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On time derivatives for ⟨x̂⟩ and ⟨p̂⟩: formal 1D calculations
(Sobre as derivadas com respeito ao tempo para ⟨x̂⟩ e ⟨p̂⟩: cálculos formais em 1D)
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We present formal 1D calculations of the time derivatives of the mean values of the position (x̂) and momen-
tum (p̂) operators in the coordinate representation. We call these calculations formal because we do not care for
the appropriate class of functions on which the involved (self-adjoint) operators and some of its products must
act. Throughout the paper, we examine and discuss in detail the conditions under which two pairs of relations
involving these derivatives (which have been previously published) can be formally equivalent. We show that
the boundary terms present in d⟨x̂⟩/dt and d⟨p̂⟩/dt can be written so that they only depend on the values taken
there by the probability density, its spatial derivative, the probability current density and the external potential
V = V (x). We also show that d⟨p̂⟩/dt is equal to −⟨dV/dx⟩+ ⟨fQ⟩ plus a boundary term (fQ = −∂Q/∂x is the
quantum force and Q is the Bohm’s quantum potential). We verify that ⟨fQ⟩ is simply obtained by evaluating
a certain quantity on each end of the interval containing the particle and by subtracting the two results. That
quantity is precisely proportional to the integrand of the so-called Fisher information in some particular cases.
We have noted that fQ has a significant role in situations in which the particle is confined to a region, even if V
is zero inside that region.
Keywords: quantum mechanics, Schrödinger equation, probability density, probability density current, Bohm’s
quantum potential, quantum force.

Apresentamos cálculos formais em 1D das derivadas com respeito ao tempo dos valores médios dos operado-
res da posição (x̂) e do momento linear (p̂) na representação de coordenadas. Chamamos esses cálculos formais
porque não nos preocupamos com o tipo apropriado de funções sobre as quais devem atuar os operadores (auto-
adjuntos) envolvidos e alguns de seus produtos. Ao longo do artigo, examinamos e discutimos em detalhe as
condições em que dois pares de relações que envolvem essas derivadas (que foram previamente publicadas) podem
ser formalmente equivalentes. Mostramos que os termos de fronteira presentes em d⟨x̂⟩/dt e d⟨p̂⟩/dt podem ser
escritos de modo que eles só dependem dos valores áı tomados pela densidade de probabilidade, sua derivada
espacial, a densidade de corrente de probabilidade e do potencial externo V = V (x). Também mostramos que
d⟨p̂⟩/dt é igual a −⟨dV/dx⟩+⟨fQ⟩ mais um termo de fronteira (fQ = −∂Q/∂x é a força quântica e Q é o potencial
quântico de Bohm). Verificamos que ⟨fQ⟩ é obtido simplesmente através do cálculo de uma certa quantidade em
cada extremidade do intervalo contendo a part́ıcula e subtraindo os dois resultados. Em alguns casos particulares
essa quantidade é justamente proporcional ao integrando da assim chamada informação de Fisher. Notamos que
fQ tem um papel significativo em situações em que a part́ıcula é confinada a uma região, mesmo se V é zero
dentro dessa região.
Palavras-chave: mecânica quântica, equação de Schrödinger, densidade de probabilidade, densidade de cor-
rente de probabilidade, potencial quântico de Bohm, força quântica.

1. Introduction

Almost any book on quantum mechanics states that
the mean values of the position and momentum opera-
tors (⟨x̂⟩t and ⟨p̂⟩t) satisfy, in a certain sense, the same
equations of motion that the classical position and mo-
mentum (x = x(t) and p = p(t)) satisfy. This result,
which establishes a clear correspondence between the
classical and quantum dynamics is the Ehrenfest theo-

rem [1,2]:

d

dt
⟨x̂⟩ = i

~
⟨[Ĥ, x̂]⟩ = 1

m
⟨p̂⟩, (1)

d

dt
⟨p̂⟩ = i

~
⟨[Ĥ, p̂]⟩ = ⟨f̂⟩. (2)

Note that Eq. (2) contains the average value of the

external classical force operator f̂ = f(x) = −dV/dx,
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rather than the own force evaluated at x = ⟨x̂⟩. As a re-
sult, we are clarifying the statement preceding Eq. (1).

When trying to prove Ehrenfest’s theorem in a rigo-
rous way, the difficulty arises that each of the operators
involved (x̂, p̂ and Ĥ, which must be preferably self-
adjoint) has its own domain, and some plausible com-
mon domain must be found in which Eq. (1) and/or
Eq. (2) are/is valid, which is a non-trivial and compli-
cated matter. To review some of the difficulties that
may arise, as well as certain aspects of these domains,
Refs. [3–6] can be consulted (Ref. [4], which was re-
cently discovered by the present author, is especially
important). For a rigorous mathematical derivation
of the Ehrenfest equations (which does not use overly
stringent assumptions), see Ref. [7]. For a more gene-
ral (and rigorous) derivation, see Ref. [8]. For a nice
treatment of this theorem (specifically, for the problem
of a particle-in-a-box) that is based on the use of the
classical force operator for a particle in a finite square
well potential, which then becomes infinitely deep (ef-
fectively confining the particle to a box), see Ref. [9].
For a study of the force exerted by the walls of an infi-
nite square well potential, and the Ehrenfest relations
between expectation values as related to wave packet
revivals and fractional revivals, see Ref. [10].

