Revista Brasileira de Ensino de Fisica, vol. 42, €20200278 (2020)

www.scielo.br/rbef

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0278

Artigos Gerais

®@®

Licenca Creative Commons

Squashing and spaghettification in Newtonian gravitation

R. R. Machado™, A. C. Tort®”, C. A. D. Zarro®

LCentro Federal de Educacio Tecnoldgica Celso Suckow da Fonseca, Rio de Janeiro, RJ, Brasil
2Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ, Brasil

Received on July 06, 2020. Revised on September 07, 2020. Accepted on October 08, 2020.

Action films and sci-fi novels should be common resources in classrooms since they serve as examples and
references involving physical situations. This is due to the abstract nature of many physical concepts, and the
lack of references in students’ daily lives makes them more difficult to be visualized or imagined. In this work we
bring a discussion of how we can resort to films and literary works in order to elucidate the concepts regarding
tidal forces. To this effect, we have used the action film Total Recall (2012) to present the squashing effect and
the classic of juvenile literature From FEarth to the Moon (1865) to discuss the effect of spaghettification in the

context of Newtonian mechanics.
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1. Introduction

Action movies and sci-fi novels can always be resorted to
whenever we look for situations, or examples, capable of
motivating our students. Total Recall is an action movie
based on a story written by the American writer Philip
K. Dick (1928-1982) and published in 1966 [I]. The first
screen version of Total Recall was released in 1990, and
the second one in 2012, see Figure [I} The 2012 version
brings a new plot: The Earth has been devastated by
a biological war and there were only two parts of the
planet where humanity could live, namely, in a region
of Europe comprising the British Isles and in a remote
region in Australia. According to the new plot, in the
region of Australia there is the so-called Colony, a kind of
working-class suburban neighborhood where the people
who work on robot assemblage factories go to rest and
sleep. In The Colony, there is a designed special trans-
portation named The Fall, see Figure |1, where workers
would get a 17-minutes (sic) ride until their final destina-
tion. On board of The Fall the passengers are submitted
to various physical effects—many of them discussed in
an amusing video that can be watched in [2]. Among
those physical effects, one is particularly strange. There
is a point at the center of the Earth where gravity is
zero and as soon as one passes through this point, it
inverts its direction. This point is unsurprisingly called
the inversion point. But passengers on board of The Fall
are most of the time in free fall, and as we will show,
submitted to an effect that, though negligible from a
practical point of view, nevertheless conceptually exists:
The squashing.

Another interesting situation to be approached con-
sists on Julio Verne’s futuristic novel namely From the
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Earth to the Moon [3], see Figure [2| On Verne’s chap-
ter XXIII, he describes the Projectile-Vehicle, to which
we will refer as Verne’s projectile, designed to trans-
port adventurous people through space; more precisely
between the Earth and the Moon. Curiously in Verne’s
book we can also read about a special point to which the
author refers as neutral point. This point of the journey
is determined by the equality of the intensities of the
gravitational attractions of the Earth and the Moon. In
the book, the adventurers realize that they have reached
that point when objects in the Verne’s projectile play-
ing the role of a spaceship start to float freely—exactly
as in the 2012 remake of Total Recall when The Fall
reaches the inversion point (the center of the Earth). As
highlighted on the book [3]:

...But how should they know when the projec-
tile had reached this neutral point situated at
that distance, especially when neither them-
selves, nor the objects enclosed in the projec-
tile, would be any longer subject to the laws
of weight?

Up to this time, the travelers, while admit-
ting that this action was constantly decreas-
ing, had not yet become sensible to its total
absence.

But that day, about eleven o’clock in the
morning, Nicholl having accidentally let a
glass slip from his hand, the glass, instead
of falling, remained suspended in the air.

In Verne’s projectile and in the The Fall, adventurers
and workers, in their own reference frames, are in free
fall, and unless they keep their seat belts fastened, every-
one and everything floats freely. The remake of 2012
and the 19th century book are examples that can be
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Figure 1: Left and center: Posters of the 1990 version and the 2012 remake. Right: The Fall. (Images Carolco Pictures and Columbia
Pictures).

Figure 2: Jules G. Verne (1828-1905). On the right, cover of the first American edition of From the Earth to the Moon showing
Verne's projectile/spaceship approaching the Moon. (Wikipedia Images)
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exploited in physics classes at undergraduate levels lead-
ing to a discussion on inertial and non-inertial reference
frames in the context of Newtonian mechanics. In order
to provide a better support for students and/or teach-
ers, we have inserted a brief discussion on non-inertial
reference frames.

