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Some basics of su(1, 1)
(Introdução a su(1, 1))

Marcel Novaes1

Instituto de Fı́sica “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP, Brasil
Recebido em 22/07/2004; Aceito em 19/08/2004

A basic introduction to the su(1, 1) algebra is presented, in which we discuss the relation with canonical
transformations, the realization in terms of quantized radiation field modes and coherent states. Instead of go-
ing into details of these topics, we rather emphasize the existing connections between them. We discuss two
parametrizations of the coherent states manifold SU(1, 1)/U(1): as the Poincaré disk in the complex plane and
as the pseudosphere (a sphere in a Minkowskian space), and show that it is a natural phase space for quantum
systems with SU(1, 1) symmetry.
Keywords: su(1, 1) algebra, SU(1, 1) group, canonical transformations, coherent states, second quantization,
pseudosphere.

Uma introdução simples à álgebra su(1, 1) é apresentada, na qual discutimos a relação com transformações
canônicas, a realização em termos de modos quantizados do campo de radiação e estados coerentes. Ao invés de
entrar em detalhes a respeito desses tópicos, preferimos enfatizar as conexões existentes entre eles. Discutimos
duas parametrizações da variedade dos estados coerentes SU(1, 1)/U(1): como o disco de Poincaré no plano
complexo e como a pseudoesfera (uma esfera em um espaço de Minkowski) e mostramos que se trata de um
espaço de fase natural para sistemas quânticos com simetria SU(1, 1).
Palavras-chave: álgebra su(1, 1), grupoSU(1, 1), transformações canônicas, estados coerentes, segunda quantização,
pseudoesfera.

1. Introduction
What I wish to present here is a very basic and accessi-
ble introduction to the su(1, 1) algebra and its applica-
tions. I present for example how to obtain the energy
spectrum of hydrogen without solving the Schrödinger
equation. I also present the relation with the symplectic
algebra and canonical transformations. But the main
focus is on coherent states and the geometry of the quo-
tient space SU(1, 1)/U(1). Taking into account the
realization of this algebra by creation and annihilation
operators, I hope these geometrical considerations may
have some importance to the field of quantum optics.

The su(1, 1) ∼ sp(2, R) ∼ so(2, 1) algebra is de-
fined by the commutation relations

[K1,K2] = −iK0, [K0,K1] = iK2,

[K2,K0] = iK1, (1)

and appears naturally in a wide variety of physical
problems. A realization in terms of one-variable dif-
ferential operators,

K1 = d2

dy2 + a
y2 + y2

16 , K2 = −i
2

(
y d
dy + 1

2

)
,

K0 = d2

dy2 + a
y2 − y2

16 , (2)

for example, allows any ODE of the kind
(
d2

dy2
+

a

y2
+ by2 + c

)
f(y) = 0 (3)

to be expressed in terms of a su(1, 1) element [1]. The
radial part of the hydrogen atom and of the 3D har-
monic oscillator, and also the Morse potential fall into
this category, and the analytical solution of these sys-
tems is actually due to their high degree of symme-
try. In fact, the close relation between the concepts of
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symmetry, invariance, degeneracy and integrability is
of great importance to all areas of physics [2].

Just like for su(2), we can choose a different basis

K± = (K1 ± iK2), (4)

in which case the commutation relations become

[K0,K±] = ±K±, [K+,K−] = −2K0. (5)

Note the difference in sign with respect to su(2).
The Casimir operator, the analog of total angular mo-
mentum, is given by

C = K2
0 −K2

1 −K2
2 = K2

0 −
1
2 (K+K− +K−K+). (6)

This operator commutes with all of the K’s.
Since the group SU(1, 1) is non-compact, all

its unitary irreducible representations are infinite-
dimensional. Basis vectors |k,m〉 in the space where
the representation acts are taken as simultaneous eigen-
vectors of K0 and C:

C|k,m〉 = k(k − 1)|k,m〉, (7)

