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Notas e Discussões

Classical-quantum versus exact quantum results for a particle in a box
(Resultados clássico-quânticos versus resultados quânticos exatos para uma part́ıcula em uma caixa)
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The problems of a free classical particle inside a one-dimensional box: (i) with impenetrable walls and (ii)
with penetrable walls, were considered. For each problem, the classical amplitude and mechanical frequency of
the τ -th harmonic of the motion of the particle were identified from the Fourier series of the position function.
After using the Bohr-Sommerfeld-Wilson quantization rule, the respective quantized amplitudes and frequencies
(i.e., as a function of the quantum label n) were obtained. Finally, the classical-quantum results were compared
to those obtained from modern quantum mechanics, and a clear correspondence was observed in the limit of
n ≫ τ .
Keywords: classical mechanics, particle in a box, Fourier harmonics, Heisenberg harmonics.

Foram considerados os problemas de uma part́ıcula livre clássica dentro de uma caixa unidimensional: (i)
com paredes impenetráveis e (ii) com paredes penetráveis. Para cada problema, foram identificados a partir da
série de Fourier da função de posição, a amplitude clássica ea freqüência mecânica clássica do τ -ésimo harmônico
do movimento da part́ıcula. Depois de usar a regra de quantização de Bohr-Sommerfeld-Wilson, foram obtidos
a respectivas amplitudes e freqüências quantizadas (isto é, como uma função do rótulo quantum n). Finalmente,
os resultados clássico-quânticos foram comparados com aqueles obtidos a partir da moderna mecânica quântica,
e uma clara correspondência foi observada no limite de n ≫ τ .
Palavras-chave: mecânica clássica, part́ıcula em uma caixa, harmônicos de Fourier, harmônicos de Heisenberg.

1. Introduction

The quantum particle in a box (0 ≤ x ≤ L) is one
of the best systems to illustrate important aspects and
key concepts of elementary quantum mechanics [1–3].
The domain of the corresponding self-adjoint Hamilto-
nian operator involves an infinite number of boundary
conditions. Specifically, the domain includes a four-
parameter family of boundary conditions, and each of
the conditions leads to the conservation of the proba-
bility current density j(x) = (~/m)Im

(
ψ̄(x)ψ′(x)

)
at

the ends of the box (i.e., j(0) = j(L)). However, for se-
veral boundary conditions, the current is equal to zero
(j(0) = j(L) = 0) [4–7]. When a finite square well
potential tends toward infinity in the regions outside of
the box (to confine the particle inside the box), only the
Dirichlet boundary conditions are recovered [4,8]. Simi-
larly, the solutions to Heisenberg’s equations of motion
obtained from the respective classical equations for a
particle bouncing between two rigid walls, lead to only
one of the extensions of the Hamiltonian operator (the
extension that contains the Dirichlet boundary condi-
tions [9]). However, in the classical discussion, another

case must be considered. Namely, the case where the
particle disappears upon reaching a wall and then ap-
pears at the other end must be considered. This type of
movement (which is very unusual because the particle
is not actually trapped between the two walls) corres-
ponds to that of a quantum particle described by the
Hamiltonian operator under periodic boundary conditi-
ons. Although there are an infinite number of quantum
self-adjoint Hamiltonian operators, all of the operators
do not correspond to a different classical system. In our
cases, each Hamiltonian operator is defined by a spe-
cific boundary condition (rather than the form of each
Hamiltonian). However, if a classical expression is de-
pendent on the canonical variables, the corresponding
quantum operator is not unique because the canonical
operators can be ordered in various ways (see Ref. [9]
and references therein).

