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Classical path from quantum motion for a particle in a transparent box

(Tragetdria cldssica a partir do movimento quantico para uma particula em uma caiza transparente)
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We consider the problem of a free particle inside a one-dimensional box with transparent walls (or equiva-
lently, along a circle with a constant speed) and discuss the classical and quantum descriptions of the problem.
After calculating the mean value of the position operator in a time-dependent normalized complex general state
and the Fourier series of the function position, we explicitly prove that these two quantities are in accordance by
(essentially) imposing the approximation of high principal quantum numbers on the mean value. The presenta-
tion is accessible to advanced undergraduate students with a knowledge of the basic ideas of quantum mechanics.
Keywords: correspondence principle, classical limit, Ehrenfest theorem.

Consideramos o problema de uma particula livre no interior de uma caixa unidimensional com paredes trans-
parentes (ou equivalentemente, ao longo de um circulo com uma velocidade constante) e discutimos as descrigoes
classica e quantica do problema. Depois de calcular o valor médio do operador da posi¢gao num estado geral
complexo normalizado dependente do tempo e a série de Fourier da funcao de posi¢do, provamos explicitamente
que estas duas quantidades estdo em correspondéncia se (essencialmente) impusermos sobre o valor médio a apro-
ximag&o dos nimeros quanticos principais elevados. A apresentacio é acessivel a alunos de graduagao avangados
com conhecimento das idéias bésicas da mecanica quéntica.

Palavras-chave: principio da correspondéncia, limite classico, teorema de Ehrenfest.

1. Introduction

As typically stated in the field of quantum physics,
classical mechanics can be obtained from quantum me-
chanics by imposing mathematical limits. This general
statement is called the correspondence principle. Two
different formulations or (non-equivalent) limits that
give form to the aforementioned principle are commonly
found in the literature: (i) the Planck formulation em-
ploys the classical or quasi-classical limit & — 0, and
(ii) in the Bohr formulation, the large principal quan-
tum number limit n — oo is applied. Some physicists
believe (and we agree) that the most meaningful prin-
ciple is the combination of (i) and (ii) together with
the restriction nh = constant. In fact, according to the
Bohr-Sommerfeld-Wilson (BSW) quantization rule, the
latter constant is proportional to the classical action .J

nh:%?{d:ﬂp(x):%7 (1)

(where p(x) is the classical momentum, and the integral
is obtained over the entire period of motion). Some par-
ticularly useful descriptions of these fundamental issues
are provided in Refs. [IHG] (to mention only a few).
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As is well known, the Ehrenfest theorem states that
the mean values of the position and momentum opera-
tors (in the time-dependent normalized complex gene-
ral state U = U(x,t)) ()(t) = (¥,2T) and (p)(t) =
(U, p¥) satisfy (essentially) the same equations of mo-
tion that the classical position and momentum (x(t)
and p(t), respectively) satisfy. This theorem can be
properly verified in a straightforward manner when the
potential energy function is well behaved. The most
common example is the potential energy of the simple
harmonic oscillator [@]. In other cases, such as the infi-
nite well and infinite step potentials, verification is pro-
blematic [8-I]. Although the Ehrenfest theorem pro-
vides a (formal) general relationship between classical
and quantum dynamics, it does not necessarily (neither
sufficiently) characterize the classical regime [[2]. Cer-
tainly, using only the aforementioned theorem, one can-
not state that the mean values (Z)(¢) and (p)(¢) are
always equal to the functions x(t) and p(t); however,
this statement does hold true in the limit n — oo (for a
general discussion of the behaviour of a physical quan-
tity for high values of the quantum number n, see, for
example, Ref. [[3]). In fact, this specific aspect of the
relationship between classical and quantum motion has
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been considered to some extent in a few cases, such as
the free particle and the particle in the harmonic oscil-
lator potential [[A]. The case of the free particle inside
an impenetrable box (or in an infinite potential well)
has also been treated [[3-I]. Specifically, Ref. [[F] ex-
plicitly proved that the mean value (£)(¢) matches the
classical path x(¢) in the approximation of high princi-
pal quantum numbers.

Inspired by the results provided in Ref. [[3] (and by
the general procedure discussed in Ref. [[3]), the aim of
the present paper is to explicitly prove that, in the case
of a particle in a penetrable box (or a box with transpa-
rent walls), the functions of time, (Z)(¢) and z(t), are in
agreement when n is high (we must also appeal to some
semi-classical arguments, of course). In this problem,
the classical particle disappears upon reaching a wall
(say, at © = a) and then appears at the other end (say,
at © = 0), and it does so without changing its velocity.
This situation could be physically achieved if the move-
ment is more like that of a particle along a circle with
radius a and a constant speed (this is true because a
circle can be considered an interval with its ends glued
together). The latter two classical movements (in a box
or in a circle) correspond to that of a quantum parti-
cle described by the free Hamiltonian operator (i.e., the
kinetic energy operator) with standard periodic boun-
dary conditions (which are imposed at the ends of the
box or at any point along the circle). The quantum case
of a particle in a transparent box has been previously
considered to some extent. For example, briefly in an
interesting study on Heisenberg’s equations of motion
for the particle confined to a box [[3]; as an example
to illustrate the agreement between the periodic mo-
tion of classical particles and quantum jumps for large
principal quantum numbers [[¥] (to mention only two
examples). The present article is organized as follows:
in section 2, we introduce and discuss the classical and
quantum versions of the problem at hand. In section 3,
we explicitly prove that (Z)(¢) and x(¢) are in agreement
by imposing the approximation of high principal quan-
tum numbers on the mean value. Finally, we present
concluding remarks in section 4.