2. Non-inertial frames

Newton’s laws are valid for inertial frames of reference.
A observer in an inertial frame of reference, say S, may
verify the validity of the law of inertia (Newton’s first
law) on this frame. Thus, if the net force acting upon a
body is null, the body will move on a straight line with
constant velocity or will remain at rest in the inertial
frame of reference. Besides, if Newton’s laws are valid in
S, they will also be valid for any other frames of reference
moving at a constant velocity with respect to S.

Nonetheless, Newton’s laws are not valid on a frame of
reference S’ accelerated with respect to an inertial frame
of reference 9, since for an observer in S’, Newton’s first
law would not be verified on his reference frame. Since
Newton’s laws are not verified in this frame of reference,
we name it non-inertial frame of reference. In the fol-
lowing, we will establish the equation of motion for non-
inertial frames of reference in pure translation. Let S’ be
a reference frame with an acceleration A with respect to
S (inertial)—see Figure 3| For the inertial frame S, the
equation of motion for a particle of mass m is given by
Newton’s second law:

Z:F:ma7

where > F stands for the net force acting upon on a
particle of mass m and a is the acceleration of the par-
ticle with respect to S. For the accelerated frame S’ we
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Figure 3: The frame of reference S’ with an acceleration A
with respect to the frame of reference S.
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cannot apply Newton’s second law directly for a particle
of mass m. Thus, we need to determine the correspond-
ing equation of motion for in the non-inertial frame S’.
Examining Figure [3] we can write the following expres-
sion for the position vectors r and r’ of a particle of mass
m with respect to S and S’, respectively:

r=r-R, (1)

where R represents the instantaneous position of the ori-
gin for S’ with respect to S. If we determine the second
derivative with respect to time for the equation we
can obtain the relation between the acceleration a and
a’ of the particle with respect to S and S’, respectively

a=a-—A, (2)

where A stands for the acceleration of S’ with respect to
S. If 8" moves with constant velocity with respect to S

d
the term A = —— is null and the accelerations measured

in S and S’, are identical. Multiplying equation by
the mass of the particle, we obtain:

ma' =ma—mA. (3)

Since a represents the acceleration of the particle in S,
an inertial frame of reference, we can apply Newton’s
second law and rewrite equation as follows:

ma’:ZF—mA. (4)

Equation represents the equation of motion for a
particle of mass m in a non-inertial frame S’. The extra
term —m A in equation is often called inertial force.
Thus, the inertial force can be written as

Fincrtial =-mA. (5)

If we take a look at equation , we will see that the
inertial force has the same orientation, but the opposite
direction to the acceleration of frame S’ with respect
to S. Observe that the inertial force is only present in
the non-inertial frame of reference, being the ‘force’ we
can feel whenever we are standing on a bus when it sud-
denly stops. The inertial forces are also known as pseudo
forces or fictitious forces due to the fact that they are
not exerted by an agent. In addition, the inertial forces
also do not obey Newton’s third law.

3. Tidal forces

Essentially, tidal forces are due to the non-uniformity of
the gravitational field acting on an extensive body. In
general, we associate tidal forces with the effect caused
by the gravitational action of the Sun and Moon on
Earth. Thus, due to the non-uniformity of the exter-
nal gravitational field acting on the Earth, we can per-
ceive deformations that are commonly called tides in
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<— to the center of attraction

r

Figure 4: System of three particles under the exclusive action
of a non-uniform gravitational field g.

our oceans. However, tidal forces (which cause these
deformations) can exist between any two extensive bod-
ies. Thus, following Silveira [4] we will introduce tidal
forces by analyzing an idealized system composed of
three particles (1, 2 and 3), each of mass m, connected
by light and rigid rods of length £. The system composed
of the three particles will be under the exclusive action
of a non-uniform external gravitational field g generated
by say a planet—as illustrated in Figure [d] The planet,
or any mass whatsoever, is supposed to be spherically
symmetrical of radius R and mass M.

The gravitational field g for a mass distribution M
spherically symmetrical can be generally written in
terms of its radial component as follows

gr = —GMf(R,’I”),

where G stands for the gravitational constant and the
function f(R,r) is a generical function expressing the
variation of the gravitational field with the radial coor-
dinate r and the radius of the planet, R. It can be
shown with the help of Gauss’ law that for a spheri-
cally symmetrical and homogeneous mass M the gravi-
tational field in its interior, 0 < r < R, varies linearly
with radial distance r and in its exterior, r > R, the
gravitational field varies according to the inverse-square
law with respect to the center of the gravitational pull.
Thus, the function f(R,r) can be written

r/R3; forr <R

f(Ror) = {1/T2; for r > R.