The usual formal (or heuristic) demonstration in
textbooks of Eqs. (1) and (2) in the coordinate re-
presentation with x ∈ (−∞,+∞) appears to have no
problem; however, it is known that the quantities ⟨x̂⟩
and ⟨p̂⟩ with x ∈ Ω = [a, b] (where Ω is a finite inter-
val) do not always obey the Ehrenfest theorem [3, 6].
This problem occurs because boundary terms that are
not necessarily zero arise in the formal calculation of
the time derivatives of ⟨x̂⟩ and ⟨p̂⟩. To verify this re-
sult in this article, we carefully reexamine the formal
traditional approach to the Ehrenfest theorem in the
coordinate representation from the beginning. Hence,
we do not consider the domains of the involved (self-
adjoint) operators. Specifically, in this article, we do
not care for the appropriate class of functions on which
these operators and some of its products must act. In
our study, the notion of self-adjointness of an operator
(or strict self-adjointness) is essentially replaced by the
hermiticity (or formal self-adjointness), which is known
to be less restrictive. We believe that a formal study
of this problem alone is worthy and pertinent; in fact,
the strict considerations related to the domains of the
involved operators and their compositions seem to be
too demanding. In our paper, we also examine and
discuss in detail the conditions under which two pairs
of relations involving d⟨x̂⟩/dt and d⟨p̂⟩/dt (which were
published in Refs. [5, 6]) can be formally equivalent.

We start with the position and momentum opera-
tors, x̂ = x and p̂ = −i~∂/∂x, for a non-relativistic
quantum particle moving in the region x ∈ Ω (which
may be finite or infinite). The inner product for the
functions Ψ = Ψ(x, t) and Φ = Φ(x, t) (belonging at le-

ast to the Hilbert space L2(Ω), and on which x̂ and
p̂ act) is ⟨Ψ,Φ⟩ =

∫
Ω
Ψ̄Φ, where the bar represents

complex conjugation. The corresponding mean values
of these operators in the (complex) normalized state

Ψ = Ψ(x, t) (∥Ψ∥2 ≡ ⟨Ψ,Ψ⟩ = 1) are as follows

⟨x̂⟩ ≡ ⟨Ψ, x̂Ψ⟩ =
∫
Ω

dxx Ψ̄Ψ, (3)

⟨p̂⟩ ≡ ⟨Ψ, p̂Ψ⟩ = −i~
∫
Ω

dx Ψ̄
∂Ψ

∂x
. (4)

The operator x̂ is hermitian because it automatically
satisfies the following relation

⟨Ψ, x̂Φ⟩ − ⟨x̂Ψ,Φ⟩ = 0, (5)

where Ψ and Φ are functions belonging to L2(Ω). The
time derivative of expressions (3) and (4) leads us to
the following relations

d

dt
⟨x̂⟩ =

∫
Ω

dxx
∂

∂t

(
Ψ̄Ψ

)
=

∫
Ω

dxx

(
∂Ψ̄

∂t
Ψ+ Ψ̄

∂Ψ

∂t

)
(6)

and
d

dt
⟨p̂⟩ = −i~

∫
Ω

dx
∂

∂t

(
Ψ̄
∂Ψ

∂x

)
= −i~

∫
Ω

dx

[
∂Ψ̄

∂t

∂Ψ

∂x
+ Ψ̄

∂

∂x

(
∂Ψ

∂t

)]
. (7)

In the last expression, we have used the commutativity
of the operators ∂/∂x and ∂/∂t.

In non-relativistic quantum mechanics, the wave
function Ψ evolves in time according to the Schrödinger
equation

i~
∂

∂t
Ψ = ĤΨ =

(
− ~2

2m

∂2

∂x2
+ V

)
Ψ, (8)

where Ĥ is the Hamiltonian operator of the system and
V = V (x) is the (real) external classical potential. By
substituting in Eqs. (6) and (7) the time derivatives of
Ψ and Ψ̄ (which are obtained from Eq. (8) and its com-
plex conjugate), we obtain d ⟨x̂⟩ /dt and d ⟨p̂⟩ /dt. As
will be discussed in the next two sections, these deriva-
tives always have terms that are evaluated at the ends
of the interval Ω. However, if these derivatives must
be real-valued, certain mathematical conditions (which
are, of course, physically justified) should be imposed
on the boundary terms. We will show that these boun-
dary terms can be written so that they can only depend
on the values taken by the probability density, its spa-
tial derivative, the probability current density and the
external potential V at the boundary.

2. Time derivatives for ⟨x̂⟩

For example, the time derivative of the average value
of x̂ specifically depends on the values taken by the
probability density and the probability current density
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in these extremes. In fact, the following result can be
formally proven (see formula (A.1) in Ref. [5])

d

dt
⟨x̂⟩ =

(
−xj + i

~
2m

ρ

)∣∣∣∣b
a

+
i

~
⟨[Ĥ, x̂]⟩ (9)

where we use the notation f |ba = f(b, t) − f(a, t) here
and in further discussion. The function j = j(x, t) is
the probability current density

j =
~
m

Im

(
Ψ̄
∂Ψ

∂x

)
=

i~
2m

(
∂Ψ̄

∂x
Ψ− Ψ̄

∂Ψ

∂x

)
, (10)

and ρ = ρ(x, t) is the probability density

ρ = Ψ̄Ψ. (11)

These two real quantities (which are sometimes called
“local observables”) can be integrated on the region of
interest, and each of these integrals is essentially the
average value of some operator. Indeed, the integral of
j is ∫ b

a

dx j =
i~
2m

∫
Ω

dx

(
∂Ψ̄

∂x
Ψ− Ψ̄

∂Ψ

∂x

)
=

i~
2m

∫
Ω

dx

[
∂

∂x

(
Ψ̄Ψ

)
− 2Ψ̄

∂Ψ

∂x

]
=

i~
2m

ρ|ba +
1

m

∫
Ω

dx Ψ̄(−i~)
∂

∂x
Ψ.

The integral on the right-hand side in this last ex-
pression is precisely the average value of the operator
p̂ = −i~∂/∂x (see formula (4)). Finally, we can write∫

Ω

dx j =
i~
2m

ρ|ba +
1

m
⟨p̂⟩ . (12)

The integral of ρ (which is a finite number only if the
probability density is calculated for a state Ψ ∈ L2(Ω))
is precisely the mean value of the identity operator
1̂ =

∫
Ω
dx | x ⟩⟨x |.

