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A very simple way to measure coaxial cable impedance
(Um modo simples para medir a impedância de um cabo coaxial)
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A very simple experiment is described to measure the impedance of a coaxial cable and the velocity of propa-
gation of a pulse. The experiment uses a fast pulse, which has the advantage of avoiding long cables and it
allows the observation of pulse dispersion.
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Descrevemos um experimento simples para medir a impedância de um cabo coaxial e a velocidade de propa-
gação de um pulso. O experimento utiliza um pulso rápido, que possui a vantagem de evitar cabos muito longos
e permite a observação da dispersão do pulso.
Palavras-chave: cabo coaxial, casamento de impedâncias, transmissão de sinais.

1. Introduction

Coaxial cables are the interconnections that transmit
pulses from one end to another, preserving the informa-
tion in the signal. Their basic geometry is that of two
concentric cylindrical conductors separated by a dielec-
tric material. Coaxial cables are standard transmission
lines in nuclear, atomic and high-energy electronics.

Some papers [1-4] have been devoted for demon-
strating the properties of transmission lines whether
using expensive and sophisticated instruments or low-
cost equipment. Most of them use slow pulses (rise time
comparable to the transit time in the transmission line).
This paper aims to describe a very simple experiment
using fast signals that are mostly used in atomic, nu-
clear and high-energy physics. One advantage of this
approach is that it allows ones to use relatively short
cables as opposed to cables of hundreds of meters that
are often used.

The equivalent circuit for a unit length of trans-
mission line is shown in Fig. 1. For a loss less line
R = G = 0 and the gradient of voltage and current
are given by

∂V

∂x
= L

∂I

∂t
, (1)

and

∂I

∂x
= C

∂V

∂t
. (2)

Figure 1 - A model for an A) ideal and B) lossy coaxial cable.

Differentiating Eqs. (1) and (2) with respect to dis-
tance and time, respectively, one obtains
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∂2V

∂t2
=

1
LC

∂2V

∂x2
, (3)

which is the transmission line wave equation. One can
easily show by comparing Eq. (3) to the general wave
equation that the velocity with which the electromag-
netic energy propagates along this loss less line is given
by

v =
1√
LC

=
1√
με

. (4)

The speed of signal propagation is more often ex-
pressed as its reciprocal, the time of propagation per
unit length or delay of the cable, and its typically on
the order of 5 ns/m. The characteristic resistance of
line is given by

Zcable =

√
L

C
. (5)

2. Procedure and results

The signal in a coaxial cable is, in general, the sum
of the incident signal and a reflected signal traveling
in the opposite direction. In this section, we describe
very simple experiments that make use of some of the
transmission lines characteristics, namely, velocity of
propagation, reflection and impedance matching.

Pulses from a commercially available generator OR-
TEK are fed to a constant fraction discriminator
(CFD). The timing output of the CFD produces fast
logic pulses that are seen by a 100 MHz oscilloscope
transmitted by means of a 50 Ω coaxial cable. Figure 2
shows the main and reflected pulses observed using the
oscilloscope without impedance matching. Since oscil-
loscopes are high impedance devices (≈ 1 MΩ), direct
entry of a fast signal will lead in an impedance mis-
match and a mistaken signal indication.

2.1. Measuring the impedance of the coaxial
cable

If the line is terminated with a purely resistive load of
impedance R, pulse will be reflected or transmitted at
the end of the line. The transmission coefficient T is a
function of the load as

T =
2R

R + Zcable
, (6)

where T is defined as the ratio between the transmitted
(Vt) and incident (Vo) voltages

T =
Vt

Vo
. (7)

Figure 2 - Fast pulses measured at the end of the coaxial cable
using an oscilloscope without impedance matching. The cable
length is 3.49 m. The distance in time between adjacent pulses
is 35.8 ns. The parameter scale of the X and Y axis of the oscil-
loscope screen are 20 ns/div and 200 mV/div.

In the limiting case of infinite load impedance, the
transmitted signal is twice the incident signal. On the
other hand, if R equals to the impedance of the trans-
mission line, Zcable, the transmitted signal is equal to
the incident one.

By adding a potentiometer in parallel (shunt), as
shown in Fig. 3, one is able to measure the transmitted
signal as a function of R. Figure 4 shows the plot of the
transmission coefficient T as a function of R. Another
manner of studying the dependence of T as a function
of R is by linearizing Eq. (6) as follows

1
T

=
1
2

+
Zcable

2R
. (8)

Figure 3 - A potentiometer of 1 kΩ used in shunt with the oscil-
loscope.

So, the plot of T−1 as a function of 2R−1 should
give rise to a straight line with the angular coefficient
equals to Zcable. The transmission coefficient is deter-
mined as follows: Firstly, one measures the amplitude
Vt∞ of the fast pulse at the end of the coaxial cable
using an oscilloscope without impedance matching as
shown in Fig. 1. The pulse of interest is the very first
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one (in time). The following pulses are related to mul-
tiple reflections at both ends of the coaxial cable. Ac-
cording to Eq. (6), the measured signal corresponds
to twice the incident signal, i.e., Vt∞ = 2Vo. Then,
one adds the potentiometer in shunt, and measures the
amplitude of the transmitted pulse, Vt (again the very
first one in time) as a function of R. The transmission
coefficient is determined as (see Eq. (7))

T = 2
Vt

Vt∞
. (9)

Figure 4 shows this plot. The experimental value
for Zcable is 48 ± 4Ω, in agreement with the nominal
value from the coaxial cable impedance.

Figure 4 - A) Plot of the reciprocal of T vs. the reciprocal of 2R.
B) The transmission coefficient as a function of the equivalent
impedance.

2.2. Velocity of propagation

One advantage of using fast signal is the fact that it
is not necessary to use very long cables. From Fig. 2,
one can measure the distance in time between adjacent
pulses corresponding to a cable of 3.49 ± 0.01 m which
allow us to obtain the velocity of propagation of the
pulse as

v =
2d

Δt
=

2 × 3.49m
35.8 × 10−9s

= 1.9 × 108m/s.

2.3. Pulse dispersion and the lossy cable

From Fig. 2 one can see that width of the reflected
pulses increase with the number of reflections. This
dispersion of the pulse packet is due to a differential
attenuation of the frequency components as a conse-
quence of the fact that the coaxial cable is not ideal,
i.e., the velocity depends on the frequency. The gen-
eral solution of the wave equation for a lossy cable is

V (x, t) = V1e
−αxe[i(ωt−kx)] + V2e

+αxe[i(ωt+kx)],

where

α2 =

{[
RG − ω2LC

]
+

√
[R2 + ω2L2] [G2 + ω2C2]

}
2

,

k2 =

{
− [

RG − ω2LC
]
+

√
[R2 + ω2L2] [G2 + ω2C2]

}
2

,

which represents two traveling waves. The lossy cable
leads to an exponential attenuation of the signal with
the distance. The attenuation coefficient is often so
small that it is significant only in very long cables of
many ten‘s of meters. The dependence of the phase
velocity v = dk/dω with the frequency is responsible
for the dispersion seen in Fig. 2. For coaxial cables,
frequencies above 100 MHz are attenuated more effi-
ciently.

3. Conclusions

We described a very simple experiment to measure the
impedance and velocity of pulse propagation of a coax-
ial cable using a potentiometer and a non-expensive
oscilloscope. Besides the low cost, one additional ad-
vantage is the use of not very long cables.
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