The problem of a classical particle confined to an
impenetrable box has been considered in several spe-
cific contexts [9–14]. In contrast, except for Ref. [9]
and brief comments in Refs. [5, 15, 16], the problem of
a classical particle inside a penetrable box is rarely dis-
cussed. Clearly, in each of these problems, the particle
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carries out a periodic motion. In this short paper, we
wish to illustrate the connection between the periodi-
city of particle motion and quantum jumps. First, the
so-called classical amplitude and mechanical frequency
of the τ -th harmonic of the motion of the particle were
identified from the Fourier series of each position func-
tion (x(t)). Next, the Bohr-Sommerfeld-Wilson quan-
tization rule was used to obtain the respective quanti-
zed amplitudes and frequencies, i.e., the classical am-
plitudes and frequencies as a function of the quantum
label n. Subsequently, these classical-quantum quanti-
ties were compared to the respective transition ampli-
tudes (cn,n−τ ) and transition frequencies (ωn,n−τ ) ob-
tained from modern quantum mechanics (Heisenberg-
Schrödinger’s quantum mechanics). In fact, these quan-
tum quantities are the elements that constitute the ma-
trix of Heisenberg’s harmonics xn,m ≡ cn,m exp(iωn,mt)
(in this case, the matrix is associated with transitions
n → m = n − τ). As a result, the classical-quantum
quantities are equal to the exact quantum quantities
for small jumps (n ≈ n − τ or n ≫ τ). We believe
that the present manuscript (which is somewhat inspi-
red by the excellent paper by Fedak and Prentis [13])
may be of genuine interest to teachers and students of
physics because the two simple examples described he-
rein (in particular, the particle inside a penetrable box,
which is discussed in the present article for the first
time) illustrate the deep connection between classical
and quantum mechanics.

2. Classical results

Let us begin by considering the motion of a free par-
ticle with a mass of m, which is confined to a one-
dimensional region of length L that contains rigid walls
at x = 0 and x = L (the potential U(x) is zero inside
the box). The particle moves back and forth between
these two points forever. The extended position func-
tion versus time, x(t) (which is periodic for all times
t ∈ (−∞,+∞) with a period of T ), can be written as

x(t) =
+∞∑

n=−∞
fn(t)Θn(t), (1)

where fn(t) = (vT/2)− v |t− nT − (T/2)|, v > 0 is the
speed of the particle, Θn(t) ≡ Θ(t−nT )−Θ(t−(n+1)T )
(Θ(y) is the Heaviside unit step function, Θ(y > 0) = 1
and Θ(y < 0) = 0) and vT/2 = L. In the time in-
terval nT ≤ t ≤ (n + 1)T , the zigzag solution (1) is
equal to x(t) = fn(t), where n is an integer, and veri-
fies x(nT ) = 0 and x((n+(1/2))T ) = L). For example,
the solution at 0 ≤ t ≤ T (n = 0) is x(t) = f0(t);
thus, x(t) = vt for 0 ≤ t ≤ T/2 and x(t) = vT − vt for
T/2 ≤ t ≤ T . In contrast, the sum in Eq. (1) should
begin at n = 0 if the particle starts from x = 0 at
t = 0. In fact, under these circumstances, the solution
of the equation of motion, x(t), verifies the condition

x(t ≤ 0) = 0. Because the position as a function of
time given in Eq. (1) is periodic in t ∈ (−∞,+∞), the
formula can be expanded into a Fourier series

x(t) =
+∞∑
τ=0

aτ cos (ωτ t) . (2)

The classical amplitude, aτ , takes on the following
values

aτ = − 2vT

π2τ2
, τ = 1, 3, 5, . . . . (3)

Moreover, aτ = 0 with τ = 2, 4, 6, . . . and a0 =
vT/4. The mechanical frequency of the (permitted) τ -
th harmonic of the motion of the particle is

ωτ = τω, (4)

where ω = 2π/T is the fundamental frequency of peri-
odic motion.

Let us now consider the motion of a free particle
with a mass of m in a one-dimensional box. The par-
ticle is not confined to the box, and the walls at x = 0
and x = L are transparent (in this problem, the poten-
tial U(x) is zero inside the box). Under these circums-
tances, the particle starts from x = 0 (for example),
reaches the wall at x = L and reappears at x = 0 again
(and it does so forever). The extended position as a
function of time (x(t)) is periodic and discontinuous
and can be written as

x(t) =
+∞∑

n=−∞
gn(t)Θn(t), (5)

where gn(t) = vt− nvT , v > 0 is the speed of the par-
ticle and T is the period (Θn(t) was introduced after
Eq. (1)). In each time interval nT < t < (n+ 1)T , the
(extended) position is x(t) = gn(t), where n is an inte-
ger (as a result, all the discontinuities occur at t = nT ).
For example, the solution at t ∈ (0, T ) (n = 0) is
x(t) = g0(t); thus, x(t) = vt. To be more precise, if
the particle starts from x = 0 at t = 0 (and it begins to
move towards x = L), then the sum in Eq. (5) should
begin at n = 0. In that case, the solution of the equa-
tion of motion (x(t)) verifies the condition x(t ≤ 0) = 0.
Clearly, the periodic function x(t) in Eq. (5) (with
t ∈ (−∞,+∞)) can be expanded into a Fourier series

x(t) =
+∞∑

τ=−∞
cτ exp (iωτ t) . (6)