K0|k,m〉 = (k +m)|k,m〉, (8)

where the real number k > 0 is called the Bargmann
index and m can be any nonnegative integer (we con-
sider only the positive discrete series). All states can
be obtained from the lowest state |k, 0〉 by the action
of the ”raising” operator K+ according to

|k,m〉 =

√
Γ(2k)

m!Γ(2k +m)
(K+)m|k, 0〉. (9)

2. Energy levels of the hydrogen atom

The hydrogen atom, as well as the Kepler problem,
has a high degree of symmetry, related to the partic-
ular form of the potential. This symmetry is reflected
in the conservation of the Laplace-Runge-Lenz vector,
and leads to a large symmetry group, SO(4, 2). Here
we restrict ourselves to the radial part of this problem,
as an example of the applicability of group theory to
quantum mechanics and of su(1, 1) in particular. For
more complete treatments see [1, 2]. The radial part of
the Schrödinger equation for the hydrogen atom is

(
d2

dr2
+

2

r

d

dr
− 2Z

r
− l(l + 1)

r2
+ 2E

)
R(r) = 0. (10)

If we make r = y2 and R(r) = y−3/2Y (y) we
have
„
d2

dy2
− 4l(l + 1)− 3/4

y2
+ 8Ey2 − 8Z

«
Y (y) = 0, (11)

and, as already noted in the introduction, this can be
written in terms of the su(1, 1) generators (2). A little
algebra gives
[
(
1

2
− 64E)K0 + (

1

2
+ 64E)K1 − 8Z

]
Y (y) = 0, (12)

and the Casimir reduces to C = l(l + 1), which gives
k = l + 1.

Using the transformation equations

e−iθK2K0e
iθK2 = K0 cosh θ +K1 sinh θ (13)

e−iθK2K1e
iθK2 = K0 sinh θ +K1 cosh θ (14)

we can choose

tanh θ =
64E + 1/2

64E − 1/2
(15)

in order to obtain

K0Ỹ (y) =
Z√
−2E

Ỹ (y), (16)

where Ỹ (y) = e−iθK2Y (y). Since we know the spec-
trum of K0 from (8) we can conclude that the energy
levels are given by

En = − Z

2n2
, n = m+ l + 1. (17)

3. Relation with Sp(2, R)

A system with n degrees of freedom, be it classi-
cal or quantum, always has Sp(2n,R) as a symmetry
group. Classical mechanics takes place in a real mani-
fold, and the kinematics are given by Poisson brackets
(i, j = 1..N )

{qi, pj} = δij . (18)

Quantum mechanics takes place in a complex Hilbert
space, and the kinematics determined by the canonical
commutation relations (i, j = 1..N )

[q̂i, p̂j ] = i~δij . (19)

These relations can also be written in the form (now
i, j = 1..2N )

{ξi, ξj} = Jij , (20)

[ξ̂i, ξ̂j ] = i~Jij , (21)
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where ξ = (q1, ..., qN , p1, ..., pN )T , ξ̂i is the hermitian
operator corresponding to ξi and J is the 2N × 2N
matrix given by

J =

(
0 1
−1 0

)
. (22)

The symplectic group Sp(2N,R) (in its defining
representation) is composed by all real linear transfor-
mations that preserve the structure of relations (20). It
is easy to see that therefore

Sp(2N,R) = {S|SJST = J}. (23)

For a far more extended and detailed discussion, see
[3]

For a classical system with only one degree of free-
dom, such canonical transformations are generated by
the vector fields [4]

{−q ∂∂p + p ∂∂q = 2iK0, −q ∂∂p − p ∂∂q = 2iK1,

−q ∂∂q + p ∂
∂p = 2iK2, }. (24)

It is easy to see that these operators have the same
commutation relations as the su(1, 1) algebra (1).

