site (2,1) in 3 steps moving upward in the third gincetr, = D; = R, = 0, one finds that/»(1,1) =
step. Only one path is possible in this case. Using the recur-,, 1, (1,0) = uaua = u?. Using (4.3), withD, = L; =

Using relation (4.3), the amplitude is

UQ(l, ].) = uUl(l,O) + 0D1(1,0)

sion (4.1), Ry =0,
Us(2,1) = uls(2,0) 4+ 0D2(2,0) Ly(1,1) = ual; (0,1) + uaD;(0,1)
L1(0,1) +0R(0,1) = ua 4.10
FuaLs(2,0) + udRs(2,0) (4.5) +uL1(0,1) + 08, (0, 1) = uau (4.10)
Therefore L3(2,1) = 2u3a.
(2,1) Definition 4.1. The partial amplitude of a paghof length
n is given by
Wp(u):HaHd u” (4.11)

Definition 4.2. The amplitudezp Wp(n,p%)(u_) of arrival
at P, 11 (x,y) from any direction im steps is given by

Un(m;y) +Dn(l",y) +Ln(may) +Rn(m,y) (4'12)

Example4. The partial amplitudes for the paths in Figure 6,
In the second step, the path moves to site (2,0) coming from 7&) and 7b) are.®, au?® andau’, respectively. The ampli-
the left soUs = Do = Ry = 0 andUs(2,1) = uaL(2,0). tude of arrival at (2,1) from any direction in 3 steps is, then,
From (4.3), I[L;erf'+ 2;1@.43 Fi d callC,,(z,y) the set of all path
o inition 4.3. Fix n and callC,,(z,y) the set of all paths
L:(2,0) = walh(1,0) of lengthn starting at(0,0) and arriving at(z, y). Given

(0,00 (1,0) (é,O)

Figure 6: The path in Ex. 2.

+uaDi (1,0) 4+ uLyi(1,0) + 0R; (1,0) (4.6) P € CpandF, € B(z,y) where
withU; = Dy = Ry = 0so0 thatU3(2’ 1) = UQOLLl(]., 0) B(xvy) = {U,,L(x,y), Dn(ma y)7 Ln(l‘, y)7 Rn(xvy)}
where (4.13)
Define the extension df,,(z, y), denoted by the same sym-
L1(1,0) = ualy(0,0) + uaDy(0,0) bol, so as to include siteér,y) which can be reached
only by a numbem > n of steps but in this case set
— A F,(z,y) = 0.
+uLy(0,0) + 0Ry(0,0) = uax 4.7 ’ L
(0,0) 0(0,0) (4.7) Lemma. The transform ofF,, the functionF',,(e,n), 0 <
implying thatUs(2,1) = u3. e < 27 and0 < n < 27, given by

Example 3. Let's now compute the amplitude of arrival at oo s
(2,1) in 3 steps moving from the left in the third step. In this Fole,n) = Z Z Fo(z,y)e e~ (4.14)
case, the possible paths are shown in Figure 7a) and 7b). =0 y=—oo
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is well defined and

21 2m
S — dedn
(=:9) 0 0 ( n)(QW)Q

Proof: F,(z,y) = 0for | = |> nor/and| y |> n. Then,
for fixed n the sums in (4.14) have only a finite number of
terms.

Using (4.14), the transform &f,, (z, y) is:

(4.15)

Uaem =3 S Uulwy)e e (416)

T=—00 Yy=—00

Upon substitution of (4.1), and making the chapge y—1
it follows that

U” (Ea 77) = ue—inU”—l(E7 77)
+0Dn—1(€; 77) + 'U/ae_inzn—l(g; 77) + U@e_inETL—l(Ev 77)
(4.17)
Similarly, we obtainD, (¢,7), L, (s,n) andR,, (¢, n):
En(Ea n) = 0Un—1(€ﬂ7) + uemﬁnfl(&:a n)

+uaeL,_1(g,n) + uae R, _1(g,1) (4.18)

Ly(e,n) = uae “Un_1(e,n) +uae “Dy_1(c,m)

tue Ly 1(e,m) + 0R,_1(g,7) (4.19)
Ru(e,n) = uaeUn—1(e, 1) + uae’Dy_1(e,n)