The classical amplitude, cτ , has the following values

cτ = i
vT

2πτ
, τ = ±1,±2, . . . . (7)

Moreover, c0 = vT/2. Once again, the mechani-
cal frequency of the (permitted) τ -th harmonic of the
motion of the particle is

ωτ = τω, (8)
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where ω = 2π/T is the fundamental frequency of peri-
odic motion. Note: if the particle is moving from right
to left (starting at x = L, for example) the Fourier se-
ries associated to x(t) is the Eq. (6), but the classical
amplitude is the complex conjugate of cτ . The series in
Eq. (6) appears to be complex but is actually real. In
fact, because cτ = −c−τ (τ ̸= 0), x(t) can be written
as

x(t) =
vT

2
− vT

π

+∞∑
τ=1

1

τ
sin (ωτ t) . (9)

Thus, the extended function (x(t)) given in Eq. (5)
is discontinuous at t = nT , where n is an inte-
ger. Nevertheless, if one wants to assign a value to
x(nT ), then a value must be assigned to Θ(0). At
t = nT , the Fourier series (6) (or (9)) converges to
x(t) ≡ (x(t+) + x(t−))/2 , where x(t±) ≡ lim

ϵ→0
x(t± ϵ)

and ϵ > 0 (as usual). Thus, in this case, the defi-
nition Θ(0) ≡ 1/2 must be applied; therefore (from
Eq. (5)), x(nT ) = vT/2. Clearly, the latter choice is
not physically satisfactory because the particle always
reaches x = L (it is moving from x = 0). Thus, we
may prefer to choose Θ(0) ≡ 0, which implies that
x((n+1)T ) = vT = L, where n is an integer (more pre-
cisely, n ≥ 0). Clearly, when Θ(0) ≡ 0 is selected, the
time at which the particle passes through x = 0 cannot
be obtained. This situation is unavoidable; thus, the
best that we can do is to assume that the motion of
the particle in each time interval nT ≤ t ≤ (n+ 1)T is
independent of the other intervals. Therefore, we must
also add (by definition) the condition x(nT ) = 0.

3. Classical-quantum versus exact
quantum results

Thus, we have seen that the classical particle confined
to a box and the particle inside a penetrable box dis-
play periodic motion (between the walls of the box).
This is precisely the type of motion considered by Hei-
senberg in his famous paper published in 1925 [17] (For
an english translation of the article, see Ref. [18]. For
a delicious discussion on the ideas expressed in Heisen-
berg’s article, see Ref. [19]). To illustrate the important
connection between the periodic motion of a classical
particle (its classical harmonics) and quantum jumps,
the problem of a particle confined to a box (as descri-
bed in Ref. [13]) was considered in the present study.
Moreover, for the first time, the problem of a particle
inside a box with penetrable walls was also considered
herein.

A condition that quantizes the classical states
of a one-dimensional periodic system is the Bohr-
Sommerfeld-Wilson (BSW) quantization rule (see Refs.
[13,20])

1

2π

∮
dxmv(x) = n~, (10)

where ~ is Planck’s constant and n are quantum la-
bels. Integration is conducted over the entire period of
motion. From Eq. (10), the (constant) speed of the
particle (v > 0) was obtained as a function of n (i.e.,
the speed of the particle in quantum state n)

v ≡ v(n) =
π~
mL

n. (11)

Moreover, by substituting v(n) into the classical me-
chanical energy equation E = mv2/2, the same quan-
tum energy spectrum given by modern quantum me-
chanics was obtained

E ≡ E(n) =
π2~2

2mL2
n2 =

~2

2m

(nπ
L

)2

, (12)

where, in this case, n = 1, 2, . . .. Similarly, the ex-
pression for the quantized speed (11) could be substi-
tuted into Eq. (3) and Eq. (4) to obtain the quanti-
zed amplitude and quantized frequency, respectively. In
the former case, substitution was not necessary because
vT/2 = L. Therefore

aτ (n) = − 4L

π2τ2
, τ = 1, 3, 5, . . . . (13)

