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About two decades ago we have shown mathematically that besides bosons and fermions, it could exist a
third kind of particles in nature that was named gentileons. Our results have been obtained rigorously within
the framework of quantum mechanics and the permutation group theory. However, these papers are somewhat
intricate for physicists not familiarized with the permutation group theory. In the present paper we show in
details, step by step, how to obtain our theoretical predictions. This was done in order to permit a clear under-
standing of our approach by graduate students with a basic knowledge of group theory.
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H& cerca de duas décadas passadas, mostramos matematicamente que, além de bésons e férmions, poderia
existir na natureza um outro tipo de particulas que denominamos de gentileons. Os nossos resultados foram
obtidos rigorosamente dentro do contexto da mecanica quéntica e da teoria do grupo de permutagoes. Entre-
tanto, os nossos artigos sdo dificeis de serem entendidos por fisicos que nao estdo familiarizados com a teoria do
grupo de permutacoes. Assim, no presente artigo nés vamos mostrar em detalhes, passo a passo, como obter as
nossas previsdes. Procedemos desse modo para permitir que estudantes de graduagao de fisica possam entender

claramente nossos calculos com um conhecimento bésico de teoria de grupos.
Palavras-chave: estatistica quantica; bésons, férmions, gentileons.

1. Introduction

In preceding papers [1-8], we have performed a detailed
analysis of the problem of the indistinguishability of N
identical particles in quantum mechanics. It was shown
rigorously, according to the postulates of quantum me-
chanics and the principle of the indistinguishability,
that besides bosons and fermions it could mathemati-
cally exist another kind of particles that we have called
gentileons. This analysis was performed using the irre-
ducible representations of the permutation group (sym-
metry group) Sy in the Hilbert space. However, our
first papers on the subject [1-3], that were taken as a
point of departure to investigate the existence of a new
kind of particles (gentileons) is somewhat intricate and
complex from the mathematical point of view. We have
used the group theory shown in the books of Weyl [9],
Hamermesh [10] and Rutherford [11]. These papers are
somewhat difficult for physicists not familiarized with
the permutation group theory and its representations in
the Hilbert space. So, in the present paper we intend
to deduce our main results adopting a more simple and
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didactic mathematical approach. We will present our
calculations in such way that graduate students with
a basic knowledge of group theory would be able to
understand our predictions.

In Sec. 2 the problem of the indistinguishability of
identical particles in quantum mechanics is analyzed.
In Sec. 3 we see how to connect the permutation of the
particles with the eigenfunctions of the energy operator
H using the Permutation Group. In Sec. 4 the calcula-
tion of the energy eigenfunctions of a system with N =
3 particles is shown in details. In Sec. 5 the essential
results for the general case of systems with N identi-
cal particles are given. In Sec. 6 the Summary and
Conclusions are presented.

2. The indistinguishability of identical
particles in quantum mechanics

Identical particles cannot be distinguished by means of
any inherent property, since otherwise they would not
be identical in all respects. In classical mechanics, iden-
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tical particles do not lose their “individuality”, despite
the identity of their physical properties: the particles at
some instant can be “numbered” and we can follow the
subsequent motion of each of these in its paths. Hence,
at any instant the particles can be identified.

In quantum mechanics [12-14], the situation is com-
pletely different since, due to the uncertainty relations,
the concept of path of a particle ceases to have any
meaning. Hence, by localizing and numbering the par-
ticles at some instant, we make no progress towards
identifying them at subsequent instants: if we localize
one of the particles, we cannot say which of the particles
has arrived at this point. This is true, for instance, for
electrons in a single atom, for neutrons in a single nu-
cleus or for particles which interact with each other to
an appreciable extent. However, electrons of different
atoms or neutrons of different nucleus, to good approx-
imation, are regarded as distinguishable because they
are well separated from each other.

Thus, in quantum mechanics, there is in principle
no possibility of separately following during the motion
each one of the similar particles and thereby distin-
guishing them. That is, in quantum mechanics identi-
cal particles entirely lose their individuality, resulting
in the complete indistinguishability of these particles.
This fact is called Principle of Indistinguishability of
Identical Particles and plays a fundamental role in the
quantum mechanics of identical particles [12-14].

Let us consider an isolated system with total energy
E composed by a constant number N of particles that
is described by quantum mechanics. If H is the Hamil-
tonian operator of the system, the energy eigenfunction
W, obeys the equation HV = EW¥. The operator H and
VU are functions of xi,s1,..., Xn,5n, where x; and s;
denote the position coordinate and the spin orientation,
respectively of the j** particle. We abbreviate the pair
(x;,8;) by a single number j and call 1, 2,..., N a par-
ticle configuration. The set of all configurations will be
called the configuration space e(N). So, we have simply
H=H(,2,..., N)and ¥ = U(1, 2,... N). These
quantum states ¥ form a Hilbert space Lo(c(M)) of all
square integrable functions [1-3] over ¢V,

Let us define P; as the “permutation operator”
(i =1, 2,... N!) which generate all possible permu-
tations of the N particles in the space e(N). Since the
particles are identical the physical properties of the sys-
tem must be invariant by permutations. In the next
section we show how to use the permutation group Sy
to describe the N-particles quantum system.