2. Classical and quantum descriptions

Let us begin by considering classical motion: we have a
free particle of mass p that resides in a one-dimensional
box but is not confined to the box, i.e., the walls at
z =0 and = = a are transparent (the potential, U(z),
is zero inside the box). In this situation, we assume that
the particle starts from x = 0 (for example), reaches the
wall at £ = a and then reappears at © = 0 (with the
same velocity throughout). The extended position as a
function of time x(t) is periodic and discontinuous and
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can be written as:

+o0
a(t)= > (vt—rT)[O(t—rT)—O(t— (r+1)T)].

@)
Here, ©(y) is the Heaviside unit step function (O(y >
0) =1 and O(y < 0) = 0), v > 0 is the speed of
the particle and T is the period. In each time interval
(rT <t < (r+1)T), the extended position is simply
x(t) = vt — rvT, where r is an integer (thus, all discon-
tinuities occur at ¢t = rT"). For example, the solution at
t€(0,T) (r=0)is (t) = vt. At the end of each time
interval, we must also enforce (i.e., when r is given),
the conditions z(rT) = 0 and z((r + 1)T) = vT = a.
Moreover, if the particle starts at t = 0 from x = 0
(and begins to move towards x = a), then the sum in
Eq. (2) should begin at 7 = 0. In this case, the solution
of the equation of motion, z(t), satisfies the condition
z(t < 0) = 0. Clearly, the periodic function x(t) in
Eq. (2) (with ¢t € (—o00,+00)) can be expanded in a
Fourier series

+oo
a .a 1 2nT
x(t) = 3 + o E — exp (th) .3
(0#)T7=—00

The series in Eq. (3) seems complex but is actually
real-valued (of course, a complex solution z(t) is not
entirely acceptable as a classical trajectory). Moreover,
if the particle is moving from right to left instead of
moving from left to right (say, starting at * = a), the
Fourier series associated with the corresponding exten-
ded position is given by Eq. (3), but the (classical)
amplitude (for 7 # 0) of ia/277 changes to —ia/2nT.

The quantum results that are relevant to the dis-
cussion at hand include the following: first, for a free
particle in a transparent box with a width of a, the
Hamiltonian operator is

A9 2 2 92
S R A R Gl
i = 2 2u ( m@x)  2u 022 (4)

This operator (essentially) acts on functions ¥ =
U(x,t), which belong to the Hilbert space of square-
integrable functions on the interval 0 < x < a and
whose derivatives are absolutely continuous. It is
natural to include the periodic boundary condition,
U(0,t) = ¥(a,t) and ¥,(0,t) = P,(a,t) (where, as
usual, U, = 9U/dz) in the domain of H. With these
boundary conditions, the Hamiltonian is self-adjoint,
its spectrum is purely discrete and doubly degenerate
(with the exception of the ground state), and their ei-
genfunctions form an orthonormal basis [20,E0]. Pre-
cisely, the (complex) orthonormalized eigenfunctions of
H are also eigenfunctions of the momentum operator p,
and can be written separately as follows:

(i) Eigenfunctions of p with eigenvalues p, =
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2whn/a
1 2
Pn(x) = —=exp (zﬂnac) ,
a a
R (20>
E, = — <m> . n=1,23,.... (5
W\ a

Each function ¢, (z) is a stationary plane wave propa-
gating to the right.

(it) Eigenfunctions of p but with eigenvalues
pn = —2mhn/a

R2 [2mn\?
En:(m> n=1,23,.... (6)

Each function y,(z) is a stationary plane wave propa-
gating to the left.

Finally, the eigenfunction of H to the ground state
can be expressed as

Yo(z) = Ep=0. (7)

Va'
This is also an eigenfunction of p with an eigenva-

lue of pg = 0. All of these eigenfunctions specifi-
cally verify the following orthonormality relationships:

J
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<¢n7¢m> = 5n,m7 <XnaXm> = 5n,m7 <¢0,¢0> =1, and
<¢n7 Xm> = <¢na 7/10> = <XTL7 1/10> = 0. Let us note in pas-
sing that in this problem, the BSW quantization rule
(given by Eq. (1)) also provides the exact quantum
mechanical energies (see, for example, Ref. [[1]).