Moreover, aτ (n) = 0, where τ = 2, 4, 6, . . . and
a0(n) = L/2. Thus, aτ (n) is independent of the quan-
tum state (n). In the latter case, Eq. (11) was subs-
tituted into Eq. (4), and the quantized frequency was
obtained

ωτ (n) = τ
2π

T
= τ

2πv(n)

2L
= τ

π2~
mL2

n ≡ τω(n). (14)

Clearly, the Fourier series for x(t) can also be quan-
tized by replacing aτ → aτ (n) and ωτ → τω(n) in
Eq. (2). Thus, we can write

x(t, n) = a0(n) + a1(n) cos(ω(n)t) +

a3(n) cos(3ω(n)t) + · · · . (15)

Equation (15) describes the classical motion of the
particle in quantum state n. Clearly, these results are
classical-quantum mechanical because they were obtai-
ned by supplementing the classical Fourier analysis with
a simple quantization condition.

Now a question arises: how (and under which con-
ditions) can we generate Eq. (13) and (14) using mo-
dern quantum theory? In his paper published in 1925,
Heisenberg assigned a matrix of harmonics xn,m ≡
cn,m exp(iωn,mt) (associated with transition n→ m) to
x, where the transition amplitude cn,m = ⟨ψn | x | ψm⟩
is a measure of the intensity of light, and xn,m =
⟨Ψn | x | Ψm⟩ (where Ψn(x, t) = ψn(x) exp (−iEnt/~)
are solutions to the time-dependent Schrödinger equa-
tion). In the transition n → n − τ , where n ≫ τ , the
quantized Fourier amplitude cτ (n) must be equal to the
Heisenberg amplitude cn,n−τ
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cτ (n) = cn,n−τ . (16)

Equivalently,
aτ (n) = 2cn,n−τ , (17)

because the coefficients of the cosine Fourier se-
ries aτ (n) with τ = 1, 3, 5, . . . in Eq. (15) are
always twice that of the exponential Fourier series∑

τ cτ (n) exp (τω(n)t) [13] (nevertheless, aτ (n) = cτ (n)
with τ = 0). The stationary states of a quantum par-
ticle to a box with a width of L under Dirichlet boun-
dary conditions (ψn(0) = ψn(L) = 0) are characterized
by the energies given in Eq. (12) (E(n) = En) and the
following eigenfunctions

ψn(x) =

√
2

L
sin

(nπ
L
x
)
, n = 1, 2, . . . . (18)

If cn,n−τ = ⟨ψn | x | ψn−τ ⟩ =
∫ L

0
dxψn(x)xψn−τ (x)

is calculated, and the result are substituted into
Eq. (17), we obtain

aτ (n) = − 4L

π2τ2
1− τ

n(
1− τ

2n

)2 −→
n≫τ

− 4L

π2τ2
, (19)

where τ = 1, 3, 5, . . ., aτ (n) = 0 with τ = 2, 4, . . . and
a0(n) = L/2. Clearly, the quantized Fourier amplitude
aτ (n) (Eq. (13)) can also be obtained from Heisenberg-
Schrödinger’s quantum mechanics.

Likewise, the quantized frequency ωτ (n) must be
equal to the transition (or spectral) frequency ωn,n−τ =
(En − En−τ )/~ for n≫ τ [13]

ωτ (n) = ωn,n−τ . (20)

In fact, for the particle confined to the box, ωn,n−τ

was calculated from Eq. (12) with E(n) = En. Using
Eq. (20), we can write

ωτ (n) = τ
π2~
mL2

n
(
1− τ

2n

)
−→
n≫τ

τ
π2~
mL2

n. (21)

Clearly, the same result given in Eq. (14) was ob-
tained in the limit n≫ τ .

Next, a particle inside a box with transparent walls
was considered. Using the BSW rule in Eq. (10), the
speed of the particle as a function of n was obtained

v ≡ v(n) =
2π~
mL

n. (22)

By substituting Eq. (22) into E = mv2/2, we obtain

E ≡ E(n) =
2π2~2

mL2
n2 =

~2

2m

(
2nπ

L

)2

. (23)

In this case, n = 0, 1, 2, . . .. The quantum energy
spectrum given by modern quantum mechanics (with
the exception of the ground state) is degenerate (see

Eq. (27)), and the complex eigenfunctions correspon-
ding to the negative sign (−) are plane waves propa-
gating to the left (they are also eigenfunctions of the
momentum operator p̂ = −i~d/dx with negative eigen-
values). Because the classical motion of the particle
moving to the right is under consideration, a positive
sign (+) must be used. Clearly, each state (n > 0)
with the positive sign in Eq. (27) corresponds to a one-
dimensional trip in which the particle is moving inside
the box from left to right at a constant speed.