It is important to note that the operator p̂ satisfies
the relation

⟨Ψ, p̂Φ⟩ − ⟨p̂Ψ,Φ⟩ = −i~ Ψ̄Φ
∣∣b
a
, (13)

for the functions Ψ and Φ belonging to L2(Ω). If
the boundary conditions imposed on Ψ and Φ lead
to the cancellation of the term evaluated at the end-
points of the interval Ω, we can write the relation as
⟨Ψ, p̂Φ⟩ = ⟨p̂Ψ,Φ⟩. In this case, p̂ is a hermitian ope-
rator. If we make Ψ = Φ in this last expression and
Eq. (13), we obtain the following condition (see for-
mula (11))

ρ|ba = 0. (14)

Moreover, ⟨Ψ, p̂Ψ⟩ = ⟨p̂Ψ,Ψ⟩ = ⟨Ψ, p̂Ψ⟩ ⇒
Im ⟨Ψ, p̂Ψ⟩ = 0, i.e., ⟨p̂⟩ ∈ R. These last two results
are consistent with Eq. (12).

Formula (9) was obtained from the following formal
relation (formula (11) in Ref. [5] with Â = x̂):

d

dt
⟨x̂⟩ = i

~

(
⟨ĤΨ, x̂Ψ⟩ − ⟨Ψ, x̂ĤΨ⟩

)
=

i

~

(
⟨ĤΨ, x̂Ψ⟩ − ⟨Ψ, Ĥx̂Ψ⟩

)
+

i

~
⟨[Ĥ, x̂]⟩. (15)

In the case where x̂ = x and Ĥ = i~∂/∂t, this equa-
tion is precisely Eq. (6) (compare the first equality in
Eq. (15) with Eq. (6)). To check Eq. (9), formula (15)
can be developed by first calculating the following two
scalar products:

⟨ĤΨ, x̂Ψ⟩ = − ~2

2m

∫
Ω

dxx
∂2Ψ̄

∂x2
Ψ+

∫
Ω

dxxV Ψ̄Ψ,

⟨Ψ, Ĥx̂Ψ⟩ = ⟨Ĥx̂⟩ = − ~2

2m

∫
Ω

dx Ψ̄
∂2

∂x2
(xΨ)

+

∫
Ω

dxxV Ψ̄Ψ.

Before subtracting these two expressions, we develop
the first integral in ⟨Ψ, Ĥx̂Ψ⟩. Then, we use the rela-
tion

∂2Ψ̄

∂x2
Ψ− Ψ̄

∂2Ψ

∂x2
=

∂

∂x

(
∂Ψ̄

∂x
Ψ− Ψ̄

∂Ψ

∂x

)
,

and the definitions of the probability current density
(Eq. (10)) and the probability density (Eq. (11)). Af-
ter identifying the terms that depend on ∂(xj)/∂x and
∂ρ/∂x, we obtain the following result

⟨ĤΨ, x̂Ψ⟩ − ⟨Ψ, Ĥx̂Ψ⟩ =
(
i~xj +

~2

2m
ρ

)∣∣∣∣b
a

, (16)

which is substituted into Eq. (15), leading to formula
(9). The average value of the commutator [Ĥ, x̂] in
formula (9) is calculated as follows:

⟨[Ĥ, x̂]⟩ = ⟨Ĥx̂⟩ − ⟨x̂Ĥ⟩ = − ~2

2m

∫
Ω

dx Ψ̄
∂2

∂x2
(xΨ)

+

∫
Ω

dxxV Ψ̄Ψ

+
~2

2m

∫
Ω

dxx Ψ̄
∂2Ψ

∂x2
−
∫
Ω

dxxV Ψ̄Ψ.

By developing this expression, we obtain

⟨[Ĥ, x̂]⟩ = − i~
m

∫
Ω

dx Ψ̄(−i~)
∂

∂x
Ψ = − i~

m
⟨p̂⟩ . (17)

Finally, substituting results (14) and (17) into formula
(9), we obtain the following

d

dt
⟨x̂⟩ = (−xj)|ba +

1

m
⟨p̂⟩ . (18)

In the writing of this formula, we used the condition
⟨Ψ, p̂Φ⟩ = ⟨p̂Ψ,Φ⟩ (i.e., p̂ is a hermitian operator), but
Eq. (18) is also consistent with the hermiticity of x̂
(⇒ ⟨x̂⟩ ∈ R).
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It is convenient to mention here a result that per-
tains to the Hamiltonian of the system, Ĥ. Indeed, this
operator satisfies the following relation

⟨Ψ, ĤΦ⟩ − ⟨ĤΨ,Φ⟩ = − ~2

2m

(
Ψ̄
∂Φ

∂x
− ∂Ψ̄

∂x
Φ

)∣∣∣∣b
a

, (19)

for the functions Ψ and Φ belonging to L2(Ω). If
the boundary conditions imposed on Ψ and Φ lead
to the cancellation of the term evaluated at the end-
points of the interval Ω, we can write the relation
⟨Ψ, ĤΦ⟩ = ⟨ĤΨ,Φ⟩. In this case Ĥ is a hermitian
operator. If we make Ψ = Φ in this last expression, as
well as in Eq. (19), we obtain the following condition
(see formula (10))

j|ba = 0. (20)

Moreover, ⟨Ψ, ĤΨ⟩ = ⟨ĤΨ,Ψ⟩ = ⟨Ψ, ĤΨ⟩ ⇒
Im⟨Ψ, ĤΨ⟩ = 0, i.e., ⟨Ĥ⟩ ∈ R. In formula (18), condi-
tion (20) is not sufficient to eliminate the term evalua-
ted at the boundaries of the interval Ω.

