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1Departamento de F́ısica Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
2Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA

Recebido em 15/7/2011; Aceito em 29/8/2011; Publicado em 27/2/2012

In this work we study the problem of one-dimensional elastic collisions of billiard balls, considered as rigid
bodies, in a framework very different from the classical one presented in text books. Implementing the notion
of impedance matching as a way to understand efficiency of energy transmission in elastic collisions, we find a
solution which frames the problem in terms of this conception. We show that the mass of the ball can be seen
as a measure of its impedance and verify that the problem of maximum energy transfer in elastic collisions can
be thought of as a problem of impedance matching between different media. This approach extends the concept
of impedance, usually associated with oscillatory systems, to system of rigid bodies.
Keywords: impedance, energy transmission, elastic collisions.

Neste trabalho estudamos o problema de colisões elásticas unidimensionais de bolas de bilhar, consideradas
como corpos ŕıgidos, dentro de uma abordagem muito diferente da abordagem clássica apresentada nos livros
textos. Implementando a noção de casamento de impedância como uma maneira de entender eficiência de trans-
missão de energia em colisões elásticas, nós encontramos uma solução que enquadra o problema em termos deste
conceito. Mostramos que a massa da bola pode ser vista como uma medida de sua impedância e verificamos que
o problema de máxima transferência de energia em colisões elásticas pode ser pensado como um problema de
casamento de impedância entre meios diferentes. Esta abordagem amplia o conceito de impedância, usualmente
associado a sistemas oscilatórios, para sistemas de corpos ŕıgidos.
Palavras-chave: impedância, transmissão de energia, colisões elásticas.

1. Introduction

A good teacher knows the value of analogy and univer-

sality when explaining difficult concepts. A hard prob-

lem can be much simpler to elucidate when students

have been exposed to a similar problem. For instance,

students understand electrical forces better after they

are acquainted with gravitational forces. Terms such

as energy become gradually more familiar as it is en-

countered in a variety of contexts. In this paper we

aim to introduce and enlarge the concept of impedance

to undergraduates and advanced high school students

by investigating energy transfer in mechanical collisions

and tracing a parallel with the propagation of light in

electromagnetic systems. We define the characteristic

impedance of a system as the ratio between a force-

like quantity and a velocity-like quantity [1]. From this

definition we derive an expression for the mechanical

impedance of a billiard ball, which tells how to en-

hance the energy transfer from one mass to another

in elastic collisions. Most importantly, we investigate

how impedance matching appears in mechanical sys-

tems and we compare our results with the well-known

problem of impedance matching in optical systems.

2. Transmission of kinetic energy in a
head-on elastic collision

Our mechanical system consists of the one-dimensional

elastic non-relativistic collision between two or three

particles with different masses. This is simply the pop-

ular textbook problem of one-dimensional elastically

colliding billiard balls. We observe how much kinetic

energy is transmitted from one ball to the other during

the collision.

Before we introduce the idea of impedance in me-

chanical systems, let us use the conservation laws of lin-

ear momentum and kinetic energy in elastic collisions

to find the fraction of transmitted energy from one ob-
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ject to the other. We consider three rigid billiard balls

of masses m1, m2, and m3. Let us assume that ball 1

has a finite speed and both balls 2 and 3 are at rest

before the collision. After the first collision between

m1 and m2, part of the kinetic energy from ball 1 has

been transmitted to ball 2, which now has a velocity

in the same direction as the initial velocity of ball 1

(see Fig. 1). Using momentum and kinetic energy con-

servation, one obtain, for the fraction of kinetic energy

transmitted from the first to the second ball,

T12 =
K2f

K1i
=

4µ12

(1 + µ12)2
, (1)

where we define µ12 ≡ m1/m2, K1i is the initial kinetic

energy of ball 1 and K2f is the kinetic energy of ball 2

after the collision. The fraction of energy that remains

in the first ball, which we consider as a “reflected” en-

ergy, is given by R12 = K1f/K1i = (µ12−1)2/(µ12+1)2,

where K1f is the kinetic energy of the first ball after

the collision. Analogously, in the second collision be-

tween balls 2 and 3, the fraction of kinetic energy that

is transferred to the third ball is

T23 =
K3f

K2f
=

4µ23

(1 + µ23)2
, (2)