+0Ly—1(g,m) + ue“Rp1(e,n) (4.20)
Call ¢, (e, n) the matrix
wn:(Un 5n fn En) (421)
Then, from (4.17-20) we obtain that
1/1n(€777) = 1/1n71(5, n)UMa (422)
where _
v 0 ozf} ah
0 72 ah ah
M=1w @ © o0 (4.23)
av av 0 h

witho = e, = e €, h = ¢, 7 = ™ anda = e'%.
Call 1,2, 3 and4 the directions shown in the Figure 8
below:

Figura 8. Directions associated Ad;;.
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Notice that the subindices; of A;; are in one-to-one with
the directions. Indeed;/,; corresponds to the amplitude
of arrival at(z, y) (in (e, ) space) coming up in the: — 1)-

th step,Vj, but going up ifj = 1, down if j = 2, coming
from the left if j = 3 and coming from the right if = 4

in then-th step. Thereforey M is the amplitude of arrival
at (z,y) (in (e,n) space ) following directions andj in
the (n — 1)-th andn-th steps, respectively. More generally,
ulM;; is the amplitude of arrival afz, y) following direc-
tionsi andj in the (n — 1)-th andn-th steps, respectively.
From now on only closed paths starting at (0,0) and arriving
at (0,0) inn steps will be considered. From (4.22) it follows
that

'(/),,L(g;" 77) = Pn—1 (57 77) (UM)

— pale M) = - = o(ud)"

Denote by, 1 < i < 4, the line matrix with the only
element distinct from zero and equal tan the i-th col-
umn. Letyy = 1o ; according to whether the path arrives
at the origin moving upi(= 1), down ¢ = 2), from the left

(¢« = 3) or from the right { = 4), respectively. Then

(4.24)

F'rt (Ea 77) = wO,i(U’M)nw(j)ji (425)

wherei = 1,2,3,4if F = U, D, L, R, respectively, an&”
is the transpose of and

4
D Fulen) = dokle,n)(uM)"v(,m) (4.26)
F,€eB, k=1

Given a4 x 4 matrix A, v ; A is the line matrix formed by
the elements in théth line of A, that is,
Vo A=(Aix Aig Az Ais) (4.27)

S0 1/)07iAz/;()T7i = A;;. Therefore, the sum ovérequals the
trace ofA. Thus,

4
> ok (WM)™yg )y = Tr(uM)"
k=1

(4.28)

The total partial amplitude of arrival &, 0) of closed paths
moving in any direction im steps given by (4.12) can be ex-
pressed compactly as

> F.(0,0) (4.29)
F.€B,
From (4.15), (4.26) and (4.28), it follows that
27 2
3 F,,L(O,O):/ / Tr(uM)" dEdZ (4.30)
FocB, 0 0 (2m)

To better understand relation (4.30), consider the matrix
u™M™, for somen. An elementu™M™);,;, ., of this ma-
trix is given as

n+1
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4
E uMilizuMim e UMZ

12,.in =1

(u"M™)iyq worin WM, (4.31)

nt+1

Recall thatu)M; ; is the partial amplitude of a path arriving  (a), (b), (c) and (d), respectively, shown in Figure 10.
at a site coming from directionand going to the next site in
one step following directiori. Thus, each term in the r.h.s.

of (4.31) is the amplitude of a path of lengttstarting atP; Ps P,
coming from directiori,, going toP; following directionio,

etc, and arriving at sit#,, ., following directioni,,; after P,

n steps. The elemer."M"™);,;, ., gives the total partial

amplitude of arrival al?,, 1 in n steps in(e, ) space. P, Py

The terms in(u"M™); ;,,, describe open as well as
closed paths. Let's see some examples.
Example 5. Taken = 5, i = 2 andig = 1. The
term Moys Ms; M, M4 My, describes a path beginning at @ (b)
P, where it arrived coming from directiony, = 2, going
to P», P, Py, P5s and to P; following directionsis = 3,
i3 =1,14 = 1,45 = 4 andig = 1, respectively. See Figure
9a).
Example 6. Taken = 6, iy = ig = 2 and the term
Moz Mz M1 My Mas Moo of (M6>22. This term describes
the closed path in Fig. 9b. The elements M&f" out-
side the diagonal have associated to them only open paths.
This is implied by the simple fact that these elements have (c) (d)
i1 # in+1. Closed paths are to be found only in the diagonal i
elements since therg = i,,1. However, open paths can Figure 10: Paths i1/ 2)1;
also be associated to some terms in the diagonal elements.
Let’s see some examples.