Note that the symplectic groups Sp(2n,R) are
non-compact, and therefore any finite dimensional rep-
resentation must be nonunitary. In the quantum case,
that means that the matrices S implementing the trans-
formations

ξ̂′j = Sij ξ̂i, (25)

such that [ξ̂′i, ξ̂
′
j ] = i~Jij , are nonunitary (a 2 × 2

nonunitary representation of su(1, 1) exists for exam-
ple in terms of Pauli matrices, K1 = i

2σ2,K2 =

− i
2σ1,K0 = 1

2σ3). However, since all ξ̂i and all ξ̂′j are
hermitian and irreducible, by the Stone-von-Neumann
theorem [3, 5] there exists an operator U(S) that acts
unitarily on the infinite dimensional Hilbert space of
pure quantum states (Fock space). If we now see ξ̂i
and ξ̂′i as (infinite dimensional) matrices, then U(S) is
such that ξ̂′i = U(S)ξ̂iU(S)−1. Finding this unitary
operator in practice is in general a nontrivial task.

4. Optics

4.1. One-mode realization

We know the radiation field can be described by
bosonic operators a and a†. If we form the quadratic
combinations

K+ = 1
2 (a†)2, K− = 1

2a
2,

K0 = 1
4 (aa† + a†a) (26)

we obtain a realization of the su(1, 1) algebra. In this
case the Casimir operator reduces identically to

C = k(k − 1) = − 3

16
, (27)

which corresponds to k = 1/4 or k = 3/4. It is not
difficult to see that the states

|n〉 =
(a†)n√
n!
|0〉 (28)

with even n form a basis for the unitary representation
with k = 1/4, while the states with odd n form a basis
for the case k = 3/4.

The unitary operator

S(ξ) = exp
(

1
2ξ
∗a2 − 1

2ξ(a
†)2
)

=

exp(ξ∗K− − ξK+) (29)

is called the squeeze operator in quantum optics, and
is associated with degenerate parametric amplification
[6]. There is also the displacement operator

D(α) = exp
(
αa† − α∗a

)
, (30)

which acts on the vacuum state |0〉 to generate the co-
herent state

|α〉 = D(α)|0〉 = e−|α|
2/2

∞∑

n=o

αn√
n!
|n〉. (31)

Action of S(ξ) on a coherent state gives a squeezed
coherent state, |α, ξ〉 = S(ξ)|α〉.

4.2. Two-mode realization

It is also possible to introduce a two-mode realization
of the algebra su(1, 1). This is done by defining the
generators

K+ = a†b†, K− = ab,

K0 = 1
2(a†a+ b†b+ 1). (32)

In this case the Casimir operator is given by C =
1
4(a†a−b†b)2− 1

4 . If we introduce the usual two-mode
basis |n,m〉 then the states |n + n0, n〉 with fixed n0

form a basis for the representation of su(1, 1) in which
k = (|n0| + 1)/2. A charged particle in a magnetic
field can also be described by this formalism [7].
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The unitary operator

S2(ξ) = exp
(
ξ∗ab− ξa†b†

)
=

exp(ξ∗K− − ξK+) (33)

is called the two-mode squeeze operator [6], or down-
converter. When we consider the other quadratic com-
binations ({a†b, (a†)2, (b†)2, a†a − b†b} and their her-
mitian adjoint) we have the algebra sp(4, R), of which
sp(2, R) ∼ su(1, 1) is a subalgebra. More detailed
discussions about group theory and optics can be found
for example in [3, 4, 8].

5. Coherent states

Normalized coherent states can be defined for a general
unitary irreducible representation of su(1, 1) as [9]

|z, k〉 = (1− |z|2)k

∞∑

m=0

√
Γ(2k +m)

m!Γ(2k)
zm|k,m〉, (34)

where z is a complex number inside the unit disk,
D = {z, |z| < 1}. Similar to the usual coherent states,
they can be obtained from the lowest state by the action
of a displacement operator:

|z, k〉 = exp(ζK+ − ζ∗K−)|k, 0〉,

z =
ζ

|ζ| tanh |ζ|. (35)

From (33) we see that su(1, 1) coherent states are
actually the result of a two-mode squeezing upon a
Fock state of the kind |n0, 0〉. On the other hand, from
the one-mode realization (29) they can be regarded as
squeezed vacuum states.