where µ23 ≡ m2/m3 and K3f is the kinetic energy of

m3 after the second collision. The fraction of energy

transferred from the first to the third ball in the pro-

cess is given by T13 = K3f/K1i = T12T23, which can be

written, using Eqs. (1) and (2), as

T13 =
16µ13(

1 + µ13 +
µ13

µ23
+ µ23

)2 , (3)

where we define µ13 ≡ m1/m3 and µ12 has been re-

placed with the equivalent expression µ13/µ23. From

this equation we see that, for any fixed value of µ13,

there are many values of µ23 which give different frac-

tions of transmitted kinetic energy from the first to the

third ball. We compare it with the configuration when

the intermediate ball m2 is removed, in which case the

transferred energy is given by T13 = 4µ13/(1 + µ13)
2.

Equating this with Eq. (3) we find two roots: µ23 = 1

and µ23 = µ13. The plot for this configuration is shown

in Fig. 2, where we examine the behavior of (3) for two

particular values of the ratio µ13. We observe that, for

each µ13, there exists a range of values between µ23 = 1

and µ13, such that more energy is transmitted in the

presence of m2 than when this intermediate mass is ab-

sent.

Figure 1 - Physical picture of the one-dimensional elastic collision
between balls of masses m1, m2 and m3. Before the collisions,
ball 1 has speed v1i and balls 2 and 3 are at rest. After the colli-
sions, all balls have different speeds if their masses are different.

Figure 2 - Plots of Eq. (3) for fixed µ13 > 1 (above) and for
µ13 < 1 (below). We notice that in the presence of m2, there is
a range of values of µ23 (limited by the vertical lines) where the
fraction of energy transmitted is greater than in its absence. The
regions are limited by the values of µ13 and µ23 = 1.

In order to proceed further, we ask ourselves
whether this special range of values can be enlarged
such that a maximum amount of kinetic energy can
be transferred from the first to the third ball. In-
deed, fixing m1 and m3, this can be obtained by taking
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dT13/dµ23 = 0. Investigating the second derivative, we
find that T13 has a maximum at µ23 =

√
µ13, that is,

when we take m2 =
√
m1m3. The fraction of trans-

ferred energy in this case depends only on the ratio µ13

and is given by

T13max =
16µ13

(1 + µ13 + 2
√
µ13)2

. (4)

This answers our question about the value of the in-
termediate mass: when m2 is equal to the geometric
mean of m1 and m3, the transmitted kinetic energy is
a maximum. Fig. 3 shows the behavior of Eq. (4) for
several values of the ratio µ13 and compares it with
the configuration where the intermediate ball m2 is ab-
sent. We observe that with an intermediate ball with
mass m2 =

√
m1m3 we always transfer more kinetic

energy from m1 to m3, and when µ13 = 1, that is,
m1 = m3, the presence of m2 is irrelevant (transmis-
sion coefficient is equal to unity). A similar calculation
for partially elastic collisions between n masses was car-
ried out by J.B. Hart and R.B. Herrmann [2]. We ex-
pand on their results by emphasizing the analogy with
impedance matching in the following sections.

Figure 3 - Kinetic energy transmission coefficient (Eq. (4)) from
ball m1 to ball m3 in Fig. 1, when the intermediate ball has
mass m2 =

√
m1m3. Note that the transmission with m2 in-

cluded (dashed curve) is always greater then the other when m2

is removed (solid curve).

If this is done in class as a demonstration, the stu-
dents will be faced with the question that arises from
the results: Why does the presence of the intermediate
ball facilitate the transmission of energy? Wouldn’t it
be more reasonable to expect that the presence of an ex-
tra ball would reduce the transmission of kinetic energy?
This question, as we will see in the following sections, is
more easily answered if it is introduced in the context
of impedance matching.

3. Impedance matching

We know from electromagnetism that the transfer of en-
ergy through the interface between different media de-
pends on their respective values of impedance Z. For

an electromagnetic wave traveling from, say, medium
1 to medium 3, the coefficients of reflection (r13) and
transmission (t13), known as Fresnel coefficients [3], are
associated with the fraction of reflected energy R13 and
transmitted energy T13, such that R13 = r213, T13 =
(n3/n1)t