We can now compare result (18) with the result ob-
tained in Ref. [6] (see formula (17) in Ref. [6])

d

dt
⟨x̂⟩ =

(
−xR2 v

)∣∣b
a
+ ⟨v⟩ . (21)

From the beginning, Ref. [6] uses real-valued expressi-
ons for the temporal evolution of x̂ and p̂. For example,
Eq. (21) is obtained from the following

d

dt
⟨x̂⟩ = −2

~
Im⟨ĤΨ, x̂Ψ⟩. (22)

That is, Eq. (21) is consistent with the hermiticity of
x̂. In fact (as we observed after Eq. (15)), because
Ĥ = i~∂/∂t, formula (6) can be written as follows:

d

dt
⟨x̂⟩ = i

~

(
⟨ĤΨ, x̂Ψ⟩ − ⟨Ψ, x̂ĤΨ⟩

)
.

Furthermore, because ⟨Ψ, x̂ĤΨ⟩ = ⟨x̂Ψ, ĤΨ⟩, Eq. (22)
is obtained. As observed from the discussion that fol-
lows formula (12) in Ref. [6], R2 = Ψ̄Ψ = |Ψ|2 = ρ is
the probability density and v = v(x, t) is the velocity
field, which is related to the probability current density
as follows: j = ρ v. From this last formula we can write∫

Ω

dx j =

∫
Ω

dx v Ψ̄Ψ = ⟨v⟩ . (23)

Comparing Eq. (23) with formula (12) (after applying
condition (14)), the relation ⟨v⟩ = ⟨p̂⟩ /m is obtained.
Returning to formula (21), it is clear that it is equal
to formula (18), and the latter is equal to formula (9),
provided that formula (14) is verified. We can then
say that the time derivative of the mean value of the
operator x̂ is not always equal to ⟨p̂⟩ /m. For exam-
ple, Ref. [3] shows a specific example that confirms the
validity of Eq. (18).

In summary, the temporal evolution of the mean
value of x̂ is given by Eq. (18) and also by Eq. (21).
Assuming that (in addition to x̂ and p̂) the operator Ĥ
is hermitian, we can write the following expression:

d

dt
⟨x̂⟩ = −(b− a) j(a, t) +

1

m
⟨p̂⟩ (24)

(in which we used relation (20)). Only one boundary
condition involving the vanishing of the boundary term
in Eq. (13), but also leading to the vanishing of the
probability current density at the ends of the interval
Ω, gives the equation d ⟨x̂⟩ /dt = ⟨p̂⟩ /m. This scena-
rio is clearly possible, for example, for the Dirichlet
boundary condition Ψ(a, t) = Ψ(b, t) = 0. However,
the same is not necessarily true for the periodic boun-
dary conditions Ψ(a, t) = Ψ(b, t) and (∂Ψ/∂x)(a, t) =
(∂Ψ/∂x)(b, t) [3].

3. Time derivatives for ⟨p̂⟩

Next, we consider the momentum operator p̂. The fol-
lowing result was formally proved in Ref. [5] (see for-
mula (A.2) in Ref. [5])

d

dt
⟨p̂⟩ = − ~2

2m

(
∂Ψ̄

∂x

∂Ψ

∂x
− Ψ̄

∂2Ψ

∂x2

)∣∣∣∣b
a

+
i

~
⟨[Ĥ, p̂]⟩.

(25)
This formula was obtained from the following formal
relation (formula (11) in Ref. [5] with Â = p̂)

d

dt
⟨p̂⟩ = i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨Ψ, Ĥp̂Ψ⟩

)
+

i

~
⟨[Ĥ, p̂]⟩. (26)

In the case where p̂ = −i~∂/∂x y Ĥ = i~∂/∂t, this
equation simplifies to Eq. (7) (i.e., in writing Eq. (26),
no special condition has been imposed). If we want to
verify the validity of Eq. (25), we can begin to deve-
lop formula (26). Thus, we first compute the following
scalar products present there:

⟨ĤΨ, p̂Ψ⟩ = i~
~2

2m

∫
Ω

dx
∂2Ψ̄

∂x2

∂Ψ

∂x
− i~

∫
Ω

dxV Ψ̄
∂Ψ

∂x
,

⟨Ψ, Ĥp̂Ψ⟩ = ⟨Ĥp̂⟩ = i~
~2

2m

∫
Ω

dx Ψ̄
∂2

∂x2

(
∂Ψ

∂x

)
−i~

∫
Ω

dxV Ψ̄
∂Ψ

∂x
.

By integrating by parts the first integral in ⟨Ψ, Ĥp̂Ψ⟩
and then subtracting these two expressions, we obtain
the following result:

⟨ĤΨ, p̂Ψ⟩ − ⟨Ψ, Ĥp̂Ψ⟩

= i~
~2

2m

(
∂Ψ̄

∂x

∂Ψ

∂x
− Ψ̄

∂2Ψ

∂x2

)∣∣∣∣b
a

, (27)

which can be substituted into (26) to produce formula
(25). Likewise, the mean value of the commutator [Ĥ, p̂]
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in formula (26) can be explicitly computed using ⟨Ĥp̂⟩
and calculating ⟨p̂Ĥ⟩; in fact,

⟨[Ĥ, p̂]⟩ = ⟨Ĥp̂⟩ − ⟨p̂Ĥ⟩ = ⟨Ĥp̂⟩

−i~
~2

2m

∫
Ω

dx Ψ̄
∂

∂x

(
∂2Ψ

∂x2

)
+ i~

∫
Ω

dx Ψ̄
∂

∂x
(VΨ) .