3. The permutation group and its rep-
resentations in the configuration and
Hilbert spaces

As seen above, P; is the “permutation operator” (i =1,
2,... N!) which generate all possible permutations of
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the N particles in the space e(N). The permutations
P; of the labels 1, 2,.., N constitute a symmetry group
[9-11, 16-19], Sy of order n = N!

Because of the identity of the particles, H and ¥
obtained by merely permuting the particles must be
equivalent physically, that is, [P;, H] = 0 and |P; ¥|? =
|W;|? = |¥|? This implies that the permutations are
unitary transformations and that the energy F has a
N! degenerate energy spectrum. We assume that all
the functions {U;};=1 2., are different and orthonor-
mal. To each operator P; of the group Sy we can
associate, in a one-to-one correspondence, an unitary
operator U( ;) in the Ly(eM)), [14, 15].

Now, let us put n = N! and indicate by
{Uk} k=12 n the set of n-degenerate energy eigenfunc-
tions, where Uy, = U(Py)W¥. It is evident that any lin-
ear combination of the functions W is also a solution
of the wave equation HV = EWV. In addition, since
[U(P), H] = 0 we see that H U(P) U}, = U(P) H ¥y,
=U(P) E ¥y, = E U(P)Vj. This means that if ¥y, is
an eigenfunction of H, U(P) Uy, is also an eigenfunction
of H. Hence, it must be equal to linear combinations
of degenerate eigenvectors, which is [14,15]

UP)U, = Y UD(P), (3.1)
Jj=1,....,n
where the Dj;(P) are complex coefficients which de-
pend on the group element.

According to Eq. (3.1) the n degenerate eigenfunc-
tions of H thus span an n-dimensional subspace of the
state-vector space of the system, and the operations of
the group transform any vector which lies entirely in
this subspace into another vector lying entirely in the
same subspace, i.e., the symmetry operations leave the
subspace invariant.

Repeated application of the symmetry operations
gives [14, 15]

UQ)U(P)¥ = Z U@

Z Z W;Dix(Q)Djx(P), (3.2)

onoi=1,.

Q)i Dji(P) =

and also

UQP)¥,= Y ¥Dy(QP). (3.3)
1=1,...,n
Since U(QP) = U(Q)U(P) the left-hand sides of
the Eqgs. (3.2) and (3.3) are identical. Hence, compar-
ing the right-hand sides of these same equations we get
the basic equation:
D (QP) = Z Di;(Q)Dj(P). (3.4)
j=1,....n
So, the permutation group Sy named “symmetry
group” of the system, defined in the configuration space
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W) induces a group of unitary linear transformations

U in the n-dimensional linear Hilbert space La(s(™")).
We have shown (see Eqgs. (3.1)-(3.3)) that the unitary
operations defined by U can be translated into a matrix
equations by introducing a complete set of basis vectors
in the n-dimensional vector space of W. This Hilbert
space L2(€(N )) is named “representation space”. The
set of n X n square matrices D form a group of dimen-
sion (degree) n equal to the order of Sy. The complete
set of matrices D are said to form a “n-dimensional
unitary representation of Sy”.

The ecigenfunctions {U;};=12. , are all different
and orthonormal since they are solutions of the same
Schrodinger equation. These functions can be used [11-
19] with the Young tableaux, to determine the irre-
ducible representations of the group Sy in the con-
figuration space ¢¥) and the Hilbert space Ly(¢(™)).
To do this the basis functions of the irreducible rep-
resentations using the Young tableaux are constructed
taking {U;};=12. n as an orthogonal unit basis. It is
important to note that choosing this particular basis
functions we are simultaneously determining the irre-
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ducible representations of Sy and eigenfunctions of the
operator H which is given by linear combinations and
permutations of the {U;};—1 2. . This method will be
used in the Appendix A to determine the irreducible
representations and the energy eigenfunctions for the
trivial case of N = 2 and for the simplest non trivial
case of N = 3.

In Sec. 4 using the method presented in Appendix
A will be constructed the energy eigenfunctions of a
system with N = 3 particles.

4. Systems with N = 3 particles

We will assume that a typical eigenfunction of en-
ergy E of the particles is written as ¥ = (1, 2,
3) = u(1)v(2)w(3), where the single-particle functions
(u, v, w) in the product are all different and orthogo-
nal. According to our analysis in the Appendix A the
6-dimensional Hilbert space Lo (¢(®)) spanned by the or-
thonormal unit vector basis (u, v, w) is composed by
two 1d subspaces, h([3]) and h([1?]), and one 4d sub-
space h([2,1]).