2
13 (n1 and n3 are the indices of refraction of the

media 1 and 3 respectively and r13 = 1−t13). Although
in optical systems the coefficient r13 is given in terms
of the indices of refraction as r13 = (n3−n1)/(n3+n1),
more generally it can be expressed in terms of the
impedances of the media as r13 = (Z3−Z1)/(Z3+Z1),
where Zi is the impedance of medium i. Since the
sum of the reflected and transmitted parts has to be
unity, we obtain t13 = 2Z1/(Z3 +Z1). Therefore, when
the two media have the same impedance, all energy is
transmitted and t13 = 1, r13 = 0. This problem is
similar to the mechanical problem we described in the
previous section if we add an intermediate medium with
impedance Z2. Once again, we are interested in the en-
ergy transfer in the problem and we can ask the ques-
tion: What is the value of Z2 for which the transmission
of energy from medium 1 to medium 3 is maximum?

In order to solve this problem, we note that in this
configuration the fraction of energy transmitted from
medium 1 to medium 2 is T12 = 4Z1Z2/(Z1+Z2)

2 and
the fraction transmitted from medium 2 to medium 3
is T23 = 4Z2Z3/(Z2 +Z3)

2. Thus, the transmission co-
efficient from medium 1 to medium 3, T13 = T12T23, is
given by

T13 =
16Z1Z

2
2Z3

(Z1 + Z2)2(Z2 + Z3)2
. (5)

The maximum transmission (dT13/dZ2 = 0) occurs for
Z2 =

√
Z1Z3. The value of Z2 that allows for maxi-

mum energy transfer from medium 1 to medium 3 is
the geometric mean of Z1 and Z3, which represents
the so-called impedance matching. This derivation can
be found in many advanced textbooks in electromag-
netism, acoustics and optics [4]; in introductory texts
of physics usually impedance matching is only briefly
mentioned in the study of electric circuits [5, 6]. It
is worth mentioning that impedance matching is also
the concept behind the anti-reflective coatings found in
eyeglasses, binoculars, and other lenses. Notice that
the value found for the matching impedance Z2 resem-
bles our previous result for the intermediate mass m2

in section 2 (m2 =
√
m1m3). We explore this in the

next section.

4. Impedance of a rigid billiard ball

We now return to the concept of impedance as the ratio
between a force-like quantity and a velocity-like quan-
tity [1] in order to find out what would play the role of
impedance in a mechanical system such as rigid billiard
balls. As investigated in Section 2, in these collisions
the force-like quantity is not simply the force F due to



1305-4 Santos et al.

the collision, but the integrated effect of this force dur-
ing the collision time ∆t = tf − ti. This is the impulse
J that the target ball receives from the incident one.
Here, ti and tf are the initial and final time of collision,
respectively. Therefore, in the general case of a frontal
collision between two balls in which the target ball is
at rest, we obtain

J =

∫ tf

ti

F(t)dt = pf − pi = mvf . (6)

In Eq. (6) vf is the response of the ball to the impulse
J. We ascribe the impedance

Z =
J

vf
= m (7)

to a rigid billiard ball, considered as a particle of mass
m. This explains why the presence of the intermediate
ball facilitates the transmission of energy in the elastic
collisions studied in Sec. 2. The choice m2 =

√
m1m3

works as an impedance matching between two media of
impedances Z1 = m1 and Z3 = m3.

5. Conclusion

In a very well-known problem in classical mechanics,
one aligns three rigid balls of different masses m1, m2,
and m3. The value of m2, a function of m1 and m3, is
to be determined such that when the one-dimensional
collisions between these objects are elastic, the trans-
mission of kinetic energy from the first ball to the last
ball is maximized. This problem is easily solved using
the laws of energy and linear momentum conservation,
and we verify that the presence of an intermediate ball
enhances rather than suppresses the transmission of en-
ergy. In this paper we present an explanation for this
problem by proposing an extension of the concept of
impedance, usually associated with oscillatory systems,
to a rigid billiard ball. We have shown that in the case

of one-dimensional elastic collisions, the mass of a parti-
cle can be seen as a measure of its impedance. Once this
is assumed, we verify that for maximum energy trans-
fer the intermediate mass must be chosen such that it
matches the impedances of the first and third mass,
each considered as a different medium with their re-
spective impedances. This can be easily explored in the
classroom, either by a computer simulation or an actual
experiment (an experimental device has been proposed
by Hart and Herrmann [2]). Once students are exposed
to the idea behind impedance matching with a simple
classical collision problem, this can be expanded into a
discussion of impedance of electric circuits, acoustics,
and optical media.
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