—

P P

P, Py Py P,

—
—

Example 8. Taken = 4 and consider the following terms in
(M*)11:

P
a)The termu® My My My, My, = u*v? is the amplitude of
the open path shown in fig. 11 below.
PS > P4 P5 P4
P B P
P1 P2 P1 P2 .
(a) (b) ‘

Figure 9: Paths in (a) Ex. 5 and in (b) Ex. 6.

Example 7. Taken = 2,i; = i3 = 1 and the element _ .
(M?)11 = My1 My + Mo Moy + MysMsy + My My with Figure 11: Patt{M,,)*.

u?(M?)11 = v*v?* +0+u?(@h) (aw)+u? (ah)(av) (4.32) B
b) The termM11M11M13M31 = Uv(ah)(ow) = UBB’U
To each one of the terms ¢fi72);; correspond the paths whose associated open path is shown in Figure 12.
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Ps
P Py
Py
Py

Figure 12: Path\/[11M11M13M31-

C) The_terrm4M13M32Mg4M41 =t (@E) (m) (ah) (a’U) =
u*at(hh)(vv) = u*a® is the amplitude of the closed path
shown in Fig. 13:

Ps Py

Py P

Figure 13: PatlVl13M3o Moy My;.

In order to restrict to the elements &f ™ having closed
paths we must take the trace &f™. A closed path begins
at and return t@?; aftern steps. Since it is closed it has to
covern/2 horizontal bonds in one direction amd2 hori-
zontal bonds following the opposite direction. The same is
true for the vertical bonds traversed py So, if the term
MiligMigi;; .. 'Min—liw,Minin+l ) bntl = fn, describes a
closed path, then the number/g$ (v’s) equals the number
of h’s (v's) appearing in it. In this case, it's possible to or-
ganize the term into a product of paft& = 1 andvt = 1
and the double integral in andn will give (27)2 times a
product ofa’s anda’s. More precisely, the double integral
over a closed path if'r M ™ equals

em?*[[«]]=

where the first product is over all counterclockwise rotations
and the second is over all clockwise rotations, so

HaH@ = (—1)!®

wheret(p) is the number of completer revolutions per-
formed by a tangent vector traversing the closed patRe-
mind that one has yet to multiply (4.34) Ify-1) in order to
get the complete siga(p) of p.

If a path is open thé’s, h’s (v's, ©'s) don’'t match up
into pairs. There will be left integrals of the form

27 )
/ e*do =0,
0

(4.33)

(4.34)

(4.35)

G.A.T.F. da Costa and A.L. Maciel

wheref stands for) or e andk > 1, hence, the integrals in
ande remove completely terms describing open paths. Let’s
see examples.

Example 9. Taken = 1. In this case there are only open
paths and

2 27
/ d’l]dEMt'j =0, VZ,] (436)
0 0
Example 10. Using (4.35), in ex. 7,
27 2
/ / dnds(M?)1; =0 (4.37)
0 0
Example 11. It is clear that

/ dedn(M™);; = Vi (438)

if n = 1,2,3,whichis guaranteed by the fact that in a square
lattice closed paths are possible onlyif> 4. In the case

n = 2 the path in Figure 10.b) is closed but it traverses the
same edge back and its amplitude is thus zero.

Example 12. Using (4.35) in ex.8, for the term
M1 My My Myy = vt

2m 2m 2m ]
/ / vtdnde = 277/ e~ *dn = 0. (4.39)
o Jo 0

For the terW11M11M13M31 = ’Ugil,

2

dndev*h = 0 (4.40)

0

For the termM3Mss Moy My, = @&@* which describes a
closed path the result

27
dndea* = a*. (4.41)

(2m)2 Jo

follows which has the form (4.33-34) with* = 1.

Given a closed path ifM™);;, the inverse path is
present in soméM™);;, j # 4. For instance, ifM%);;
there are the closed paths shown in Fig. 14 given by the
termsMi4 Mo Mog Ms1 and M3 Mso Moy My .

P P

(@) (b)

Figure 14: Paths (a)f14 Mo Moz M3z
and (b)M 3 Mz Moy My;.
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In (M*%)9 there are the terma/yy My; M13 M3, and
Moz M3 M4 Myo , With associated closed paths shown in
Fig. 15c and 15d, respectively:

P P

() (d)

Figura 15: Paths (W24M41M13M32
and (d)Mp3 Mz M4 My

In (M*)33, there are the termsa/s, Moy My My3 and
Ms1 M14Myo Mos with associated closed paths shown in
Figure 16e) and 16f), respectively.