First let us consider the two 1d subspaces in the Hilbert space which are represented by following eigenfunctions

¢s and ¢q:

b, = [u()v(2)w(3) + u(1)vB)w(2) + u(2)v(Dw(3) + u2)v3)w(1) + u@B)v(H)w(3) + u3)v(2)w(l)] @
which is completely symmetric, associated to the horizontal Young tableaux [3],

ba = [u(D)o(2)w(3) — uD)v3)w(?2) — u(2)v(Dw3) +u2)vB)w(d) + u@)v(1)w(2) — u(3)v(2)w(l)] (42

completely antisymmetric, associated to the vertical Young tableaux [13].

The 4d subspace h([2,1]), associated to the intermediate Young tableaux [2,1] is represented by the state function
Y ([2,1]). This subspace h([2,1]) breaks up into two 2d subspaces, h4([2,1]) and h_([2,1]), that are spanned by the
basis vectors {Y7, Ya}, {Y3, Y4} and represented by the wavefunctions Yy ([2,1]) and Y_([2,1]), respectively. The
state functions Y ([2,1]), Y1 ([2,1]) and Y_([2,1]) are given respectively, by

1 (Y Yi 1 (v
w@mﬁ<;),nﬂ %>,miﬁﬁ(£), (4.3)
where
vy, = [@)o@)w() + u2)o()w(3) — u2)vB)wl) — u3)v(2)w(l)]
1 \/41 )
v, — [u()v(2)w(3) + 2u(1)v(3)w(2) — u(2)v(1)w(3) + u(2)v(3)w(l) — 2u(3)v(1)w(2) — u(3)v(2)w(1)]
2 \/ﬁ )
Vi — [—u(1)v(2)w(3) + 2u(1)v(3)w(2) — u(2)v(1)w(3) — u(2)v(3)w(l) + 2u(3)v(1)w(2) — u(3)v(2)w(1)]
Y =
V12
and

u(1)o(2)w(3) — u2)v()w(3) — u2)v@)w(l) + u@)v(2)w(l)]

Y4:[

V4
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As shown in the Appendix A, the functions Y, ([2,1])
and Y_(]2,1]) have equal symmetry permutation prop-
erties, that is, ;YL = D®)(P;) Y1 where the (2 x 2)
matrices D) (P;) are unitary irreducible representa-
tions of the S3 in the ) and in the Ly(e®). The
vectors Y associated with the 4d space h([2,1]) or with
the two 2d subspaces, h([2,1]) and h_([2,1]), will be
indicated in what follows simply by Y'([2,1]).

As well known [12-15], the totally symmetric func-
tion ¢4 defined by Eq. (4.1) describes the bosons and
the completely anti-symmetric function ¢, given by
Eq. (4.4) describes the fermions. When two fermions
occupy the same state we verify ¢, = 0 which implies
that two fermions are forbidden to occupy the same
state. This kind of restriction does not exist for bosons
since ¢, # 0 when three Bosons occupy the same state.

We see from Eq. (4.3) that Yy # 0 when 1 or 2
particles occupy the same state, however Y, = 0 when
3 particles occupy the same state.

From these results we see that the functions Y'([2,1])
must represent particles which are different from bosons
or fermions. These new kind of particles was called
gentileons [3]. This name was adopted in honor to the
Italian physicist G. Gentile Jr. About six decades ago
[20-22], he invented, without any quantum-mechanical
or another type of justification, a parastatistics within
a thermodynamical context. He obtained a statistical
distribution function for a system of N weakly inter-
acting particles assuming that the quantum states of
an individual particle can be occupied by an arbitrary
finite number d of particles. The Fermi and the Bose
statistics are particular cases of this parastatistics for d
=1 and d = oo, respectively. A recent detailed analysis
of the d-dimensional ideal gas parastatistics was per-
formed by Vieira and Tsallis [23].

Our analysis which gives support, within the frame-
work of quantum mechanics and group theory, to the
mathematical existence of news states Y ([2,1]) associ-
ated with the intermediate Young tableaux [2,1], justi-
fies, in a certain sense, the Gentile’s hypothesis.

5. Systems composed by N identical
particles. The statistical principle

In the Appendix A and in Section 3 we have studied in
details the cases of systems composed by two and three
particles. We have shown how to obtain the irreducible
representations of the Sy and S; in the configuration
spaces £ and € and in the Hilbert spaces Ly(c(?)
and Ly(¢®®)). We have also constructed for these cases
the eigenfunctions of the Hamiltonian operator.

In this Section we will give only the main results for
the N-particles systems that have studied in details in
preceding papers [1-3].

We have shown [1-3] that the dimensions f(«) of the
irreducible f(a) x f(«a) square matrices assume the val-
ues 12, 22...., (N - 1)? and to each irreducible represen-
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tation («) is associated a subspace h(«) in the Hilbert
space Lo(cN)) with dimension f(a).