These states are not orthogonal,

〈z1, k|z2, k〉 =
(1− |z1|2)k(1− |z2|2)k

(1− z∗1z2)2k
(36)

and they form an overcomplete set with resolution of
unity given by

∫

D

2k − 1

π

dz ∧ dz∗
(1− |z|2)2

|z, k〉〈z, k| =
∞∑

m=0

|k,m〉〈k,m| = 1 (k >
1

2
). (37)

From the integration measure we see that the co-
herent states are parametrized by points in the Poincaré
disk (or Bolyai-Lobachevsky plane), which we discuss
in the next section. The expectation value for a product
of algebra generators like Kp

−K
q
0K

r
+ was presented in

[10] and is given by

c

〈z, k|Kp
−K

q
0K

r
+|z, k〉 = (1− |z|2)2kzp−r

∞∑

m=0

Γ(m+ p+ 1)Γ(m+ p+ 2k)

m!Γ(m+ p+ 1− r)Γ(2k)
(m+ p+ k)q|z|2m. (38)

d

Simple particular cases of this expression are

〈z, k|K−|z, k〉 = k
2z

1− |z|2 ,

〈z, k|K0|z, k〉 = k
1 + |z|2
1− |z|2 . (39)

Moreover, for k > 1/2 the operator K0 has a diag-
onal representation as

K0 =
2k − 1

4π

∫

D

d2z

(1− |z|2)2
(k − 1) ∗

(
1 + |z|2
1− |z|2

)
|z, k〉〈z, k|. (40)

Just as usual spin coherent states are parametrized
by points on the space SU(2)/U(1) ∼ S2, the
two-dimensional spherical surface, su(1, 1) coher-
ent states are parametrized by points on the space
SU(1, 1)/U(1), which corresponds to the Poincaré
disk. This space can also be seen as the two-
dimensional upper sheet of a two-sheet hyperboloid,
also known as the pseudosphere.
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6. The pseudosphere

The sphere S2 is the set of points equidistant from the
origin in a Euclidian space:

S2 = {(x1, x2, x3)|x2
1 + x2

2 + x2
3 = R2}. (41)

The pseudosphere H2 plays a similar role in a
Minkovskian space, that is, take the space defined by
{(y1, y2, y0)|y2

1 + y2
2 − y2

0 = −R2}, which is a two-
sheet hyperboloid that crosses the y0 axis at two points,
±R, called poles. The pseudosphere, which is a Rie-
mannian space, is the upper sheet, y0 > 0. The pseu-
dosphere is related to the Poincaré disk by a stereo-
graphic projection in the plane (y1, y2), using the point
(0, 0,−R) as base point. The relation between the pa-
rameters is

y0 = R cosh τ, y1 = R sinh τ cosφ,

y2 = R sinh τ sinφ, (42)

and

z = eiφ tanh
τ

2
=
y1 + iy2

R+ y0
. (43)

The distance ds2 = dy2
1 + dy2

2 − dy2
0 and the area

dµ = sinh τdτ ∧ dφ become

ds2 = dτ2 + sinh τdφ2 =
dz · dz∗

(1− |z|2)2
, (44)

dµ =
dz ∧ dz∗

(1− |z|2)2
. (45)

Note that the metric is conformal, so the actual angles
coincide with Euclidian angles. Geodesics, which are
intersections of the pseudosphere with planes through
the origin, become circular arcs (or diameters) orthog-
onal to the disk boundary (the non-Euclidian character
of the Poincaré disk appears in some beautiful draw-
ings of M.C. Escher, the “Circle Limit” series [11]). A
very good discussion about the geometry of the pseu-
dosphere can be found in [12], and we follow this pre-
sentation.

In the pseudosphere coordinates the average values
of the su(1, 1) generators are very simple:

〈z, k|K1|z, k〉 = k
Ry1, 〈z, k|K2|z, k〉 = k

Ry2,

〈z, k|K0|z, k〉 = k
Ry0. (46)

From now on we set R = k = 1.