Py

Py

(e) (f)

Figura 16. Paths (e)/3o Moy My1 M3
and (f) M3y M4 Mo Mog

In (M*)y4, there are the termsiyo Mos M3y My, and
My M3 M3 Moy with the associated closed paths shown
in Figure 17g) and 17h), respectively.
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Py

) (h)

Figura 17. Paths (W42M23M31M14
and (h)Myy M3 Mza Moy

Note that (e) is the inversion of (a), (f) is the inversion of
(c), (g) of (b), and (h) of (d).

So restricting to the diagonal terms a@ff™ which
amounts to take the trace of this matrix and then performing
a double integration on the angles to eliminate open paths,
dividing the result by 2 to eliminate inversions, and multi-
plying the result by-«"™ gives the total complete amplitude
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('with the right signs ) to arrive back &; in n steps mov-
ing in any direction. We have thus achieved the following
relation:

1 1 27 2
> Wylu) = ETene /0 /O dednTr(uM)™
p(n,Pr)

(4.42)
The above result is restricted to a fixed siRe. For the fi-
nite NV x N lattice with N2 sites and disregarding boundary
effects, the total (independent of site) amplitude of closed
paths of length is:

N ST Wylu) =D Wy(u)

p(n,Pr) p(n)

N2 1 27 27
= f——/ / dednTr(uM)™
2 (2m)% Jo Jo

Taking all N2 sites into account imply that given a closed
pathp(n), the summatiory_ ., W (p) includes all circular
permutations op. To eliminate these the previous relation
has to be divided by. Then, the amplitude is given by

n

1 N2 27 2
— Wy(u) = —— / / dedn
n Z p( ) 2 0 0
(4.44)

p(n)
We notice that a nonperiodic path appeartimes in the
sum but a periodic path of lengthand periodw hasn/w
distinct starting points only and for this reason it appears
n/w times in the sum over paths. For instance, the periodic
path(D,, D;,)(D;, D;,)(Dj;, Dj,) of lengthn = 6 and pe-
riod w = 3 has only two distinct starting points. The other
equivalent periodic path iB ;, (D;, D}, )(Dj, Dj,)Dj, . Af-
ter division byn, periodic paths with period will show up
in the sum with a weight /w. Thus, the above relation in-
cludes all closed paths of lengthover theN x N lattice,
periodic and nonperiodic, and excludes inversions and cir-
cular permutations. The total amplitude of closed paths of
any length is then given by the series

> W) -

n p(n)

(o)

N2 27T 27 T M n
S / dedg TPy gs)
n=1 2 0 0 n

whose convergence will be investigated below. We note that
since the lattice is square, closed paths with nonzero am-
plitude are possible only for > 3 but in view of relation
(4.38) in Ex. 11 we can write the series in (4.45) starting
fromn = 1.

With the above remarks,

> S W)

n=1" p(n)

(4.43)

1
(27)?

Tr(ud)™

1
(2m)?
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SO Wi () — 2 (Wy(w)® + 2 (Wy(w)? — ] (446)
2 3

[p]
In Z[p] the first term is the sum d#/,,(u) over all nonpe-

G.A.T.F. da Costa and A.L. Maciel

The determinant can be easily computed and one finds that

det(1 —uM) = (u* +1)? — 2u(1 — u?)(cose + cosn)

riodic paths. The other terms give the sum over all periodic Taking the logarithm on both sides of relation (3.24) gives

paths since any periodic path is the repetition of some non-

periodic pathp with period given byw = 2, 3, .... In section
3.2 the sign of a periodic path was proved to-beif w is
even and equal to the sign of its nonperiodic subpathig
odd. This explains the signs in the r.h.s of (4.46).

Since|u| < 1 then|W| < 1 and the series between
brackets converges fm(1 + W), and the r.h.s. of (4.46)
equalsto

> (14 Wy(u) = (1 + W, (u). (4.47)
p p
a result to be used below.
Theorem 4.1. Take|u| < r < 1. Then, the series
3 u"(M"™)ij (4.48)
n=1 n

converges uniformily.
Proof: We have thatM;;| < 1, Vi,j = 1,2, 3,4, so from
(4.31) we get

| (M™);; |<4amt (4.49)

and , ,
un (Mn)ij

n

< 4n—1 | U |n

- (4.50)

The series
(4.51)

i (4w
n=1 n
converges fotu| < r < %, hence, by Weierstrass/-test
the series (4.48) converges uniformly fof < r < 1/4.
We may conclude that the serigs - % con-
verges uniformly to the matrik:(1 — M) in the same in-
terval.