The gravitational force acting on a mass m in a gravita-
tional field g can be determined by

Fgrav = mg'

Making use of Newton’s second law, we can write the
radial component of the acceleration of the center of
mass of the system as

Aprc — —GMf(R, 7’0),

where the radial coordinate rg locates the center of mass
of the system. We can write the radial component of the
gravitational force acting on the ¢ — th particle located
at r as

(Frsear)i = —GMm f(R,7) = =G Mm f(R,1o + Ar;),
(6)
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where the index ¢ varies from 1 to 3 and Ary = rg — ¢,
Ary = 0 and Ars = rg + £. From equation @ we see
that the gravitational force is different on each one of
the masses, but if the rods are rigid, the accelerations
of masses 1, 2, and 3 have the same value for the radial
component. As a result, if the net force is the same on
each of the masses, the rods connecting particles 1, 2,
and 3 must be submitted to tensions in such a way that
the net force acting on each of the particles is the same.
Hence, the simplified system presented in Figure [f] when
placed in a non-uniform gravitational field is submitted
to internal forces, i.e., tensions in the rods that connect
masses 1, 2, and 3. Let us suppose now that the rods
are flexible. In this case, the internal forces will cause
a deformation in the system during the free fall in the
gravitational field.

In Section [2| we have seen that it is possible to ana-
lyze a mechanical problem from the point of view of a
non-inertial reference frame. However, by doing so, we
must take into account the action of the inertial forces in
our analysis. Thus, we can analyze the previous problem
with respect to a reference frame S’ comoving with the
system during the free fall, that is, under the sole action
of an external gravitational field. With respect to S’ the
inertial forces acting upon particles 1, 2 and 3 will be
given by

FTiuertial =—-m AT

where A, is the radial component of the accelerated ref-
erence frame S’ with respect to a reference frame fixed
at the center of the gravitational pull. The component
A, of the acceleration of reference frame S’ with respect
to S coincides with the acceleration of the center of mass
of the particle system. From this, it follows that

A,« = —GMf(R, T‘o).

Therefore, once more following Silveira [4], we can
provide an operational definition of the tidal force in
the accelerated reference frame S’. It can be defined
as ‘the net of the gravitational force due to the external
gravitational field with the inertial force in the reference
frame accelerated by such external field.” Mathematically
it reads

Fiia = Ficrga + Fgrav' (7)
Equation @ can be applied at any point of the three-
particle system. In this sense, the tidal force in a mass
m located at r coordinate, in terms of radial component,
is written as

Fr o = _GMmf(R,T) —mA,.
Since A, = —GM f(R,ry), it follows that

Frtidal :_GMmf(R7T)+GMmf(RaTO)~ (8)
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Analyzing the previous relation, we find that the tidal
force on mass 2, which coincides with the center of mass
of the system, is null, that is

Friaa = —GMmf(R,To) +GMmf(R,r0) =0.

Making use of equation we can determine the tidal
force on particle 1 and on particle 3. The tidal force
acting on particle 2 is zero, but the tidal force is different
from zero for particles 1 and 3. The tidal force F;,, will
point towards or away from the attraction center, this
will be determined by f(R,r) as we will see next in the
case of The Fall and of Verne’s projectile.

4. Free falling reference frames and tidal
forces

The Fall and Verne’s projectile are good examples of
frames of reference in free fall. A frame of reference
in free fall accelerates in the direction of the gravita-
tional field at a certain location with magnitude |g|. An
observer in free fall in his own reference frame would
have a feeling of having no weight, called weightlessness,
and would fluctuate. By this, we can infer that the work-
ers on board of The Fuall and the adventurers of Verne’s
projectile would feel weightless all the time. The Fall
and Verne’s projectile are bodies in a non-homogeneous
gravitational field, hence under the action of tidal forces.

We will analyze on sections [I.I] and [.2] the situa-
tions for The Fall and Verne’s projectile according to the
free-falling frame of reference instantaneously co-moving
with The Fall and Verne’s projectile.