There are only two 1-dimensional (f(a) = 1)
irreducible representations given by the partitions
(a) = [N] and (a) = [1¥]. The first case is described
by horizontal shape with N spaces. In the second case
we have a vertical tableaux with N rows. The wave-
functions associated to them are, respectively, given by

1 n
@s:ﬁ;\yi

and

1 n
o = /= opiV; 4.4
¥ \/]W; P (4.4)

where dp; = £ 1, if P; is even or odd permutation.
The remaining representations have dimensions
f(a) going from 22 up to (N - 1)? and are described
by the various intermediate shapes [9-11, 17-19]. To
each shape («) there is an irreducible representation

described by f(a) x f(«) square matrices DEZ‘) with
dimension f(«). The tableaux with the same shape
(o) have equivalent representations and the different
shapes cannot have equivalent representations. There

is a one-to-one correspondence between each shape («)

and the irreducible matrices DE}?)~

To each shape («) is associated a sub space h(«a) €
Ly (™)) with dimension 7 = f(a) spanned by the unit
basis {Yi}i=1,2,. . In this subspace h(c) the energy
eigenfunction Y («) is given by

Yl(Oé)
1 | Ya(@)

Y(a)= N (4.5)
Y (a)

where the functions {Y;};=12. ., that are con-
structed applying the Young operators to the functions
{W;}i=1.2..n, Obey the condition < Y;|Y,, > = d;,.

Under the permutations Y («) € h(«) is changed
into X («) € h(«) given by X(«) = U(P;) Y(«), where
U(P;) is an unitary operator. This permutation op-
erator can also be represented by an unitary matrix
T(o): X () = T(a) Y(a). Since the subspaces h(«) are
equivalence classes [9-11, 19], different subspaces have
different symmetry properties which are defined by the
matrix T(«). This means that if T(«a) € h(a) and
T(B) € h(B), results T(«) # T(B) if a # .

Since T(a)*T(a) = 1 the square modulus of Y («)
is permutation invariant, that is, |[Y|? = Y (a)tY (a) =
X(a)*X(a) = |X[?. So, the function |®(a)]?> =
Y(a)TY(a) = >, |Vi|? can be interpreted as the prob-
ability density function.

We note that for the 1d cases the symmetry proper-
ties of the state function Y («) are very simple because
T = =41, whereas for the multidimensional h(a) the
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symmetry properties are not so evident because they
are defined by a matrix T'(«) which has 72 components.
Moreover, the occupation number of the states by par-
ticles is not fermionic or bosonic.

To obtain the energy eigenfunction our basic hy-
pothesis was that

[U(R), H] = 0.

Consequently, [U(P;), S(t)] = 0, where S(¢) is the time
evolution operator for the system.

The expectation values of an arbitrary Hermitean
operator A = A(l, 2,..., N) for the energy state-
vectors Y (a) and X («) are defined by

<Ay >=<Y(a)|A]Y () >=
13 < Vi@)lAYi(o) >,

and

<A, >=< X()|A|X(a) >=
15 < Xilo) A1 () >,

respectively. Since X (a) = T(a)Y () we see that

<Ay >=< X(a)|A|X (o) >=
<Y(a)|T(a)" AT ()Y (v) >=
<Y(a)|AlY (a) >=< A, >,

implying that [U(F;), A(t)] = 0. Moreover, if U(P;)
commutes with S(t) the relation [U(F;), A(t)] = [U(P;),
ST(t)A(t)S(t)] = 0 is satisfied. This means that
< Ay(t) > =< Ay(t) > at any time. This expresses
the fact that since the particles are identical, any per-
mutation of them does not lead to any observable effect.
This conclusion is in agreement with the postulate of
indistinguishability [12-15].

The occupation number of the states and the sym-
metries properties of the quantum energy eigenstates
Y («) associated with the intermediate Young shapes
are completely different from the vertical (fermionic)
and horizontal (bosonic) shapes. This lead us to pro-
pose the following statement which is taken as a princi-
ple (Statistical Principle): “Bosons, fermions and gen-
tileons are represented by horizontal, vertical and in-
termediate Young tableaux, respectively”.

6. Summary and conclusions

We have shown that besides bosons and fermions it can
exist mathematically a new kind of particles, named
gentileons. Our theoretical analysis was done didacti-
cally using the basic group theory adopted in the grad-
uate physics course.
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Using the permutation group theory we studied in
details the trivial case of systems formed by 2 particles
and the simplest but non trivial case of systems formed
by 3 particles. For the general N-particles systems only
a brief review of the main results obtained in preceding
papers [1-8] have been presented.

According to the amazing mathematical properties
[2-8] of the intermediate representations of the permu-
tation group theory the gentilionic systems cannot co-
alesce. Gentileons are always confined in these systems
and cannot appear as free particles.

Based on these exotic properties we have conjec-
tured [2-8] that quarks could be gentileons since we
could explain, from first principles, quark confinement
and conservation of the baryonic number.