By developing the derivative in the last integral above
and simplifying, we obtain an expected result (see Refs.
[1, 2], for example)

⟨[Ĥ, p̂]⟩ = i~
∫
Ω

dx
dV

dx
Ψ̄Ψ = i~

⟨
dV

dx

⟩
≡ −i~⟨f̂⟩,

(28)
where we have also identified the external classical force
operator f̂ = f(x) = −dV/dx. Finally, formula (25)
can be written as follows

d

dt
⟨p̂⟩ = − ~2

2m

(
∂Ψ̄

∂x

∂Ψ

∂x
− Ψ̄

∂2Ψ

∂x2

)∣∣∣∣b
a

+ ⟨f̂⟩. (29)

Note that formula (27) is obtained by making Φ = p̂Ψ
in relation (19). Thus, if the boundary term in Eq. (19)
is zero because of the boundary conditions (and conse-
quently, Ĥ is hermitian), the boundary term in Eq. (29)
does not necessarily vanish. An example of this sce-
nario is provided by the Dirichlet boundary condi-
tion, Ψ(a, t) = Ψ(b, t) = 0. Indeed, with this boun-
dary condition Ĥ, is hermitian, but the boundary
term in Eq. (29) is not zero. Within the case of
the periodic boundary condition, Ψ(a, t) = Ψ(b, t) and
(∂Ψ/∂x)(a, t) = (∂Ψ/∂x)(b, t), the operator Ĥ is also
hermitian, but the boundary term in Eq. (29) does
vanish (from the Schrödinger equation in (8) we also
know that (∂2Ψ/∂x2)(a, t) = (∂2Ψ/∂x2)(b, t) if the

potential satisfies V |ba = 0). Similarly, in an open
interval (Ω = (a, b) = (−∞,+∞)) the boundary
term in Eq. (29) is zero if Ψ(x, t) and its derivative,
∂Ψ(x, t)/∂x, tend to zero at the ends of that inter-
val. Specifically, if a wave function tends to zero for
x → ±∞, at least as | x |− 1

2−ϵ (where ϵ > 0), then
its derivative also tends to zero there, and the boun-
dary term in both in Eqs. (19) and (29) vanishes (as a
result, we also have Ψ(x, t) ∈ L2(Ω)). This result pro-
vides the formal argument for the cancellation of these
two boundary terms. Clearly, if Ψ satisfies a homo-
geneous boundary condition for which Ĥ is hermitian
and ∂Ψ/∂x satisfies the same boundary condition, the
boundary term in Eq. (29) vanishes (this result seems
to be very restrictive).

Consequently, result (25) was obtained from formula
(26). Likewise, the following expression for d⟨p̂⟩/dt was
also obtained from formula (26) (see formula (19) in
Ref. [6])

d

dt
⟨p̂⟩ = −R2

(m
2
v2 − V −Q

)∣∣∣b
a
+ ⟨f̂⟩−

⟨
∂Q

∂x

⟩
, (30)

where (as we said before) R2 = ρ, v = j/ρ and

f̂ = f(x) = −dV/dx; moreover, Q = Q(x, t) is Bohm’s
quantum potential,

Q ≡ − ~2

2m

1

|Ψ|
∂2 |Ψ|
∂x2

= − ~2

2m

1
√
ρ

∂2√ρ

∂x2

=
~2

4m

[
1

2

(
1

ρ

∂ρ

∂x

)2

− 1

ρ

∂2ρ

∂x2

]
. (31)

Now let us verify and reexamine the validity of Eq. (30).
Returning to result (26), it is clear that it can also be
written as follows:

d

dt
⟨p̂⟩ = i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨Ĥp̂⟩

)
+
i

~

(
⟨Ĥp̂⟩ − ⟨Ψ, p̂ĤΨ⟩

)
,

and, if the condition

⟨Ψ, p̂ĤΨ⟩ = ⟨p̂Ψ, ĤΨ⟩, (32)

is used, we can write

d

dt
⟨p̂⟩ = i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨p̂Ψ, ĤΨ⟩

)
=

i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨ĤΨ, p̂Ψ⟩

)
.

Therefore, the time derivative of ⟨p̂⟩ is given by the
following

d

dt
⟨p̂⟩ = −2

~
Im⟨ĤΨ, p̂Ψ⟩, (33)

which is automatically real-valued. It is important to
note that the formula

⟨Ψ, p̂ĤΨ⟩ − ⟨p̂Ψ, ĤΨ⟩ = ~2 Ψ̄
∂Ψ

∂t

∣∣∣∣b
a

(34)

is obtained by setting Φ = ĤΨ in relation (13). If the
boundary conditions imposed on Ψ lead to the cancel-
lation of the boundary term in Eq. (34), then formula
(32) is verified; however, that same boundary condition
can also cancel the boundary term in Eq. (13), with
Ψ = Φ (the latter would imply that p̂ is hermitian).
The spatial part of the boundary term in Eq. (34) is
unaffected by the presence of the time derivative.

As is known, by substituting the polar form of
the wave function in the Schrödinger Eq. (8) (i.e.,
Ψ =

√
ρ exp (iS/~)), where S = S(x, t) ∈ R is essenti-

ally the phase of the wave function) and then separating
the real and imaginary parts, we obtain (i) the quantum
Hamilton-Jacobi equation

∂S

∂t
+

1

2m

(
∂S

∂x

)2

+Q+ V = 0, (35)

and (ii) the continuity equation

∂ρ

∂t
+

∂j

∂x
= 0. (36)
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The probability current density j can also be written
in terms of ρ and S after replacing the polar form of Ψ
in formula (10)

j =
1

m
ρ
∂S

∂x
. (37)

Formula (33) can be written as follows

d

dt
⟨p̂⟩ = +2~

∫
Ω

dx Im

(
∂Ψ̄

∂t

∂Ψ

∂x

)
, (38)

and by substituting the relation Ψ =
√
ρ exp (iS/~) in

Eq. (38), we obtain the following result

d

dt
⟨p̂⟩ =

∫
Ω

dx

(
∂ρ

∂t

∂S

∂x
− ∂ρ

∂x

∂S

∂t

)
. (39)

By solving for ∂S/∂t and ∂ρ/∂t in Eqs. (35) and (36),
respectively, and substituting them into Eq. (39), for-
mula (30) is obtained (after some simple calculations).