3. Approximation of high principal
quantum number to (Z)(t)

Let us now consider the following complex general state
U = WU(x,t), which is assumed to be normalized

0= Apala)esp (~i%2t) +
n=1
Agtbo () exp <Eht)

+§:1An¢n(x) exp (—z’E;;”t>. (8)

Precisely, due to the normalization condition, || ¥ ||?=
(¥, T) = 1, the (complex) constant coefficients of the
Fourier expansion in Eq. (8) (A_,, Ay and A,) must
satisfy the following relation

DAL PHAP+Y 1A P=1 (9
n=1 n=1

Now, by calculating the mean value of the position operator, & = x, in the general state given in Eq. (8),

(@)(t) = (¥, 2W

_ / da (. )2V (z, 1) = / doa | U(nt) 2, (10)
0 0

we obtain the following expression (throughout the article, the horizontal bar represents complex conjugation)

(2)(t) *f—H— Z ZAA

" (m#)n=0m=0

.a - 1
_Z%ZZAanmn+m

n=1m=1

exp {z’(E” ;E’”) ]

exp{i(ElhE]—z Z ZA WA _m

— €xXp ZTt
(m#)n=0 m=0

ZZA nAm

nlml

(En = Bim) Em)t] .

— exp [—z - (11)

In the latter expression, we made use of Eq. (9). Also note that the last two terms in Eq. (11) are complex

conjugate of each other.

Because we consider that the classical particle is moving from left to right, we must choose the part of (Z)(t)
that corresponds to the quantum motion of plane waves propagating to the right. Hence, in the expansion given in

Eq. (8), we must impose the condition A_,, = 0, where n = 1,2,3,.. ..

S

(m#)n=0m=0

the form

(@) () = 5 ‘H'% Z

Therefore, the infinite series for (%) (¢) takes

_1m exp [Z(E”;Em)t} . (12)

Now, the constants A,, satisfy the following relation (see Eq. (9))

[ Ag P+ [ An =) A4, =1 (13)
n=1 n=0
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By introducing 7 = n — m (= m = n — 7) and changing the sum over m in Eq. (12) to a sum over 7 (note that,
because n =1,2,3,...and m =1,2,3,... withn # m, then 7 = ... —2,—1,+1,42,.... Thus, 7 # 0), we can write

(Z)(t) as follows:
“+ o0

(@)(t) =5 +iy

> 2 S Aud s exp [th] . (14)

(0#)r=—00 = n=0

In the latter expression, we also changed the order of the sums.

Using the expression for the allowed energy values
given in Eq. (5), we obtained the following result

En,— B, 1 T
- =2m— 5T ( - %) . (15)
2nnh

Clearly, when n > 1 or equally when n ~ n — 7 or
n > 7, the following approximation can be obtained
E,—FE,_; 1 _ 2nT
2mnh

Thus, we identified T'(n) as the period of the classi-
cal particle (as a function of n). In fact, from the BSW
quantization rule (see Eq. (1)), the following result was
obtained

Note that, strictly speaking, in the limit as n — oo, one
obtains (E, — E,_,)/h — oo (the same applies to the
model of the particle in the box with rigid walls [I1]).
In other words, the separation between two neighbou-
ring energy levels does not become small as n becomes
large. However, the results expressed in Eq. (16) make
sense because nh = constant (and we are assuming
that i — 0). Nevertheless, the relative spacing satisfies
(Eny1 — En)/E, — 0 for large E,,. This (apparently)
explains why cuantization is not observed at high ener-
gies [E2]. On the other hand, we may assume that the
sum over n in Eq. (14) is significant only around (say)
n = N, such that N > 1. By substituting Eq. (16)
into Eq. (14) (and using the approximation n —7 =~ n),
we obtain

fdopta) M a7
T p(r) = pva = = 2mnh. 17
T'(n) ]
a a = 1 27T
()~ = +i— - A, A, exp {z t} . 18
< >( ) 2 2ﬂ-(0¢;§;—<m T11a£§;dZV fT(n) ( )

However, in the interval of n (in the neighbourhood
of N), we assumed that T'(n) did not change signifi-
cantly (in fact, T'(n) = T = a\/pu/2E, where E is the
energy of the classical particle). Therefore the expo-
nential in Eq. (18) can be separated from the sum.
Precisely, due to the restriction given by Eq. (13), the
sum takes on a value of one; thus, we recovered the
expected classical result

—+00

. a . a 1 27T
(T)(t) =~ 5 + o (075)2_: — exp (th> = z(t).

(19)

4. Concluding remarks

Although the separation between the eigenvalues of
energy tends to increase with an increase in the value of
n, the semi-classical arguments we used to obtain the
result given in Eq. (19) appear to be physically reaso-
nable. In fact, we explicitly proved that the quantum
average, (£)(t), and the classical path, z(t), are in agre-
ement. The mean value, (Z)(t), was initially calculated

in a state that included the general superposition of
energy eigenstates but was finally converted (using the
applied approximation) into a state formed by a num-
ber of stationary states with quantum numbers n in a
band with a narrow width around n = N > 1 (a semi-
classical state, of course). Certainly, for the problem
at hand, classical-quantum correspondence was easy to
verify because the Fourier series associated with the
position of the particle was easy to calculate. Unfor-
tunately, this is not always the case. We believe that
the issues presented herein will be attractive to advan-
ced undergraduate students, as well as to teachers and
lecturers.
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