Because vT = L, Eq. (22) does not have to be subs-
tituted into Eq. (7); therefore, the quantized amplitude
is independent of n

cτ (n) = i
L

2πτ
, τ = ±1,±2, . . . . (24)

Moreover, c0(n) = L/2. Alternatively, by substi-
tuting Eq. (22) into Eq. (8), the following quantized
frequency was obtained

ωτ (n) = τ
2π

T
= τ

2πv(n)

L
= τ

4π2~
mL2

n ≡ τω(n). (25)

This frequency must be positive if it corresponds to the
frequency of light emitted as the particle jumps from
level n to level n − τ < n. Finally, the quantized Fou-
rier series x(t, n) was obtained from x(t) (Eq. (6)) by
replacing cτ → cτ (n) and ωτ → τω(n)

x(t, n) = · · ·+ c−1(n) exp (−iω(n)t) + c0(n) +

c1(n) exp (iω(n)t) + · · · . (26)

For a free particle in a box with a width of L
and transparent walls, the periodic boundary condition
ψn(x) = ψn(x + L) is physically adequate. The exact
energy eigenvalues are given in Eq. (23) (E(n) = En),
and the eigenfunctions are

ψn(x) =
1√
L
exp

(
±i2nπ

L
x

)
, n = 0, 1, 2, . . . . (27)

Nevertheless, only the positive sign must be em-

ployed. By calculating cn,n−τ =
∫ L

0
dx ψ̄n(x)xψn−τ (x)

and substituting the result into Eq. (16) (the bar re-
presents complex conjugation), we obtain

cτ (n) = i
L

2πτ
. (28)

In this case, τ = ±1,±2, . . . and c0(n) = L/2. To
obtain Eq. (28), the limit n≫ τ was not applied. Cle-
arly, the quantized Fourier amplitude cτ (n) (Eq. (24))
was obtained from Heisenberg-Schrödinger’s quantum
mechanics. Note: for a particle moving from right to
left we must take the negative sign in Eq. (27); the-
refore, the corresponding Heisenberg amplitude is the
complex conjugate of cτ (n) in Eq. (28). Similarly,
Eq. (20) was verified. In fact, ωn,n−τ = (En−En−τ )/~
was calculated from Eq. (23) using E(n) = En. Thus,



Classical-quantum versus exact quantum results for a particle in a box 2701-5

in the limit n ≫ τ , the results were identical to those
of Eq. (25)

ωτ (n) = τ
4π2~
mL2

n
(
1− τ

2n

)
−→
n≫τ

τ
4π2~
mL2

n. (29)

4. Final notes

In some cases, the BSW quantization rule (Eq. (10))
may fail [20,21]; however, in the two problems conside-
red in the present study, this rule provides the correct
quantum mechanical energy values. A more flexible
formula that fixes problems associated with the BSW
rule is the Einstein-Brillouin-Keller (EBK) quantiza-
tion rule. For one-dimensional problems, this formula
presents the following form

1

2π

∮
dxmv(x) =

(
n+

µ

4

)
~, (30)

where n = 0, 1, 2, . . . and µ is the Maslov index [20,21].
This index is essentially “a detailed accounting of the
total phase loss during one period in units of π/2” [20].
In general, each classical turning point and each reflec-
tion gives one unit to µ. For example, for a confined
particle in a box, µ = 4 (because two turning points
and two hard reflections are observed). Alternatively,
for a particle in a transparent box, µ = 0 (because
there are no turning points or reflections). The latter
motion is pretty similar to that of a particle moving fre-
ely on a circle, which corresponds to the familiar plane
rigid rotator problem. Clearly, our results (Eq. (12)
and Eq. (23)) coincide with those provided by the
EBK quantization rule. To conclude, in the approxi-
mation n≫ τ , the classical-quantum results agree with
the exact quantum results. Nevertheless, the quantum-
classical calculations are easier to perform. Moreover,
the classical-quantum mechanical and exact quantum
energies perfectly match in both problems. Lastly, for
the particle in the open box, the quantized Fourier and
Heisenberg amplitudes are identical and independent
of n.
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