The boundary term in formula (29) is real-valued if
Eq. (14) is verified. To obtain this result, we first write
that boundary term separately but in terms of ρ and j
(or v = j/ρ):

− ~2

2m

∂Ψ̄

∂x

∂Ψ

∂x

∣∣∣∣b
a

+
~2

2m
Ψ̄
∂2Ψ

∂x2

∣∣∣∣b
a

=

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a

+

(
−ρQ− ρ

m

2
v2 + i

~
2

∂j

∂x

)∣∣∣∣b
a

(40)

(Eq. (40) is, in fact, also valid without vertical bars,
|ba). As we have observed before, the hermiticity of p̂
(⇒ ⟨p̂⟩ ∈ R) requires that the probability density (for
the state Ψ) satisfies formula (14). Differentiating that
formula with respect to time, we obtain the following:(

∂ρ

∂t

)
(b, t)−

(
∂ρ

∂t

)
(a, t) =

∂ρ

∂t

∣∣∣∣b
a

= 0.

Now, using the continuity equation (Eq. (36)), we ob-
tain the condition

∂j

∂x

∣∣∣∣b
a

= 0. (41)

With this last result, the entire boundary term in
Eq. (40) (and therefore in Eq. (29)) is real-valued (the
first term in (40) is always real). Consistently, d⟨p̂⟩/dt
and ⟨f̂⟩ are both real-valued quantities in Eq. (29).

In the proof of the formula (30), the condition gi-
ven in Eq. (32) was used; thus, the results in Eq. (29)
(or Eq. (25)) and Eq. (30) are not equivalent. Howe-
ver, from the expression for d⟨p̂⟩/dt that is written after
Eq. (31), we can write the following:

d

dt
⟨p̂⟩ = i

~

(
⟨ĤΨ, p̂Ψ⟩ − ⟨Ψ, p̂ĤΨ⟩

)
.

Now, instead of using Eq. (32), we use relation (34)
(from which we solve for ⟨Ψ, p̂ĤΨ⟩). This process le-
ads to the following expression

d

dt
⟨p̂⟩ = −2

~
Im⟨ĤΨ, p̂Ψ⟩ − Ψ̄ĤΨ

∣∣∣b
a

(42)

(in which we have used Ĥ = i~∂/∂t to write the boun-
dary term in Eq. (42)). Indeed, formulas (29) and (42)
are equivalent. The first term on the right-hand side
of Eq. (42) is precisely the entire right-hand side of
Eq. (30). Additionally, the boundary term in Eq. (42)
can be rewritten using Eq. (8). In this way, we obtain
the following result:

d

dt
⟨p̂⟩ = −ρ

m

2
v2
∣∣∣b
a
+

~2

2m
Ψ̄
∂2Ψ

∂x2

∣∣∣∣b
a

+ ρQ|ba−
⟨
∂Q

∂x

⟩
+⟨f̂⟩.

Now, we use the following (remarkable) relation:

∂

∂x

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2
]
=

∂ρ

∂x
Q

(where we have made use of the definition of the Bohm’s
quantum potential given by Eq. (31)), to write

ρQ|ba −
⟨
∂Q

∂x

⟩
=

∫ b

a

dx
∂ρ

∂x
Q = − ~2

8m

1

ρ

(
∂ρ

∂x

)2
∣∣∣∣∣
b

a

,

(43)
which leads us to the following result:

d

dt
⟨p̂⟩ =

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a

+
~2

2m
Ψ̄
∂2Ψ

∂x2

∣∣∣∣b
a

+ ⟨f̂⟩. (44)

Finally, because the following relation is verified:[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a

= − ~2

2m

∂Ψ̄

∂x

∂Ψ

∂x

∣∣∣∣b
a

(see Eq. (40)), formula (44) is precisely result (29) (i.e.,
Eqs. (42) and (29) are equivalent).

Recapitulating, the temporal evolution of the mean
value of p̂ is given by Eq. (29), but the boundary term
must be real-valued if the mean value of p̂ is real. As
we have demonstrated (see Eq. (40)), to accomplish
this, it is enough that the boundary conditions satisfy
Eq. (14), which implies that Eq. (41) is also satisfied
because the continuity equation is verified. After subs-
tituting Eqs. (40) and (41) in Eq. (29), this formula
(Eq. (29)) can be written as follows:

d

dt
⟨p̂⟩ =

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a
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+
(
−ρQ− ρ

m

2
v2
)∣∣∣b

a
+ ⟨f̂⟩. (45)

Formula (30) also gives us the average value of p̂,
but this equation must also be consistent with Eq. (14)
(because p̂ is hermitian) and the boundary conditi-
ons should cancel the boundary term that appears in
Eq. (34). This term is precisely

~2 Ψ̄
∂Ψ

∂t

∣∣∣∣b
a

=
~2

2

∂ρ

∂t

∣∣∣∣b
a

+ i~ ρ
∂S

∂t

∣∣∣∣b
a

, (46)

and because (∂ρ/∂t)|ba = 0 (as a result of the validity of
Eq. (14)), we have that the vanishing of the left-hand
side in Eq. (46) implies the following

ρ
∂S

∂t

∣∣∣∣b
a

= 0. (47)

Now, multiplying the quantum Hamilton-Jacobi equa-
tion (Eq. (35)) by ρ and substituting the expression
∂S/∂x = mv (Eq. (37) with j = ρv) and Eq. (47), the
following relation is obtained (in this way, this result is
also a consequence of the elimination of the left-hand
side in Eq. (46))

ρV |ba =
(
−ρQ− ρ

m

2
v2
)∣∣∣b

a
. (48)

Now, returning to formula (30) and substituting rela-
tion (43), we obtain the following result

d

dt
⟨p̂⟩ =

[
− ~2

8m

1

ρ

(
∂ρ

∂x

)2

− ρ
m

2
v2

]∣∣∣∣∣
b

a

+ ρV |ba + ⟨f̂⟩.