Let us suppose that only bosons and fermions could
exist in nature. In this case there remains the problem
to discover the selection rules which forbid the existence
of gentileons.

Finally, we must note that besides the “gentileons”
there are other particles that do not obey the Fermi
or Boson statistics, predicted by different theoretical
approaches. We would like to mention first the “para-
bosons” and “parafermions” predicted by Green [3,
24]. A detailed analysis of the Green parastatistics can
be seen, for instance, in the book of Ohnuki and Kame-
fuchi [25]. Besides the parabosons and parafermions we
have, for instance, the “anyons” [26], and the “exclu-
sons” [27]. The “anyons” and “exclusions” result from
the interaction of the original bosons and fermions and
could not be found asymptotically free in the nature,
like the gentileons. Recently, according to Camino [28]
the existence of anyons (“Laughlin particle” with frac-
tionary charge) has been confirmed in the context of the
fractional quantum Hall effect. More information about
this experimental confirmation is given by Lindley [29].

Appendix A - Representations of the Sy
group in the configuration space ) and
in the Hilbert space L,(¢™))

We give here the basic ideas [16], concerning the repre-
sentations of the Sy group in the configuration space
() More detailed and complete analysis about this
subject can be found in many books [9-11, 17-19].

If we can set up a homomorphic mapping

P;: DW(P;) (A.1)

between the elements P, Ps,..., P, of the group
Sy and a set of square (u x p) matrices D (Pp)
DW(Py),..., DW(P,) (n = N!) such that
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DW(P)DW (P;) = DWW (P, Py), (A.2)

then the matrices DWW (P) DWW (R),..., DW(P,)
are said to be a u-dimensional matrix representation of
the group Sy in the configuration space ™). If the
homomorphic mapping of Sy on D(FP;) reduces to an
isomorphism the representation is said to be faithful.

In general all matrices D) (P;) of a pu-dimensional
representation can be brought simultaneously to the
form

DW(Py) = ( 0 o ) (A.3)
where D*)(P;) and D("™)(P;) are diagonal blocks with
k+m = u. When, by a similarity transformation, all
matrices D(*) (P;) can be put in a diagonal form, that is,
when A(P;) = 0, the representation is named reducible.
If the matrices cannot be written in a diagonal block
structure the representation is said to be irreducible.

Let us consider, for instance, the simplest but non
trivial case of the permutation group S3 and define
Py = I = identity = (123), P, = (213), P; = (132),
P, = (321), P; = (312) and Ps = (231). We can
show [16], that the Ss; has two 1l-dimensional irre-
ducible representations (D§l) and Dél)) and only one
2-dimensional irreducible representation (D) (F;)).

For the two 1-dimensional representations the ma-
trices DM (P;) are given by

DV(P)=1 (i=1,2,...,6); (A.4)

DM(P)=1 (i=1,5 and 6) and

Dél)(Pz')Z—l (1=2,3 and 4), (A.5)

which are homomorphic representations.
For the 2-dimensional representation the matrices
D@ (P,) are given by

D(Q)(Pl)Z((l) (1)),

D@ (Py) = ;( 71/3 _713 >

D@ (Py) = ( Y > (A.6)
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wm=3(s 7).

and

- )

which is a faithful representation. Since the matrices
shown in Eq. (6) are all orthogonal this irreducible
representation is called orthogonal.

There are an infinite number of representations of
a given group. We have obtained above the irreducible
representations of the S3 using the multiplication prop-
erties of the permutations P;. Other two irreducible
representations of S3 can be obtained, for instance, tak-
ing into account (1)rotations of vectors in a 3d Euclid-

ean space and (2)rotations of an equilateral triangle in
the (z, y) plane [18].

A.1. Determination of the Sy representations
by the Young tableaux

In the general case the determination of the Sy repre-
sentations is performed by using more powerful meth-
ods developed by Young and Frobenius [9-11, 17-19].
They consider the substitutional expression Il = a; P+
as P, + ...4a, P,, where P, P»,..., P, are the n dis-
tinct permutations of the Sy and aq, as,. .., a, are nu-
merical coefficients, and take into account the partitions
of number N. Any partition of the number N denoted
by o1, ag,.. ., ag], where a; + g +... + ap = N, with
a1 = as >=...= ap will be represented simply by
(), when no confusion is likely to arise. The first work
[17], using this approach have been done, around 1900,
independently by Frobenius and by Young, that was a
country clergyman. To each partition («) of N is con-
structed a shape, named Young tableaux, denoted by
a, having «q spaces in the first row, as in the second
row and so on [9-11, 17-19]. By the shape we mean the
empty box, i.e., the contour without the numbers. We
show below all possible shapes associated with N = 2,
3 and 4 particles.