(4.55)
InZ(u 1
% =In2+2(1— N)ln(coshK) +in H[l + Wy (u)]
P
(4.56)
or, using (4.45-47), (4.52,4.54),
InZ(u) 1
Nz = n242(1 - N)ln(coshK)
1 2m 2m
Jr@ ; /0 dednindet(1 — uM) (4.57)
Using (4.55) withu = tanh K and the relations
u= %sinh(ﬂ()(l —u?) (4.58)
(1 +u?)? = cosh?(2K)(1 — u?)? (4.59)
1
— 2 - @
(1—u®) o h 0K (4.60)
gives
det(1 — uM) = cosh™ 2K [(cosh2K)?
—(sinh2K)(cosn + cose)] (4.61)

Onsager’s formula follows from (4.57) after taking the
limit N — oc:

- =[n2+

1 s s
— dednl h2K)?
T 57 /0 /0 ednln [(cosh2K)

—sinh2K (cosn + cose)] (4.62)

We may now integrate the series term by term to get Where/f is the free energy per site in the thermodynamical

the series (4.45) which likewise converges uniformly in the limit (see (2.5)). _
same interval. Interchanging integration and summation in _ The integral in (4.62) can not be evaluated in terms of

(4.45) yields simple functions. The derivatives of the integral however
can be expressed in terms of elliptic functions [2,15,19].
N2 1 27 27T o M)™ — .
N* ' / / dednTr Z B (uMl) Set2k = tanh2K /cosh2K . Then,
2 (2m)% Jo  Jo 1 n f
N2 TIaT In2 + In(cosh2K)

1 2 27
= 7W/O /0 dednTrin(l —uM)  (4.52)

From the previous analysi&| < r < 1/4. However, the
r.h.s. of (4.52) is well defined in a bigger domain. Using the
relation

Trin(I —uM) = Indet(I — uM) (4.53)
which is valid fordet(1 — uM) # 0 [18], we get

N2 1 27 2

1 ™ ™
+5 / / dednin [1 — 2k(cosn + cose)]  (4.63)
22 Jo Jo

Expanding the logarithm in powers bfit follows that

L ln2+ln(cosh2K)—§: ((QH)!

T (n!>2) k2" (4.64)

n=1

The series converges f¥k (cos e+ cos )| < 4|k| < 1. For
k > 0(J > 0) and atk = 1/4, that is, at the critical value
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K = K. (ortemperaturé’, = 2Jk;'in"*(v/2+1)) given
by
2senh2K.. = cosh?2K, (4.65)

it diverges. ( Similarly, forJ < 0 which impliesk < 0 and
divergence af, = 2Jk5'In"1(v2 - 1)).
The internal energ¥y/ is given by
9 f

U=—kT?—

3T IT (4.66)

From (4.63),

U = —Jcoth(2K) [1 + (sinh®2K — 1)I(2K)]  (4.67)

where

1 (" dedn
I2K)=—
(2K) 7r2/0 cosh?(2K) — sinh(2K)(cose 4 cosn)
(4.68)

By performing one of the integrals its found that

U = —Jcoth(2K) {1 + (2tanh?2K — 1)%F(k1)
(4.69)

wherek; = 4k and F'(k;) is the complete elliptic integral

of the first kind defined by

/2 L
F(ki) = / (1 — k?sen?0)"2df (4.70)
0

The elliptic functionF” ( see Ref. [19]) has the property that

F — In4(1 — k2)|71/2 (4.71)
ask; — 1~. So it diverges logarithmically dt; = 1, or at
the valuek . given by (4.65).

In relation (4.69) forU the functionF' is multiplied by
(2tanh?2K — 1) which is zero at the critical poink ..
Indeed, from the identityosh?z = 1 + sinh?z relation
(4.65) implies thatinh(2K.) = 1. Using this and (4.65),
tanh?2K, = 1/2 follows. So the functioi/ is continuous
at K.

The specific heat can be computed from the definition

ou
C = a7 (4.72)
Itis given by
2k 9
+2(tanh?2K — 1)G(k1)} (4.73)

where

Gky) = g + (2tanh?2K — 1)F(ky) (4.74)

and E(k,) is the complete elliptic integral of the second
kind, defined by

/2 L
E(ky) = / (1 — kisen®0)zdo (4.75)
0

which is well defined at; = 1. From the exact result (4.73)

it follows that the specific heat is logarithmically divergent

at the critical point.
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