4.1. The Fall

In the free falling reference frame instantaneously co-
moving with The Fall, the tidal forces that act on a body
of inertial mass m released at a radial distance r from
the center of the Earth come from the combined action
of the inertial force and the force of the gravitational
attraction (see Figure , that is

Ftidal

= Finereia + Fgmv = —mA + Fgrav?

where A stands for the acceleration of the free-falling ref-
erence frame. The inertial force (Fi,..;.) must be taken
into account due to the fact that we are considering the
problem from the point of view of free-falling reference
frame co-moving with The Fall. The magnitude of the

-F tidal F tidal
<— To the center of the Earth >

To

Figure 5: Tidal forces in the reference frame of the The Fall.
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inertial force acting on a test body of mass m is equal
in magnitude to the product of the mass by the acceler-
ation A, but as a vector it points to the opposite sense
of the reference frame acceleration with respect to the
Earth, as discussed in Section

In the case of the gravitational force, if we consider the
Earth as a perfect homogeneous sphere, the gravitational
field in its interior varies linearly with radial distance r
from the center of the Earth. The exact expression for
the gravitational force, in terms of the radial component,
reads

I :_GMmT: GMm

T grav T% - R%

(ro + Ar)

where G is the gravitational constant, o is the distance
between the center of the Earth and the center of mass of
The Fall, Ar = r —rq is the radial displacement from ry,
Rg and M, are the Earth’s radius and mass, respectively.
For a test body placed at the center of mass of The Fuall,
the tidal force (equation [7)) is zero and we can write the
following relation

_mAT — _i_%’
®

where A, stands for the radial component of the accel-
eration of The Fuall. Notice that we are not taking into
account the convergence of the lines of force of the grav-
itational field as the observer approaches the center of
the Earth. In other words, we are assuming that the
transversal dimension of The Fall is negligible in a first
approach. For r # rg, the radial component of tidal force
will be given by

Fr tidal —

GMmrg GMmT <1+ Ar)
_ 0 =27
R R,
_GMm Ar
RZ Rs

To

(9)

Notice that this result is exact. The algebraic sign of the
tidal force depends on the algebraic sign of Ar. If r > rg
(point B in Figure [f)), the tidal force points towards the
center of the Earth; if r < rg (point A in Figure [5)),
the tidal force will point outwards, and The Fall will
be under the effect of squashing. If Ar = 0, the tidal
force will be zero and a test body placed in the middle
of the wagon will be in free fall. Tidal forces cannot be
eliminated by a convenient change of reference frame as
shown in an unequivocal way with The Fall. If a pas-
senger is not in the central part of The Fall, point C in
Figure[5] she or he will be under the action of tidal forces.
Let us suppose, for instance, that Ar is of the order of
100 m. In this case, since the radius of the Earth is of the
order of 10%m, the ratio Ar/Rg is 107* and the tidal
force on a, say, 70kg passenger would be 7 x 107! N,
small, but nevertheless measurable. We can also imag-
ine a special sledge with room for just one passenger.
Let us suppose, again, that the sledge has a length equal
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to 2m and it goes down the tracks towards the center of
the Earth. Then at her/his feet the passenger will feel a
force towards the center of the sledge and the same will
occur at her/his head. In other words, the rider will be
squashed not stretched.

4.2. Verne’s projectile

In the case of Verne’s projectile, the evaluation of the
tidal force follows an analogous reasoning to the previous
one. The difference is that now the gravitational field
varies according to the inverse-square law. Besides, the
forces of attraction of the Earth and the Moon on a test
body can be computed. With respect to an free-falling
reference system co-moving with the projectile, the tidal

force on a test body placed at r reads
Fiia = Ficrga + Fgmv = —mA + Fgrav (10)

where in terms of the radial component

P B _GM@m GM,...m
T grav — 7’2 (D . 7‘)2
GMgm GM,,,.m
= — + . 11
(ro+ Ar)2 * [D— (ro + Ar))? (11)

Here M, is the mass of the Moon, D is the distance
between the centers of the Earth and the Moon, and
Ar = r —rg, see Figure[6] As before, the inertial force is
Fi.c.iw = —mA, where now at the center of mass of the
Verne’s projectile we have

GMgm  GM, 0nm

o (D —1r9)%’
Therefore, in the projectile reference frame, the tidal
force, in terms of the radial component, will be given by

—-mA, =+

Friam = —mA, + Fgravitational
B GMgm GM,.onm GMgm
- r(z) (D —rg)?2  (ro+ Ar)?
GM,...m
n moon : 19
[D — (ro + Ar)]? (12)

which, assuming that Ar/rq < 1 and Ar/(D —rg) < 1,

and making use of the approximation (1+z)" ~ 1+ nz,

equation can be rewritten as

2GMgm E 2GM,..o.m Ar
2 1o (D—1r9)2 D—ro

Friam =

(13)

<— To the center of the Earth

_me th'
< . —
A C B
To
r
D

To the center of the Moon —»