(49)
Formula (49) becomes formula (45), as long as rela-

tion (48) is obeyed (this is an expected result!). Thus,
Eqs. (29) and (30), together with the condition given
by Eq. (14) (which is consistent with the hermiticity
of p̂), give us identical results if the boundary term in
Eq. (34) vanishes (which occurs if p̂ is hermitian); i.e.,
if Eq. (48) is verified (see the comment after Eq. (34)).
In conclusion, Eqs. (49) and (29) show that the time
derivative of the mean value of p̂ is always equal to a
term evaluated at the ends of the interval containing
the particle plus the mean value of the external classi-
cal force operator. However, as is shown in Eq. (49),
the boundary term may depend only on the values ta-
ken at x = a and x = b by the probability density, its
first spatial derivative, the probability current density
and the external potential.

In agreement with the previous results (see the dis-
cussion that follows Eq. (29)), all of the boundary
terms in Eq. (49) do not vanish for the solutions to the
Schrödinger equation Ψ = Ψ(x, t) satisfying the Dirich-
let boundary condition. In this case, both the density
of probability and the probability current density va-
nish at the ends of the interval, i.e., j|ba = 0 − 0 = 0

and ρ|ba = 0 − 0 = 0. Therefore, we have ρV |ba = 0

and (ρmv2/2)
∣∣b
a
= (0/0)− (0/0) = 0. The latter result

because j = ρv, ρ(a) = ρ(b) (Eq. (14)) and j(a) = j(b)

(Eq. (20)). Moreover, we also know that ρQ|ba = 0,
which is consistent with Eq. (48). Thus, we can write
the following result

d

dt
⟨p̂⟩ = − ~2

8m

1

ρ

(
∂ρ

∂x

)2
∣∣∣∣∣
b

a

+ ⟨f̂⟩. (50)

The boundary term in Eq. (50) can be written as fol-
lows:

− ~2

2m

(
∂
√
ρ

∂x

)2
∣∣∣∣∣
b

a

,

and (in this case) it coincides with ⟨−∂Q/∂x⟩ (this re-
sult comes from Eq. (43)). Also (in this case), the
boundary term coincides with the following expression:

− ~2

2m

∂Ψ̄

∂x

∂Ψ

∂x

∣∣∣∣b
a

= − ~2

2m

∣∣∣∣∂Ψ∂x
∣∣∣∣2
∣∣∣∣∣
b

a

(see the relation that follows Eq. (44)). Consequently,
the mean value of the quantum force fQ = fQ(x, t) ≡
−∂Q/∂x can be calculated by simply evaluating a quan-
tity (which, in this case, only depends on ρ and ∂ρ/∂x)
at x = b and at x = a and then subtracting these two
results. Similarly, if we assign the following expressions
to fQ:

fQ → − ~2

2m

1

|Ψ|2
∂

∂x

∣∣∣∣∂Ψ∂x
∣∣∣∣2

or

fQ → − ~2

2m

1

ρ

∂

∂x

(
∂
√
ρ

∂x

)2

,

which are clearly distinct from each another and also
from −∂Q/∂x, the correct value for ⟨fQ⟩ is obtained.
However, an exact expression for fQ can be obtained
using the relation that precedes Eq. (43), in which
Q∂ρ/∂x = ∂(ρQ)/∂x − ρ ∂Q/∂x. The result is the
following

fQ =
1

ρ

∂

∂x

[
−ρQ− ~2

8m

1

ρ

(
∂ρ

∂x

)2
]
. (51)

Clearly, ⟨fQ⟩ is always equal to a boundary term. For-
mula (51) can be written without the explicit presence
of Bohm’s quantum potential. Indeed, by substituting
the expression for Q (the expression to the right in Eq.
(31)) in Eq. (51), we obtain the following

fQ =
1

ρ

∂

∂x

[
~2

4m
ρ
d2

dx2
ln(ρ)

]
. (52)

This last result has been known in hydrodynamic for-
mulations of Schrödinger’s theory; see, for example, the
following recent [11] (and further references therein).
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Now, if we return to Eq. (50) and assume that the

external potential is zero (⇒ ⟨f̂⟩ = 0), we can write the
following

d

dt
⟨p̂⟩ = − ~2

2m

(
∂
√
ρ

∂x

)2
∣∣∣∣∣
b

a

= − ~2

2m

∣∣∣∣∂Ψ∂x
∣∣∣∣2
∣∣∣∣∣
b

a

= ⟨fQ⟩.

(53)
Consequently, the mean value of the force encounte-
red by a free particle confined to a region and col-
liding with the two walls is precisely ⟨fQ⟩. Then,
from Eq. (53), and because the formula that follows
Eq. (44) (which is also valid without vertical bars, |ba)
with (ρmv2/2)

∣∣
(x=b)

= (ρmv2/2)
∣∣
(x=a)

= 0 is verified,

we can say that the average force on the particle when
it hits the wall at x = b is given by the following

− ~2

2m

(
∂
√
ρ

∂x

)2
∣∣∣∣∣
(x=b)

= − ~2

2m

∣∣∣∣∂Ψ∂x
∣∣∣∣2
∣∣∣∣∣
(x=b)

, (54)

At x = a, the expression for this force is obtained from
Eq. (54) by making the following replacements: b → a
and − → +. Let us now consider the example of the
confined (free) particle moving between x = 0 (= a)
and x = L (= b), and in some of its possible stationary
states