The N numbers 1, 2,..., N are arranged in the
spaces of the shape « in N! = n ways. Each such
arrangement is called a tableau T and there are N!
tableaur with the same shape. The tableau T, for a
given shape, is called standard tableau if the numbers
increase in every row of T from left to right and in every
column of T" downwards.
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N=2
Shapes:  [2] [12]
RN | ]
Shapes: [4] [3,1]

The tableaux are constructed as follows: insert the
numbers 1, 2, 3,..., N into the shape in any order to
give a Young tableau. Once the tableau has been fixed,
we consider two types of permutations [9]. Horizon-
tal permutations p are permutations which interchange
only numbers in the same row. Vertical permutations ¢
interchange only numbers in the same column. Hence,
we define the Young operator by YO = PQ where the
quantities P and @ are given by

P=3%,p (“symmetrizer”)

and
Q =X, 0,9 (“antisymmetrizer”), (A.7)

where the sums are over the horizontal and vertical per-
mutations and d, is the parity of the vertical permuta-
tion ¢q. The tableaux are obtained by the application of
the Young operators on the initial standard tableau.

Note that if the arranged numbers increase in every
row of T from left to right and in every column of T
downwards, the tableau, for a given shape, is called
standard tableau.

Let us indicate by Ty, Ts',..., T the different
tableauz of the same shape « generated by the permu-
tations defined by the operator YO. Any permutation
applied to a tableau of shape a will produce another
tableau of the same shape «.

Denoting by P the permutations which changes
T¢ into T7, we have T;* = P T. The matrices Dy
of an irreducible representation of degree f of Sy is cal-
culated from the formula [10]

eiiPerr, = Direir,

where e;;, (i,k = 1, 2,..,f) are unit basis which satisfies
the equations e;;jej, = e, and e;jep, =0 (b # j). The
parameter f, named degree of the irreducible represen-
tation, gives the dimension of the irreducible matrices.

The elements D;j, of the (f x f) irreducible matri-
ces can be determined adopting three different units e;:
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N=3
HEE @
[3] [2.1] [1°]
N=4
[2.2] [2.3] [14]

(1) natural, (2) semi-normal and (3) orthogonal. Note
that the values found for the D;; components depend
on the choice of the unit basis [9-11, 17-19]. Of course
these three irreducible representations are equivalent.
Let us present a brief review of the fundamental
properties of the irreducible representations of the Sy
in the configuration space (V)
(1) To each partition («) there is an irreducible rep-
resentation described by square matrices DE,?) with f(«)
dimension. So, the tableaur with the same shape ()
have equivalent representations and the different shapes
cannot have equivalent representations. There is a one-

to-one correspondence between each shape (a) and the

irreducible matrices Dg:).

(2) The dimensions f(«) of the irreducible square
matrices assume the values 12, 22... (N - 1)%

(3) There are only two 1-dimensional irreducible
representations given by the partitions (o) = [N] and
(a) = [1V]. The first case is described by horizontal
shape with N spaces. In the second case we have a
vertical shape with N rows. The remaining represen-
tations have dimensions going from 2% up to (N - 1)2
and are described by the various shapes occupied by 3,
4,..., N particles, respectively [9-11, 17-19].

A.2. Systems with N = 2 and N = 3 par-
ticles: determination of the basis func-
tions of their irreducible representations,
their energy eigenvalues and their irre-
ducible representations in the configura-
tion and in the Hilbert spaces

We will show how to determine the irreducible represen-
tations for the trivial case N = 2 and the simplest but
non-trivial case of N = 3 using the Young operators.
This is done constructing the basis functions of the irre-
ducible representations [11, 19]. using orthogonal unit
basis. We will take as the unit basis the n = N! degen-
erate energy orthonormal eigenfunctions {U;};=12. 5
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which span an n-dimensional Hilbert space Lq(s(™)).

We will divide the process used to determine [11, 19]
the irreducible representations in three parts a, b and
c.

A.3. Construction of the Young operators

Following the recipes to construct the Young operators
Y = PQ, defined by the Eq. (A.7) we obtain the fol-
lowing operators Y, associated with respective shapes
[11, 19]:

N =2
Shape [2]:
YOP2] = UL;“”. (A8)
Shape [1?]:
YO[IQ] _ [I — 132(172)}
N =
Shape[3]:
I + P(132) + P(213) + P(231) + P(312) + P(321)]
G .
Shape [13]:
YO[13] — [Zz 6i P _
6
[ — P(132) — P(213) + P(231) + P(312) — P(321)]
: .
Shape [2,1]:
_ [I+ P(213) — P(231) — P(321)]
Y011[27 1] - \/1 )
Y Oul2.1] = [P(132) — P(213) t/g(%l)/z — P(12)]
_ [P(132) — P(231) + P(312) — P(321)]
Y02[2,1] = Vi ,
[T - P(213) — P(312) + P(321)]
Y02[2,1] = 71 . (A9)
Let wus indicate by e = ¥(l, 2) and
es = P(1, 2)¥(1, 2) the unit vector basis of

the 2-dimension Hilbert space Ly(¢(?)). Similarly, by
er. = U1, 2,3), ea = U(1,3,2), e5 = ¥(2,1,3),
eqs = U(23,1), es = U(3,1, 2) and eg = ¥(3,2,1)
the unit vector basis of the 6-dimension Hilbert space
Ly(e®) obtained by the permutations Pye; (i = 1,
2,..6).
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A.4. Construction of the basis functions and the
energy eigenfunctions