6.1. Action of the group

The symmetry group of the pseudosphere is the group
that preserves the relation y2

1 + y2
2 − y2

0 = −R2, the
Lorentz-like group SO(2, 1). The so(2, 1) algebra as-
sociated with this group is isomorphic to the su(1, 1)
algebra we are studying. All isometries can be repre-
sented by 3 × 3 matrices Λ that are orthogonal with
respect to the Minkowski metric Q = diag(1, 1,−1)
(actually we must also impose Λ00 > 0 so that we
are restricted to the upper sheet of the hyperboloid),
and they can be generated by 3 basic types: A) Eu-
clidian rotations, by an angle φ0, on the (y1, y2) plane;
B) Boosts of rapidity τ0 along some direction in the
(y1, y2) plane; C) Reflections through a plane contain-
ing the y0 axis. As examples, we show a rotation, a
boost in the y2 direction and a reflection through the
plane (y1, y0):

A)




cosφ0

sinφ0

0

− sinφ0

cosφ0

0

0
0
1


 ,

B)




1
0
0

0
cosh τ0

sinh τ0

0
sinh τ0

cosh τ0


 ,

C)




1
0
0

0
−1
0

0
0
1


 (47)

Incidentally, the geometrical character of the pre-
viously used parameters (τ, φ) becomes clear.

Using the complex coordinates of the Poincaré disk
we have

Rφ0(z) = eiφ0z (48)

for rotations,

Tτ0,φ0(z) =
(cosh τ0/2)z + eiφ0 sinh τ0/2

(e−iφ0 sinh τ0/2)z + cosh τ0/2
(49)

for boosts of rapidity τ0 in the φ0 direction and S(z) =
z∗ for reflections through the (y1, y0) plane. We see
that, except for reflections, all isometries can be writ-
ten as

z′ =
αz + β

β∗z + α∗
, with |α|2 − |β|2 = 1, (50)

and if, as usual, we represent these transformations by

matrices
(
α
β

β∗

α∗

)
there is a realization of the trans-
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formation group by 2× 2 matrices, in which

Rφ0 =

(
eiφ0/2

0
0

e−iφ0/2

)
,

Tτ0,φ0 =

(
cosh τ0/2

eiφ0 sinh τ0/2
e−iφ0 sinh τ0/2

cosh τ0/2

)
.(51)

This is the basic representation of the group
SU(1, 1). For other parametrizations of the pseudo-
sphere, see [12].

6.2. Canonical coordinates

We present one last set of coordinates, one that has an
important physical property. Let us first note that if we
define Ki = 〈z, k|Ki|z, k〉, then there exists an opera-
tion {·, ·} such that the commutation relations

[K1,K2] = −iK0, [K0,K1] = iK2,

[K2,K0] = iK1 (52)

are exactly mapped to

{K1,K2} = K0, {K0,K1} = −K2,

{K2,K0} = −K1, (53)

in agreement with the usual quantization condition
{·, ·} → i[·, ·]. This Poisson Bracket is written in terms
of the Poincaré disk coordinates as

{f, g} =
(1− |z|2)2

2ik

(
∂f

∂z

∂g

∂z∗
− ∂f

∂z∗
∂g

∂z

)
. (54)

It is possible to define new coordinates (q, p) that
are canonical in the sense that

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (55)

These coordinates are given by

q + ip√
4k

=
z√

1− |z|2
(56)

and the classical functions are written in terms of them
as

K1 = q
2

√
4k + q2 + p2,

K2 = p
2

√
4k + q2 + p2,

K0 = k + q2+p2

2 . (57)

We thus see that there is a natural phase space for
quantum systems that admit SU(1, 1) as a symme-
try group. Dynamics of time-dependent systems with

this property was examined for example in [13]. This
phase space can also be used to define path integrals
for SU(1, 1) (see [14, 15] and references therein), and
obtain a semiclassical approximation to this class of
quantum systems.

7. Summary

We have presented a very basic introduction to
the su(1, 1) algebra, discussing the connection with
canonical transformations, the realization in terms of
quantized radiation field modes and coherent states.
We have not explored these subjects in their full de-
tail, but instead we emphasized how they can be re-
lated. The coherent states, for example, can be re-
garded as one-mode vacuum squeezed states or as two-
mode number squeezed states. The coherent states
manifold SU(1, 1)/U(1) was treated as the Poincaré
disk and as the pseudosphere, and shown to be a nat-
ural phase space for quantum systems with SU(1, 1)
symmetry.
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