Ψ = Ψn(x, t) =

√
2

L
sin

(nπ
L

x
)
exp

(
−i

En

~
t

)
, (55)

where En = ~2π2n2/2mL2, with n = 1, 2, . . . (na-
turally, the corresponding probability density ρ =
ρn(x) = |Ψn(x, t)|2 is independent of time). Using these
results in Eq. (54) (in either of the two expressions),
we can determine that the average force on the particle
at x = L is given by −2En/L, and at x = 0 it is gi-
ven by +2En/L; therefore, ⟨fQ⟩ = 0 (this same result
was obtained in Ref. [12] following a procedure diffe-
rent from that shown here). However, if the state Ψ is
a linear combination of the solutions (55) (and hence,
the corresponding probability density is also a function
of time), ⟨fQ⟩ does not necessarily vanish (in this spe-
cific case, the average force on the particle at x = L is
not always minus the value ((−1)×) at x = 0) [13]. In
Ref. [13] the issue of the average forces for a particle
ultimately restricted to a finite one-dimensional inter-
val, either because there exists an infinite potential or
because we put the particle in the interval and neglect
the rest of the line, has been recently treated.

Consistently with previous results (see the discus-
sion following Eq. (29)), the entire boundary term in
Eq. (49) vanishes for the solutions Ψ = Ψ(x, t) sa-
tisfying the periodic boundary condition. Indeed, we
know that ρ|ba = j|ba = 0; therefore, ρV |ba = 0 (pro-

vided that V |ba = 0) and ρQ|ba = 0 (see Eq. (48)).
Finally, because

∂ρ

∂x

∣∣∣∣b
a

= 2Re

(
Ψ̄
∂Ψ

∂x

)∣∣∣∣b
a

,

all of the boundary terms in Eq. (49) vanish, and the

result d⟨p̂⟩/dt = ⟨f̂⟩ is reached. However, in this case,

we also know that d2⟨x̂⟩/dt2 ̸= ⟨f̂⟩/m. This result oc-
curs because the boundary term in Eq. (24) is not zero
(because the probability current density does not va-
nish at the ends of Ω), and its derivative with respect
to t does not vanish either. Clearly, this situation does
not occur when the relation j(a) = j(b) = 0 is obeyed
(as in the case of the Dirichlet boundary condition).

Finally, as was explained before (see the discussion
following Eq. (29)), the boundary term in Eq. (29)
is zero in an open interval (Ω = (−∞,+∞)), provided
that appropriate conditions can be satisfied as x → ±∞
(i.e., Ψ and its derivative should vanish at infinity).
Equivalently, the boundary term in Eq (45) is also zero,
as well as that in Eq. (49) (because Eq. (48) is sa-
tisfied). We can then conclude (from Eq. (43)) that

⟨fQ⟩ = 0; therefore, d⟨p̂⟩/dt = ⟨f̂⟩. From Eq. (24),
relation d⟨x̂⟩/dt = ⟨p̂⟩/m is also verified; consequently,

d2⟨x̂⟩/dt2 = ⟨f̂⟩/m.

4. Conclusions

We have formally calculated time derivatives of ⟨x̂⟩ and
⟨p̂⟩ in one dimension. Simultaneously, we have identi-
fied the conditions under which two pairs of these de-
rivatives, which have been previously published, can
be equivalent. When the particle is in a finite inter-
val, we have observed that the Ehrenfest theorem is
generally not verified. In fact, because of the large va-
riety of boundary conditions that can be imposed in
this case (and for which p̂ and Ĥ are hermitian opera-
tors), the boundary terms that appear in d⟨x̂⟩/dt and
d⟨p̂⟩/dt (which may depend only on the values taken
there by the probability density, its spatial derivative,
the probability current density and the external poten-
tial) do not always vanish. Particularly, if the boundary
term in d⟨x̂⟩/dt does not vanish, we generally know

that d2⟨x̂⟩/dt2 ̸= ⟨f̂⟩/m. If the particle is at any part
of the real line, but there is a very small chance for
it to exist at infinity, the time derivatives of ⟨x̂⟩ and
⟨p̂⟩ obey the usual Ehrenfest relations, as expected. As
we have demonstrated, d⟨x̂⟩/dt is equal to ⟨p̂⟩/m, plus
a boundary term, but we can also say that d⟨p̂⟩/dt is

equal to ⟨f̂⟩ + ⟨fQ⟩ plus a boundary term. In the first
formula, the respective boundary term is zero whene-
ver the probability current density vanishes at the ends
of the interval (see Eq. (24)). As a case in point, the
same result is observed in the second formula when the
probability density and current are zero there (see, for
example, Eq. (45) conjointly with Eq. (43)).

If a free particle (V = const ⇒ f̂ = 0 ⇒ ⟨f̂⟩ = 0) is
confined to a box, the quantum force fQ (or rather, its
mean value ⟨fQ⟩) is the quantity that reports the exis-
tence of the box’s impenetrable walls (at least for the
Dirichlet boundary condition). In all cases, the average
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value of fQ = −∂Q/∂x is simply obtained by evalua-
ting a certain quantity at each end of the interval oc-
cupied by the particle and subtracting the two results
(see Eq. (51)). That quantity is precisely proportional
to the integrand of the so-called probability density’s
Fisher information, F(ρ), in particular cases; for exam-
ple, when ρ = 0 at the ends of the interval. In effect,
for a particle in an interval Ω = [a, b], we obtain the
following (see, for instance, Refs. [11,14]):

F(ρ) =

∫ b

a

dx
1

ρ

(
∂ρ

∂x

)2

.

Clearly, in this case, we obtain ⟨fQ⟩ by evaluating the
integrand in F(ρ) (times −~2/8m) at x = a and x = b
(see Eq. (51)).
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