To construct the basis functions for the various irre-
ducible representations [9, 19] of the Sy and S3 we ap-
ply the Young operators YO defined by Eqs. (A.8)
and (A.9) to the function ¥ = ¥(1, 2) and ¥(1, 2,3)
respectively. In these conditions we obtain:

For N = 2 the completely symmetric ¢ and anti-
symmetric ¢, normalized eigenfunctions of the two 1d
subspaces are written as

(e1 +e2)

V2

For N = 3 we have the following eigenvectors:
Shape [3]:

st:

(A.10)

(61+62+€3+64—|—65+66)

¢ 7 (A.11)
Shape [13]:
bo = (e1 —e2 —e3 —eq +e5 +eg)
a \/6 .
Shape [2,1]:
Yy, = (e1 +es —64—66)7
Nz
(e2 —e3 +e4 — e5)
Yio = , A.12a
12 7 ( )
(ea —eq+e5 — eg)
Yoy = :
21 i
(e1 —e3 —e5 +ep)
Voo —
22 Nz
For N = 3 the unit vector basis {e;}i=12... ¢ spans a

6-dimensional Hilbert space which is composed by two
1-dimensional subspaces, h([3]) and h([1%]), and one
4-dimensional subspace h([2,1]). Since the functions
Yis(r,s = 1, 2, 3, 4) form a set of linearly independent
functions in h([2,1]) we can construct by an orthonor-
malization process the base-vectors {Y;};=1, . 4 of the
subspace h([2,1]) that are given by

(e1 +e3 —eqs —es)
Y = ,
! V4

Y, = (61+2€2—€3+€4—2€5—66)
V12 ’

(—61 + 2e9 —e3 — ey + 2e5 — 66)
V12 ’
(61 —e3 —e4 + 66)
V4 '

In these conditions the subspace h([2,1]) is spanned
by the orthonormal vectors {Y;}i—12, . 4. and the

(A.12b)

}/3:

Yy =
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eigenstate Y ([2,1]) associated to this subspace is writ-
ten as

Y,
1| v 1 (Y
v = =5 (V). )
Yy

where functions Y, and Y_ are defined by

Y+:\}§<2) and Y_Z\}é(}y,i). (A.14)

As can be easily verified, the functions ¢, ¢, and
{Y;}i=1,..4 are orthonormal, that is, < f,|fm > = dpm,
where n, m = s, a, 1, 2, 3 and 4. From these orthonor-
mal properties we can easily verify that

(1Ya]* + [Ya|* + [¥5]* + [Ya?)

YY > 2=
[ <Y[Y > 2 :
and that
Vil? +Y2?) (1Y + [Val?)
Y. Y 2 (| 1 _ _
| <Yi|Yi > | 5 5
| <Y_|Y_ > |%

From the Egs. (A.13)-(A.14) we see that the 4d
subspace h([2,1]), which corresponds to the intermedi-
ate Young shape [2,1], breaks up into two 2d subspaces,
h4([2,1]) and h_([2,1]), that are spanned by the basis
vectors {Y7, Y2} and {Y3, Y4}, respectively. To these
subspaces are associated the wavefunctions Y ([2,1])
and Y_([2,1]) defined by Eq. (A.14). There is no linear
transformation S which connects the vectors Y, and
Y_.

Note that the above functions ¢4 and ¢, defined by
Eqgs. (A.10) are the energy eigenfunctions for the sys-
tem with N = 2 particles. Similarly, the functions ¢,
¢q and {Y;};=1 4 seen in the Egs. (A.11)-(A.14) are
the energy eigenfunctions of the system with N = 3
particles.

A.5. Calculation of irreducible representations
of the S5 and S5 groups

Finally, to calculate the irreducible representations of
the So and S3 groups associated with the correspond-
ing shapes it is necessary to apply the permutation op-
erators P; to the energy wavefunctions given by the
Egs. (A.10) and (A.11) and Egs. (A.13) and (A.14).

N =2 and 3:

Horizontal shapes (2] and [3]: P; ¢5 = (+1) ¢, that
is, D[2] = D[3] = +1.

Vertical shapes [12] and [13]: P; ¢, = (£1) g, that
is, D[1%] = D[1%] = +1,
showing that all the irreducible representations are 1-
dimensional. To the shapes [2] and [3] are associated
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the matrix D = 1. To the shapes [1?] and [1°] are
associated the matrix D) = +1.

N = 3, intermediate shape [2,1].