Figure 6: Tidal forces in the reference frame of Verne's projec-
tile.
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Introducing the adimensional variable x = r¢/D, the
above equation reads

1 M,../M
+“wJ@l (14)

2 (1—2)®

2GMgmAr
D3

F’I" tidal ~

Using Ar = 100 m, m = 70 kg, D = 3,84 x 10® m and
Mg = 5,79 x 10%* kg, one has

2GMgmAr _s

and

Mmoon _ O 01
Mg

The range of Verne’s projectile is [Zmin, Tmaz], Where

LTmin =

Rg
— =0,02
D b b

R]TJO()D — .
= 0,99;

Tmax = 1-

where Rg = 6,37 x 10° m and R,,.., = 1,74 x 10 m is
the radius of the Moon. Hence, the tidal force in Verne’s
projectile is

1 0,0123
_ -8 )
FTtidal = 9,8546 x 10 <$3 + (1—1‘)3>7 (15)

in the range 0,02 < x < 0,99. In this region, the tidal
force forces for 1o = Rg and 7o = D — R,,,., are

F’r‘tidal(R@/D) ~ 0, 22 X 1071 N,
F’I‘tidal(l - RmOO,,/D) ~ 0,13 x 107! N.

The plot of the tidal force is depicted in Figure [7]
Its minimum occurs at x,,;, = 0,75, which means that
ro = 0,75D = 2,87 x 10° km, where the tidal force is

F’r’tidal(xmin) ~ 3,11 x 1077 N.

Fr,Tidal
9.8x10°8 N

600

500

400

300

200 |

100 -
1
0.2 0.4 0.6 0.8 1.0 D

Figure 7: Plot of the tidal force in units of % versus the

adimensional variable x. For a long range of values in Verne's
Fall, the observer will measure a negligible tidal force. Even near
the surfaces of the Earth and Moon, the force is very tiny.
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<— To the center of the black hole F -F
tdal tadal
<f— —f>
A B

To >

r >

Figure 8: Tidal forces in the free falling reference frame into a
non-rotating black hole.

As in the previous case, the direction of the tidal force
(equation depends on the algebraic sign of Ar. If
r > 719, as at point B in Figure [f] the tidal force will
point to the center of the Moon; but if r < ry as at point
A in Figure[6] the tidal force will point to the center of
the Earth. This effect is known as “spaghettification”.

5. Falling into a non-rotating black hole

It can be show that for a purely radial motion into or
out of a black hole, the Newtonian tidal acceleration
formulae that we derived also holds in the case of a non-
rotating black hole or a Schwarzschild black hole of mass
M e vote [B16]. Let us consider equation and replace
the Earth by the non-rotating black hole, let D — oo,
and divide the result by the mass m. It follows that

Qidar = 42GMb12aCk b H (16)
’I’O To
Again, if Ar > 0 (point B), the tidal acceleration and
forces will point radially outwards; and if Ar < 0 (point
A), they will point radially inwards, see Figure
For a stellar black hole with a mass of, say, 3.5
solar masses, that is, M,.cnoe = 3.5 Mo, we obtain
Mo note = 6,96 x 1030 kg. If now we set rg to equal
to the Schwarzschild radiusﬂ we obtain auqm ~ 9 X
101% m/s%. The projectile (in Figure 6) will be subjected,
again, to the effect of “spaghettification”, however in this
case the stretching forces will be unimaginably strong.

6. Final remarks

The situation described in the action movie Total Recall
and in the juvenile literature From the Earth to the Moon
allows us to discuss the physics of non-inertial frames
of reference. Due to the non-uniform gravitational field
acting upon The Fall and Verne’s projectile there is the
action of tidal forces. For The Fall, whose gravitational
field has a linear variation with the radial distance, we
observe the occurrence of the squashing effect. While for

1 In a simplified way, the Schwarzchild radius can be defined as
the radius in which for a particle escaping the gravitational pull
generated by the planet, of mass M, it would be necessary that
its escape speed were equal to the speed of light. The result is
Rs = 2GM/C2. Incidentally, this classical reasoning enables to
obtain the very value as found in general relativity.
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Verne’s projectile, whose gravitational field varies with
the inverse-square law, we observe the occurrence of the
spaghettification effect. Lastly, we have observed that
for a spaceship in the vicinity of a black hole, it would
suffer the action of incredibly intense forces leading to
the spaghettification effect. We believe that the examples
discussed in this work can be used with a pedagogical
profit to introductory and intermediate courses on clas-
sical mechanics.
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