Applying the permutation operators P; to Y, and
Y defined by the Egs. (A.14) and taking into account
that P; e; = ey, where 7, j, m = 1, 2,3,..., 6, we can
show that

P(123)Yy = PYy: = IV,
P(132)Y: = P,Y: = DA(P,)Y,

P(213)Yy = PsYy = DA Py,
P(321)Y: = P,Yy = DP(P))Yy,
P(231)Y: = PsYy = D@ P)Yy,
P(312)Y: = PsYy = DP(P)Yy,

where D®)(P;) (i = 1, 2,..., 6) are the same 2 x 2
matrices of the 2-dimensional irreducible representa-
tion of the S3 given by Eq. (A.6). This implies that
the 4 x 4 representation matrices associated with the
shape [2,1] are broken into 2 x 2 irreducible matrices
D®)(P;). These irreducible representations are equiva-
lent. In this way the 4 x 4 representation matrices in
the 4-dimensional subspace h([2,1]) can be written as
the direct sum of two 2 x 2 equal irreducible matrices.

As pointed out above, adopting the particular unit
vector basis {¥;};—12,.. ¢ which are eigenvalues of the
Hamiltonian H we have simultaneously determined the
irreducible representations of the S3 in configuration
space £(3) and in the Hilbert space Lo(¢(®) and con-
structed the eigenfunctions ¢, ¢4, Y4 and Y_ of the en-
ergy operator H. The 6d Hilbert space Ly(¢(®)) which is
spanned by the basis vectors {U;};=1 2. ¢ is formed by
tree subspaces h(a). Two of them, h([3]) and h([1%]),
are 1-dimensional. The 4d subspace h[(2,1]) which is
spanned by the unit basis vectors {Y;}; = 1,....4 is com-
posed by two 2d subspaces, h([2,1]) and h_([2,1]),
spanned by the unit vectors {Y7, Yo} and {Y3, Y4},
respectively.

(A.15)

Appendix B

Permutations in the (3 and the rotations of an equi-
lateral triangle in an Euclidean space Fs

It will be shown in this Appendix that the permu-
tations operations P; on the state Y'([2,1]) can be in-
terpreted as rotations of an equilateral triangle in the
Euclidean space E3. To show this we will assume that
in the E3 the states u, v and w can occupy the ver-
tices of an equilateral triangle taken in the plane (x, 2)
plane, as seen in Fig. 1. The unit vectors along the
x, y and z axes are indicated by i, j and k. In Fig. 1
the unit vectors my, ms and mg are given by my = -k,
ms = -(v/3/2) i +(1/2) k and mg = (y/3/2) i +(1/2)
k, respectively.

We represent by Y (123) the initial state whose par-
ticles 1, 2 and 3 occupy the vertices u, v and w, re-
spectively. As is shown in details elsewhere [5, 7] the
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irreducible matrices D(®(P;) associated with the per-
mutations P;Y = D®)(P;) Y can be represented by
unitary operators U = expli j.5(0/2)] and V =i exp[i
m;.5(¢/2)]; 0 = + 2m/3 are rotations angles around
the unit vector j, ¢ = + 7 are rotations angles around
the unit vectors my, ms and mg and ¢ are the Pauli
matrices.

ms me

Figure 1 - The equilateral triangle in the Euclidean space (z, y,
z) with vertices occupied by the states u, v and w.

From these results we see that: (a) the eigenvectors
Y ([2,1]] are spinors and (b) the permutation operators
P; in e are represented by linear unitary operators,
U and V, in the Hilbert space Lo(c(®)).

According to a preceding paper [3], we have called
AS3 the algebra of the symmetric group S3 .This al-
gebra is spanned by 6 vectors, the irreducible matri-
ces {DP)(P;)}iz1 2. ¢ that before Ref. [3], have been
indicated by {n;}i=12,..6. It was shown that asso-
ciated to this algebra there is an algebraic invariant
Kiny = 4 + 15 + 16 = (my + ms + mg). & = 0.
From this equality results that K;,, can be represented
geometrically in the (x, z) plane by the vector M iden-
tically equal to zero M = my4 + m5 + mg = 0. Usually,
for continuous groups, we define the Casimir invariants
which commute with all of the generators (in our case
the generators are ny and 1) and are, therefore, invari-
ants under all group transformations. These simulta-
neously diagonalized invariants are the conserved quan-
tum operators associated with the symmetry group. In
our discrete case we use the same idea. So, the oper-
ator K, which corresponds to the genuine gentilionic
representation of the ASj3 is identified with a quantum
operator which gives a new conserved quantum number
related to the S3. Assuming that quarks are gentileons
[3-8] and that the states u, v and w are the three SU(3)
color states we have interpreted the constant of motion
Kin, = 0 as a color charge conservation which would
imply consequently in quark confinement. In this case
the AS3 Casimir K;,, = 0 was called color Casimir.
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